用户名: 密码: 验证码:
海底管线安全可靠性及风险评价技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底管线的安全可靠性分析与风险评估是全面评价海底管线在服役过程的安全可靠性能和预期寿命,有效预防海底管线失效,提高海底管线可靠性,延长海底管线寿命的重要应用型理论研究。本文的主要研究成果有:
     (1)研究腐蚀海底管线的剩余强度和失效概率。总结分析了含缺陷海底管线剩余强度的计算方法和计算准则,获得多种因素对海底管线剩余强度的影响规律,并给出随服役时间变化的海底管道腐蚀缺陷剩余强度及失效压力的预测程序。通过对腐蚀缺陷海底管道剩余强度的三维非线性有限元分析,得到了缺陷方位、缺陷深度和缺陷长度的变化对缺陷最大应力的影响规律。建立腐蚀海底管线失效的极限状态方程,应用一次二阶矩法对含腐蚀缺陷海底管道的失效概率进行计算,分析海底管线强度和载荷的随机性对其可靠性的影响规律,确定海底管线失效概率的影响参数及其影响规律。
     (2)对海底管道缺陷评定技术及评定规范进行了深入的分析研究,为海底管道缺陷安全可靠性评定提供理论基础。根据16Mn海底管线钢的拉伸试验结果,考虑到海底管线强度、载荷、缺陷尺寸等参数具有一定的随机性,以概率断裂力学和可靠性理论为基础,采用随机数值模拟和理论计算等方法分析了海底管线强度的随机性及其影响因素。基于BS 7910评定标准,建立了含裂纹缺陷海底管线的安全可靠性评定模型,对埕岛油田某海底管线焊接接头处的表面裂纹进行了可靠性评定,给出海底管线缺陷安全评定的可靠度结果,得出了海底管线失效概率与评定参数的统计分布规律。
     (3)进行地质灾害作用下海底管道的安全评定分析。建立悬跨海底管道的振动方程,求解出悬跨段管道的固有频率及管道的允许悬空长度,得到水流速度、边界条件和轴向力对悬空管道的固有振动频率和极限允许跨长的影响规律。建立海底管道数值计算模型,对海底管道进行地震载荷作用下的动力响应分析,得到地震烈度、阻尼比及场地类型对海底管线抗震响应的影响规律。
     (4)通过理论分析及疲劳试验预测海底管线在波浪载荷作用下的疲劳寿命。设计完成了16Mn海底管线试件的拉-拉单轴成组多级疲劳试验。采用基于概率的疲劳寿命统计方法,对16Mn海底管线疲劳试验的数据进行分析处理,得出可供海底管线现场直接应用的疲劳寿命预测公式。并对海底管线焊接接头的疲劳曲线进行修正分析,得到服役海底管线焊接接头在不同存活率下的P-S-N曲线。同时,综合分析各种疲劳寿命预测公式,选择适合于海底管线实际服役过程且应用较为简单的寿命预测方法,应用海底管线的模拟疲劳试验得到的P-S-N曲线,进行海洋立管在波浪载荷作用下的疲劳寿命预测研究。
     (5)分析研究适合海底管线实际工况的定量风险评价模型。通过对埕岛油田海底管线系统的数据采集和资料分析,建立海底管线系统故障树分析模型,得出引起海底管线失效的主要因素。在此基础上,建立基于故障树分析的海底管线风险评估的模糊综合定量分析方法及其模型,综合分析海底管线各风险因素的影响程度和发生概率,同时考虑人为因素等难以量化或资料不完备的风险因素;对埕岛油田某段海底管线的风险情况进行实例计算和验证,计算结果表明风险评估模型具有较好的可信度。
     (6)开发“海底管线安全评定与风险评价系统”软件。根据上述研究成果,结合国内外相关权威规范,采用动态数据库技术、优化筛选技术和计算机图形学,完成了相关软件的开发,并将其成功应用于相关实例的计算中。
Reliability analysis and risk assessment of submarine pipeline are important research of applied theory and technology used for evaluating reliability, safety and prospective life of submarine pipeline in service process including many risk factors, furthermore, preventing effectively submarine pipeline failure, increasing submarine pipeline reliability, lengthening submarine pipeline life. The major contents are summarized as follows:
     (1) Based on the obtained research achievement, the mechanisms of submarine pipeline failure, the influences of various typical loads on submarine pipeline failure, and the influences of multifold factors on submarine pipeline strength were attained by means of the data collection and academic deduction. The ultimate state equations of submarine pipeline were established in accordance with the basic failure forms, submarine pipeline strengths and loads. Because submarine pipeline strengths and loads are random, according to the probability and reliability theory, the computing method of failure probability of submarine pipeline was confirmed. The distributions of typical parameters were obtained through academic deduction, relational empirical formulas, and analysis of probability models of typical loads. The factors affecting submarine pipeline failure probability were determined, and the influence law of randomness of submarine pipeline strengths and loads on submarine pipeline reliability were obtained.
