用户名: 密码: 验证码:
荧光纳米粒子探针的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米技术和生物技术是21世纪的两大领先技术,在这两者之间存在着许多技术交叉。其中,纳米探针技术和传感技术就是纳米技术、生物技术与探针技术和传感技术相结合的产物,已经引起了人们的广泛关注。纳米材料是指在三维空间中至少有一维空间的尺度在1nm-100 nm之间的物质。具有着独特的化学性质和物理性质,如表面效应、微尺寸效应、量子效应和宏观量子隧道效应等,呈现出常规材料不具备的优越性能。将纳米材料引入生物探针和传感领域后,如何利用纳米材料构建纳米粒子探针和传感器、提高分析测定的灵敏度、稳定性和其它性能,建立不同分析对象的分析方法,使其在实际应用中真正得到更好和更广泛的应用,仍然是存在的一个问题。
     本研究建立了一种环境友好、制备方法简单、成本低廉的改良St(o|¨)ber合成法和一种制备方法简单、成本低廉的沉淀聚合法,并利用其成功的制各了功能化的荧光纳米粒子和新型聚合物荧光纳米粒子,通过特定的生物修饰,作成荧光纳米粒子探针,实现了癌细胞的识别和检测;以反相乳液聚合法制备的荧光纳米粒子为标记物建立了高灵敏度测定临床疾病标志物IL-6、TNF-α和毒素SEC_1的免疫分析新方法;制备了电活性物质Ru(bpy)_3Cl_2掺杂的SiO_2纳米粒子/Nafion、壳聚糖复合膜和电活性物质Ru(bpy)_3Cl_2掺杂的TiO_2纳米粒子/Nafion复合膜修饰电极,据此构建了测定甲氧氯普胺、伊托必利和三丙胺的新型高灵敏度的电化学发光传感器。
     第一部分荧光纳米粒子标记癌细胞成像
     第1章荧光纳米粒子标记癌细胞成像研究进展
     就纳米粒子作为标记物在癌细胞成像中的研究进展进行了论述,内容主要包括量子点的性质及其在癌细胞成像中的研究;二氧化硅荧光纳米粒子的性质及其在癌细胞成像中的研究和多功能二氧化硅荧光纳米粒子在癌细胞成像中的研究。
     第2章叶酸修饰的荧光纳米粒子探针在宫颈癌细胞成像中的研究
     利用改良St(o|¨)ber合成方法制备了易于标记的二氧化硅荧光纳米粒子。该方法具有制备简单、成本低和环境友好等特点。并将叶酸对所制备的Ru(bpy)_3~(2+)掺杂的二氧化硅荧光纳米粒子进行了修饰(叶酸修饰的Ru(bpy)_3~(2+)掺杂的荧光二氧化硅纳米粒子,FCFNs),利用叶酸与宫颈癌细胞表面叶酸受体的特异性识别,结合荧光显微成像技术实现了宫颈癌细胞的识别和检测。实验结果表明,FCFNs具有光稳定性好,并能够有效、灵敏的识别宫颈癌细胞。这将使其在宫颈癌的临床诊断和疗效评价和叶酸受体的检测中得以应用。
     第3章抗表皮生长因子抗体修饰的荧光纳米粒子探针在乳腺癌细胞成像中的研究
     在世界范围内,尽管肺癌是妇女死亡的最主要的疾病,但是在恶性肿瘤的临床诊断中,乳腺癌的诊断率仍然仅次于皮肤癌,位居第二位。本研究利用抗表皮生长因子(anti-epidermal growthfactor,anti-EGF)抗体对由改良St(o|¨)ber合成方法制备的荧光纳米粒子进行了修饰,并通过荧光显微成像技术方便的实现了对乳腺癌的检测和识别。该方法也可以适用于其它表达anti-EGFR的细胞系和组织的识别和检测。
     第4章新型聚合物荧光纳米粒子探针的制备及其在卵巢癌细胞成像中的研究
     本研究以甲基丙烯酸为单体,三羟甲基丙烷三甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂,丁基罗丹明B为荧光染料,利用沉淀聚合法非常容易的制备了一种新型聚合物荧光纳米粒子(PFNPs)。该PFNPs具有光稳定性好、泄漏率低和粒度均一的特点。随后将PFNPs与抗Her-2单克隆抗体进行交联,制备得到抗Her-2单克隆抗体修饰的PFNPs探针,并利用其对卵巢癌细胞进行了识别和荧光显微成像检测。
     第二部分纳米粒子标记荧光免疫分析
     第1章纳米粒子标记荧光免疫分析的研究进展
     就荧光免疫分析中常见的荧光纳米标记物:半导体量子点、二氧化硅荧光纳米粒子、高分子荧光纳米微球、稀土元素氧化物纳米粒子、上转换荧光纳米粒子和脂质体荧光纳米粒子在荧光免疫分析中的研究进行了评述。
     第2章Ru(bpy)_3Cl_2掺杂SiO_2纳米粒子标记荧光免疫分析法测定白介素-6
     生物分子修饰的纳米粒子在许多领域有着广泛的应用。本文利用Ru(bpy)_3Cl_2掺杂SiO_2纳米粒子为标记物建立了一种高灵敏度测定白介素(IL-6)的荧光免疫新方法。基于IL-6抗原与抗IL-6单克隆抗体交联的Ru(bpy)_3Cl_2掺杂SiO_2纳米粒子之间的特异性捕获作用和“三明治”免疫夹心法实现了IL-6的测定。在最佳实验条件下,荧光强度和IL-6浓度在20.0~1250.0 pg/mL范围内成线性,检出限为7 pg/mL。回归方程为I_F=7.66+32.50[IL-6](ng/mL)(R=0.9980)。对78.0pg/mL的IL-6进行11次测定的RSD为3.2%。此外,还利用荧光显微成像技术对纳米粒子标记荧光免疫法检测IL-6进行了研究。结果表明,本方法在IL-6检测中具有灵敏度高,操作简便和精密度高的特点,并成功的用于人血清中IL-6含量的测定。