     (2) According to the tensile test result of 16Mn submarine pipeline, the parameter’s randomness such as defect size and submarine pipeline strengths were analyzed. Then, Monte Carlo numerical method was used to calculate reliability assessment for welded joints of submarine pipeline steel in Chengdao oilfield with surface flaw at the weld toe based on British standard 7910.The failure probability of submarine pipeline containing defects was worked out. The regularities and parameters of distribution of various submarine pipeline strengths, and the influences of randomness of evaluation parameters on failure probability of submarine pipeline were achieved.
     (3) The vibration equation of free spanning submarine pipeline was established, the natural frequency and allowable length of free spanning were solved. Influence of water flow velocity, boundary conditions and axial force on vibrating natural frequency of submarine pipeline were obtained. The numerical simulation model of seismic for submarine pipeline was established and seismic response analysis of submarine pipeline was carried on. Then influence law of damping ratio and site types on seismic response of submarine pipelines was obtained.
     (4) The tension-tension fatigue test of 16Mn submarine pipeline was designed. Based on the probability method of statistical analysis, the experimental data were analyzed and the formula of fatigue life estimation was obtained. The fatigue curve of welded joint for submarine pipeline was corrected, then the P-S-N curve of welded joint under different survival rate were achived. Various formulas of fatigue life were analyzed and simple but accurate for the engineering application for life prediction method was selected. Base on the simulation fatigue test of submarine pipeline, the fatigue life of riser under the wave loading were estimated by using P-S-N curve.
     (5) By acquiring and analyzing data of submarine pipeline system for Chengdao Oilfield, the model of fault tree analysis is set up and main factors caused by submarine pipeline failure were founded. The fuzzy compositive quantitative risk assessment method and model of submarine pipeline based on fault tree analysis were established. The influence grade and occurrence probability of risk factors of submarine pipeline were analyzed synthetically, and these risk factors include human error and others which are difficult to be quantified or short of data. The risk assessment of a practical submarine pipeline was completed in order to verify the risk assessment model. The result shows that the risk assessment model is reasonable and practical.
     (6) According to the aforementioned achievement, the software“Reliability and Safety Analysis of Submarine pipeline”was developed and applied to evaluate the security of submarine pipeline successfully based on dynamic database, optimizing filtration technology and computer graphics.
引文
[1]黄鑫.海底管线设计分析[D].天津:天津大学,2004
    [2]周廷东,刘日柱.我国海底管道的发展状况与前景[J].中国海上油气(工程),1998, 10(4):1-5
    [3]曲文卿.油气管道缺陷评定方法的进展[J].油气储运,2002,21 (7):3-8
    [4]马良.海洋油气管道工程[M].北京:海洋出版社,1987:1-30
    [5]侯涛,安国亭.海底管道损伤的原因分析及修复[J].中国海洋平台,2002,17(4):37-39
    [6]曾恒一.影响我国海洋油气开发的海洋灾害[J].海洋预报,1998,15(3):21-25
    [7]高照杰,粟京,贾旭,等.带损伤海底石油管线的安全评估[J].海洋工程,2003, 21(1): 53-59
    [8]马良,王金英,刘振国.对渤海海底管道检测的探讨[J].中国海上油气(工程),1995, 7(2):14-19
    [9]罗金恒,赵新伟,路民旭.某输油管道疲劳寿命预测[J].油气储运,2001,20(6):48-50
    [10]刘春城,马桂兰.石油压力管道断裂破坏分类及其评定方法[J].吉林林学院学报,1999,15(3):166-170
    [11]潘勇琨,庄传晶.含缺陷油气管道剩余疲劳寿命的预测[J].石油机械,2001,29(8): 4-6
    [12]冯西桥,何树延.管道中表面裂纹疲劳扩展研究[J].清华大学学报(自然科学版), 1998,38(7):35-38
    [13]肖建勇.海洋平台安全风险分析方法研究[D].天津:天津大学,2003
    [14]俞庆,肖熙.海洋平台结构风险评估[J].海洋工程,1997,15(3):1-7
    [15]冯贤桂.天然气管道的疲劳可靠寿命计算[J].重庆大学学报自然科学版,2002, 25(7):133-136
    [16]蒋云,吕英民,帅健.含裂纹石油管道的工作寿命预测[J].机械强度,1999,21(1): 69-71
    [17]方华灿,高国华.海洋环境载荷的不确定性分析[J].石油机械,1994,22(9):25-30
    [18]王金英.海洋管道疲劳破坏可靠度评价[J].国外油气储运,1993,11(1):28-3
    [19]陈刚.含凹坑缺陷压力容器极限与安定性数值分析[D].北京:北京大学,1994
    [20]徐宏.压力管道缺陷评定工程方法[D].上海:华东理工大学,1995
    [21]童明波.概率损伤容限评定与可靠性研究[D].北京:北京航空航天大学,1995
    [22]武淮生.结构完整性概率R6评定方法的研究[D].北京:北京航空航天大学,1996
    [23]赵建平.随机有限元方法及其在压力容器缺陷评定中的应用[D].南京:南京化工大学,1997
    [24]周建秋.含缺陷压力管线可靠性评定工程方法[D].南京:南京化工大学,1998
    [25]左尚志.在用压力管道可靠性安全评估及安全等级评定技术研究[D].北京:北京航空航天大学,1999
    [26] SINTAP.Structural Integrity Assessment Procedures for European Industry Project BE 95-1426[S]. Rotherhan: British Steel Report, 1999
    [27] Wilkowski G. M. Application of Degraded Piping Program Results to Leak- Before- Break and In-Service Flaw Assessment Criteria[C]. Transaction of SmiRT 10,1989, 9: 105-106
    [28] Zahoor A., Ductile. Fracture of Circumferentially Cracked Type 304 Stainless Steel Pipes in Tension[J]. Journal of Pressure vessels technology, 1984,V106(4):399-404
    [29] Neale B.K. The Fracture Behavior of an Axial Crack in a Pressure Pipe[J]. Fatigue Fracture Engineering Material Structure, 1989, V33(12):597-609
    [30] Stoppler W. Crack Behavior of Pipes Under Internal Pressure and Simultaneous External Bending Moment[J]. Nuclear Engineering and Design, 1989, V112(1): 173- 182
    [31] RoosE .E, Herter, K. H., Julisch, P., et al .Assessment of Large Scale Pipe Tests by Fracture Mechanics Approximation with Regard to Leak-Before-Break[J]. Nuclear Engineering and Design.1989,V112(1):183-195
    [32] API 1104, Standard for Welding Pipelines and Related Facilities[S]. American: American Petroleum Institute, 1983
    [33] Zahoor A. Ductile Fracture Handbook[R]. California, USA: Electric Power Research Institute, 1991
    [34] ASME XI IWB-3650 & Appendix h. Flaw Evaluation Procedures and Acceptances Criteria for Ferritic Piping[R]. The ASME, NY, 1989
    [35] DNV-RP-F101, Corroded pipelines[S]. Det Norske Veritas: Det Norske Veritas Elendom AS, 2000.