     第3章Ru(bpy)_3Cl_2掺杂SiO_2纳米粒子标记荧光免疫分析法测定金葡萄球菌肠毒素
     本研究以功能化荧光纳米粒子为标记物,利用双抗体夹心免疫分析反应原理,建立了一种高灵敏度检测金黄色葡萄球菌肠毒素(SEC_1)的荧光免疫分析新方法。首先,以Ru(bpy)_3Cl_2(Rubpy)为荧光染料,正硅酸乙脂(TEOS)和(3-氨基丙基)三乙氧基硅烷(APS)为硅源进行共水解,利用反相微乳液聚合法制备了功能化荧光纳米粒子。再利用共水解在纳米粒子表面产生的氨基实现了功能化荧光纳米粒子与抗SEC_1单克隆抗体的交联,然后利用双抗体夹心法对SEC_1进行了测定。在最佳实验条件下,荧光强度与SEC_1浓度在1.0~75.0 ng/mL范围内呈良好线性关系,检出限为0.3 ng/mL(3σ)。回归方程为I_F=24.58+0.64[SEC_1](ng/mL)(R=0.9991)。对25.0ng/mL SEC_1测定11次的RSD为2.5%。此外,还探索了应用荧光显微镜成像技术以功能化荧光纳米粒子为标记物,利用双抗体夹心法对SEC_1的测定。实验结果表明,该检测SEC_1的方法具有抗体易于标记,方法简单,测定灵敏高和精密度好的优点。并将其成功的应用于检测实际样品中的SEC_1含量。
     第4章Ru(bpy)_3Cl_2掺杂SiO_2纳米粒子标记荧光免疫分析法测定肿瘤坏死因子
     结合免疫分析的特异性和荧光纳米粒子标记技术的高灵敏度优点,建立了一种测定肿瘤坏死因子(TNF-α)的荧光免疫分析新方法。首先,利用反相乳液聚合法制备了Ru(bpy)_3Cl_2掺杂SiO_2纳米粒子(RuDFSNs),然后将抗TNF-α单克隆抗体标记在RuDFSNs上,并用荧光免疫分析法,将抗TNF-α单克隆抗体标记的RuDFSNs用于人血清样品中TNF-α的测定。在最佳实验条件下,荧光强度和TNF-α浓度在1.0~250.0 pg/mL范围内成线性,检出限为0.1 pg/mL。对浓度为2.0、20.0、200.0 pg/mL的TNF-α样品5次平行测定的日内和日间精密度分别为4.9%、4.4%、4.6%、6.1%、5.9%、5.3%。采用标准加入法对方法进行了评价,对人血清样品测定回收率为95.5-105.0%。此外,还利用荧光显微成像技术对纳米粒子标记荧光免疫法检测TNF-α进行了研究。结果表明,本方法在TNF-α检测中具有灵敏度高,操作简便和精密度高的特点,并成功的用于人血清中TNF-α含量的测定。
     第三部分纳米粒子修饰电极电化学发光传感器
     第1章纳米粒子修饰电极电化学发光传感器的研究进展
     重点就纳米粒子修饰电极电化学发光的研究进展进行了论述,主要包括碳纳米管、纳米金、纳米二氧化硅和纳米二氧化钛这几类纳米物质在修饰电极电化学发光中的研究及Ru(bpy)_3Cl_2掺杂SiO_2纳米粒子在电化学发光中的研究进行了综述。
     第2章Ru(bpy)_3~(2+)搀杂的SiO_2纳米粒子/Nafion复合膜修饰电极电化学发光传感器测定甲氧氯普胺
     本文利用Ru(bpy)_3~(2+)搀杂的SiO_2纳米粒子/Nafion复合膜对玻碳电极进行了修饰,基于盐酸甲氧氯普胺(MCP)对固定化的Ru(bpy)_3~(2+)的电化学发光信号的增强作用,构建了一种高灵敏度测定MCP的电化学发光传感器。对该电化学发光传感器的特性和测定MCP的分析特性进行了详细的研究。在最佳实验条件下,MCP的浓度在2.0×10~(-8)~1.0×10~(-5) mol/L(R=0.9989)范围内与电化学发光强度有良好的线性关系,检出限为7×10~(-9)mol/L,对1.2×10~(-6)mol/L的MCP测定的RSD为3.2%(n=11)。该电化学发光传感器已经成功地用于药物制剂和尿样中MCP的测定。加标回收实验结果表明该传感器测定MCP的回收率为97.0-104.4%。并利用统计检验对电化学发光传感器测定结果与标准方法测定结果进行了分析,结果表明两者之间无明显的差异。
     第3章Ru(bpy)_3~(2+)搀杂的SiO_2纳米粒子/壳聚糖复合膜修饰电极电化学发光传感器测定伊托必利
     利用Ru(bpy)_3~(2+)搀杂的SiO_2(RuDS)纳米粒子/壳聚糖复合膜修饰电极建立了一种测定伊托必利的电化学发光传感器。首先利用改良的St(o|¨)ber合成法制备了RuDS纳米粒子,并利用透射电镜、电化学和荧光方法对Ru(bpy)_3~(2+)搀杂的SiO_2纳米粒子进行了表征。结果表明,Ru(bpy)_3~(2+)掺杂在纳米粒子中仍然保持着其电化学活性,并且由于纳米粒子的保护作用降低了Ru(bpy)_3~(2+)分子的泄漏。并对Ru(bpy)_3~(2+)搀杂的SiO_2纳米粒子/壳聚糖复合膜修饰电极电化学发光传感器测定伊托必利的分析特性进行了详细的研究。在最佳实验条件下,伊托必利的浓度在1.0×10~(-8)~2.0×10~(-5)g/mL(R=0.9978)范围内与电化学发光强度有良好的线性关系,检出限为3×10~(-9) g/mL,对浓度为8.0×10~(-8) g/mL的伊托必利测定的RSD为2.3%(n=11)。该电化学发光传感器已经成功地用于药物制剂和尿样中伊托必利的测定。结果表明,该电化学发光传感器具有高的灵敏度和好的稳定性。