    [36] Yung - Shih Wang. An flastic limt criterion for the remaining strength of corrodedpipe[A]. ASME OMAE 10th Int. Conf. off. Mech. Arctic Engrg[C]. Stavanger, Norway, 1991: 179-186
    [37] Chouchaoui B A , Pick R J. Behaviour of longitudinally aligned corrosion pits[J]. International Journal of Pressure Vessels and Piping, 1996 ,V67(1): 17-35
    [38] Mok D H B , Pick R J , Glover R G. Behavior of line pipe with long external corrosion[J]. Mat.Performance, 1990, 29 (5): 75-79
    [39] Fu , Jones . Failure of spiral corrosion in pipeline[A]. ASME OMAE 13th Int. Conf. off. Mech. Arctic Engrg[C]. Houston ,1994: 1-8
    [40] Bin Fu , Mike G Kirkwood. Predicting failure pressure of internally corroded pipeline using the finite element method[A]. ASME OMAE 13th Int. Conf. off. Mech. Arctic Engr[C]. Houston, 1995: 175-184
    [41] Stewart G, Klever F J. An analytical model to predict the capacity of pipeline[A]. ASME OMAE 13th Int. Conf. off. Mech. Arctic Engr [C]. Houston, 1994: 177-188
    [42]喻西崇,赵金洲,吴应湘,等.利用改进的神经网络预测腐蚀管道的剩余强度[J].压力容器,2003,20(10):53-59
    [43]苏欣,袁宗明,黄坤,等.基于“数列灰预测”的输气管道腐蚀预测[J].西南石油大学学报,2006,28(3):82-85
    [44]王平.海洋工程结构系统疲劳可靠性分析方法研究[D].上海:上海交通大学,1999.
    [45]徐灏,邱宣怀,蔡春源,等.机械设计手册(第2卷)[M].北京:机械工业出版社,1991: 11-61
    [46] Miline I,Ainsworth R A,Dowling A R,et al. Assessment of the Integrity of Structures Containing Defects[S]. CEGB Report/H/R6-Rev.3, 2001
    [47] BS7910:1999,Guide on methods for assessing the acceptability of flaws in metallic structures[S]. London: British Sdandards Institution, 2000
    [48] GB/T 19624-2004在用含缺陷压力容器安全评定[S].北京:中国标准出版社,2005
    [49] Rahman.M, Dawson S J . Reliability of corroded pipeline[A].ASME OMAE 13th Int. Conf. off. Mech. Arctic Engr[C]. Houston, 1994: 299-306
    [50] Jianqiu Zhou, Shiming Shen. A study on the reliability assessment methodology for pressure piping containing circumferential defects, I: computation method of failure probability of welded joint containing circumferential defects[J]. International Journal of Pressure Vessels and Piping, 1998, V75(9):679-684
    [51] Jianqiu Zhou, Shiming Shen. A study on the reliability assessment methodology forpressure piping containing circumferential defects, II: reliability analysis method of a pressure piping system[J]. International Journal of Pressure Vessels and Piping, 1998, V75(9):685-691
    [52] Jianqiu Zhou, Shiming Shen. A study on the reliability assessment methodology for pressure piping containing circumferential defects, III: the determination method of acceptable failure probability of a certain pressure piping[J]. International Journal of Pressure Vessels and Piping, 1998, V75(9):693-697
    [53] Kent Muhlbauer W. Pipeline Risk Management Manual, Second Edition[M]. Houston: Gulf Publishing Company, Texas,1996
    [54] Brain Griffin, Mike Zelensky.Basics of risk analysis,Accessment and management[M]. Banff/95 Pipeline Workshop, 1995
    [55] Coulson K. E. W. Pipe Corrosion-conclusion, New Guidelines Promise More Accurate Damage Assessrnent[J]. Oil Gas, 1990, V88(15):41-44
    [56]孟宪林.石油化工行业风险评价方法的研究[D].哈尔滨:哈尔滨工业大学,1998
    [57]罗桦槟,张世英.海洋平台定量风险评估[J].管理工程学报,1999,13(1):56-60
    [58]秦炳军.海洋工程风险评估的现状和发展[J].海洋工程,1998,16(1):14-22
    [59]潘家华.油气管道的风险分析(待续)[J].油气储运,1995,14(3):11-15
    [60]潘家华.油气管道的风险分析(续一)[J].油气储运,1995,14(4):1-7
    [61]潘家华.油气管道的风险分析(续完)[J].油气储运,1995,14(5):3-10
    [62]赵章林.油气管道系统安全风险分析方法研究[D].天津:天津大学,2000
    [63]颜冬青.输气管道定量风险评价[D].成都:西南石油大学,2000
    [64]余建星,雷威.埋地输油管道腐蚀风险分析方法研究[J].油气储运,2001,20(2):5-12
    [65] ASME B31G, Manual for assessing remaining strength of corroded pipes [S]. New York: American Society of Mechanical Engineers ,1996
    [66] Krithtyr P. Improvements to surface cracked pipe J-estimation schemes[J]. Int Journal of Pressure Vessels and Piping, 2000, V123(3): 561-565
    [67] Leis N, Stephens DR. An alternative approach to assess the integrity of corroded line pipe[A]. Part I current status and II alternative criterion, Proceedings of the Seventh International Offshore and Polar Engineering Conference[C], Honolulu, USA, 1997: 624-641
    [68] KleverFJ, Stewart G. New developments in burst strength predictions for locally corrodes pipes[R]. Houston: Shell Int Res, March 1995
    [69] Ahammed M. Prediction of remaining strength of corroded pressurized pipelines[J]. Int JPres Ves Piping, 1997,V71(2):213-217
    [70] Ahammed M, Melchers RE. Reliability estimation of pressurized pipelines subject to localized corrosion defects[J]. Int J Pres Ves Piping, 1996,V69(2):67-72
    [71] Guohua C, Shuho D. Study on the reliability assessment methodology for pressure vessels containing defects[J]. Int J Pres Ves Piping 1996, V69(3):273-277
    [72] Pandey D. Probabilistic models for condition assessment of oil and gas pipelines[J]. NDT&E International, 1998, V31(5):349-358
    [73] Ahammed M. Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects[J]. International Journal of Pressure Vessels and Piping, 1998, V75(4): 321-329
    [74] Hong HP. Inspection and maintenance planning of pipeline under external corrosion considering generation of new defects[J]. Structural Safety, 1999, V21(3): 203-222
    [75] Sexmith RG. Probability-based safety analysis value and draw-backs[J]. Structural Safety, 1999, V21(3):303-310
    [76] Sheickh AK, Hansen DA. Statistical modeling of pitting corrosion and pipeline reliability[J]. Corrosion Sci, 1990,76(3):190-7
    [77] Mendenhall W, Schealfer RL, Wackley DD. Mathematical statistic with applications[M]. Boston, MA: Duabury press, 1982
    [78] Melchers RE. Structural reliability: analysis and prediction[M]. Chichester, UK: Ellis Horwood, 1999:34-45
    [79]何水清,王善.结构可靠性分析与设计[M].北京:国防工业出版社,1993:51-85
    [80]董玉华,余大涛,高惠临.含缺陷油气管线结构失效概率计算方法比较[J].机械强度,2006,28(1):118-122
    [81]霍立兴.焊接结构工程强度[M].北京:机械工业出版社,1995:33-45
    [82] V. F. 162, 86: Application of an engineering Critical Assessment in Design, Fabrication and Inspection to Assess the Fitness for Purpose of Welded Production[S]. Foreword to IN Documents, 1987
    [83] IIW/IISI-SST-1157-90, IIW Guidance on Assessment of the Fitness for Purpose of Welded Structures, Draft for Development[S]. Printed by Force Institutes Copenhegen, 1990
    [84] Ainsworth, R. A. Developments in the flaw assessment procedures of R6 revision 4 and BS7910[J].American Society of Mechanical Engineers, Pressure Vessels and Piping Division(Publication)PVP, 2003, V46(3) :19-25
    [85]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,1995:55-107
    [86]李晓钢.石化设备在线安全评定技术进展[J].石油化工腐蚀与防护,1998,16(3):1-4
    [87]孟广品,贾安东.焊接结构强度和断裂[M].北京:机械工业出版社,1986:23-75
    [88]帅健,许葵.输油管道参数的统计分析与安全评定[J].石油学报,2002,23(3):86-90
    [89] Burdekin, F.M. Developments in European defect assessment[J].American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication)PVP, 1999,V39(2): 217-223
    [90] Xie L Y. Pipe segment failure dependency analysis and system failure probability estimation[J]. International Journal of Pressure Vessels and Piping, 1998, V75(6): 483-488
    [91] Marshall,W. An Assessment of the Integrity of PWR Pressure Vessels[R]. Report of UKAEA, 1976
    [92] Bruckner.A, Munz.D. The effect of curve fitting on the prediction of failure probabilities from the scatter in crack geometry and fracture toughness[J]. Reliability Engineering, 1983,V5(3):139-156
    [93]赵新伟,周方勤.输气管道缺陷尺寸定量化及其概率分布特性研究[J].油气储运, 1998,17(10):49-52
    [94]方华灿.冰区海洋石油钢结构工程力学[M].东营:石油大学出版社,1996:64-69
    [95]高岛弘教,三木敏太朗,柳本左门.モソテカルロッミエレ一ッヨンによる球形タンクの信赖性解析[A].日本造船学会论文集[C].东京:1984:234-240
    [96] Wilson R, Ainsworth R A. A probabilistic fracture mechanics assessments procedure, SMIRT11 transactions Vol. G[M] . Tokyo: Japan, 1991:75-76,126-128
    [97] Bullough R, Green V R, Tomkis B, et al. A review of methods and applications of reliability analysis for structural integrity assessment of UK nuclear plant[J]. International Journal of Pressure Vessels and Piping, 1999, V76(13):909-919
    [98] Eubanks R. A. Stress Concentration due to a Iiemkphsrical Pit at a Free Surface [J]. Journal of Applied Mechanics, 1954,V12(1):57-62
    [99] Nisida M. and Kim P. Stress Concentration Causes by the present of a Spherical Cavity of a Spherical-surfaced Hollow [A]. Proc. 12th Material Conferences On Applied Mechanics[C]. Science Council of Japan, 1962:69-74
    [100]丁鹏,闫相祯.海底管道随机局部减薄的可靠性分析[A] .2006安世亚太用户年会论文集[C].海南三亚:安世亚太公司,2006
    [101] Mouselli A H. Offshore Pipeline Design Analysis and Methods[M]. Penn Well Publishing Co. 1981:61-64
    [102] Fyrileiv O, Mork K, et al. Assessment of free spanning pipelines using the DNV guideline[A]. Proceedings of the Eighth International Offshore and Polar Engineering Conference[C]. Montreal, Canada, 1998: 100-106
    [103]王贵春.在稳定流中海洋管道的漩涡激发振动[D].天津:天津大学,1987
    [104] DNV-OS-F101, Submarine Pipeline Systems[S]. Det Norske Veritas, 2000
    [105] Choi H. S. Free Spanning Analysis of Offshore Pipelines[J]. Ocean Engineering, 2001, V28(10):1325-1338
    [106]王学颜,宋广惠.结构疲劳强度设计与失效分析[M].北京:兵器工业出版社,1992: 1-2
    [107]高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986:149-157
    [108]刘惟信.机械可靠性性设计[M].北京:清华大学出版社,1996:198-226,437-438
    [109]闫相祯,孙能福. D级空心抽油杆疲劳性能试验研究[J].石油机械,1999, 27(9):16-18
    [110]徐灏,邱宣怀,蔡春源,等.机械设计手册(第2卷)[M].北京:机械工业出版社, 1991:11-109
    [111]王学颜,宋广惠.结构疲劳强度设计与失效分析[M].北京:兵器工业出版社,1992
    [112]徐灏.疲劳强度[M].北京:高等教育出版社,1988:112-116
    [113] Pesce C P., Aranha J A P. Steel catenary risers for deep water applications [R]. The Netherlands: 5th International Offshore and Polar Engineering Conference, 1995: 190-202
    [114]高镇同,熊俊江.疲劳/断裂可靠性研究现状与展望[J].机械强度,1995,17(3): 61-81
    [115]张鹏,段永红.长输管线风险技术的研究[J].天然气工业,1998,18(5):72-76
    [116]李文波,苏国胜.国外长输管道安全管理与技术综述[J].安全、健康和环境,2005,5(1):5-7
    [117] Glenn B. Dewolf. Process safety management in the pipeline industry: parallels and differences between the pipeline integrity management (IMP) rule of the Office of Pipeline Safety and the PSM/RMP approach for process facilities [J]. Journal of Hazardous Materials, 2003, V104 (1-3): 169-192
    [118] M.H.Faber, M.G.Stewart. Risk assessment for civil engineering facilities: Criticaloverview and discussion [J]. Reliability engineering and system safety, 2003, V80(1): 173-184
    [119]黄维和.油气管道风险管理技术的研究及应用[J].油气储运,2001,20(10):1-10
    [120]阎凤霞,董玉华,高惠临.故障树分析方法在油气管线方面的应用[J].西安石油学院学报,2003,18(1):47-50
    [121] Rockville, Md. Risk analysis in the chemical industry[M]. Chemical Manufacturers Association, 1985:54-87
    [122] J.M. Santamara Ramiro and P.A. BraaAsa Risk analysis and reduction in the chemical process industry [M]. Translated by J. Hutchinson. London: Blackie Academic & Professional, 1998:12-18
    [123] American Petroleum Institute, Risk-Based Inspection Base Resource Document[S]. API 581, First Edition, May 2000
    [124]高凤丽.基于风险矩阵方法的风险投资项目风险评估研究[D].南京:南京理工大学,2004
    [125] Paul R, Garvey P R, Lansdowne Z F. Risk matrix: an approach for identifying, assessing, and ranking program risks [J]. Air Force Journal of Logistics, 1998, (25): 16-19
    [126] Tim Bedford, Roger Cooke. Probabilistic risk analysis: foundations and methods [M]. London: Cambridge University Press, 2001: 218-222
    [127] The 5th EGIG Report: European Gas Pipeline Incident Data Group[R]. Tokyo, Japan: EGIG, 2002
    [128] Hazardous Liquid Pipeline Accident Summary by Cause[R]. USA: OFFICE OF PIPELINE SAFETY, Sept. 16, 2005
    [129] National Transportation Statistics 2005, USA, Bureau of Transportation Statistic[R]. Washington: Department Of Transportation, June, 2005
    [130] Office of Pipeline Safety. Average and Summary Statistics 2005, USA, Pipeline and Hazardous Materials Safety Administration[R]. Washington: Department Of Transportation, June, 2005
    [131] PARLOC. The Update of Loss Containment Data for Offshore Pipelines[R]. London: Energy Institute, 1996
    [132]丁鹏,闫相祯,杨秀娟.含缺陷海底管线安全评定系统研究[J].石油机械,2007, 35(10):9-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700