     第4章新型Ru(bpy)_3~(2+)搀杂的TiO_2纳米粒子/Nafion复合膜修饰电极电化学发光传感器的研究
     利用反相乳液聚合法制备了电活性成份Ru(bpy)_3~(2+)掺杂的二氧化钛纳米粒子,然后将Ru(bpy)_3~(2+)掺杂的二氧化钛纳米粒子/Nafion复合膜对玻碳电极进行了修饰,建立了Ru(bpy)_3~(2+)掺杂的二氧化钛纳米粒子/Nafion复合膜修饰电极化学发光传感器。利用透射电镜、扫描电镜和电化学方法对纳米粒子和复合膜进行了表征。结果表明,Ru(bpy)_3~(2+)掺杂的二氧化钛纳米粒子呈球形,粒径大小38±3 nm;Ru(bpy)_3~(2+)掺杂在纳米粒子中仍然保持着其电化学活性,并且由于纳米粒子的保护作用降低了Ru(bpy)_3~(2+)的泄漏;纳米粒子均一的分布在复合膜中。由于大量的Ru(bpy)_3~(2+)固定在电极上,使得电化学发光信号明显增强,从而可以提高测定的灵敏度。详细研究了这种电化学发光传感器检测三丙胺(TPA)的电化学发光行为。实验结果表明,该传感器具有高的度灵敏度,对TPA测定的检出限为1 nmol/L。此外,该电化学发光传感器还表现出了良好的稳定性。
Nanotechnology and biotechnology are two key technologies of the 21 st century.Herein, nanoprobe technology and nanobiosensing technology are one of the intersectant research areas of nanotechnology,biotechnology,probe technology and sensing technology and becomes an emerging area and has attracted world-wide attention and research.Nowadays,nanomaterials,or matrices with at least one of their dimensions ranging in scale from 1 to 100 nm,display unique physical and chemical features because of the quantum size effect,mini size effect,surface effect and macro-quantum tunnel effect.Nanomaterials are revolutionizing the development of bioprobes and biosensors.How to construct and improve the sensitivity,stability and other attributes of nanoparticles probes and sensors for better application and a wider use by using nanomaterials remains to be further studied.
     A simple,cost-effective and environmentally-friendly modified St(o|¨)ber synthesis method and a simple and cost-effective precipitation polymerization method were proposed in this dissertation, Fluorescent silica nanoparticles and a novel kind of polymer fluorescent nanoparticles were synthesized with these methods.The new nanoparticles peobes prepared with the synthesized nanoparticles through modification were used to detect cancer cells with fluorescence microscopy imaging technology.Novel fluoroimmunoassay methods with the fluorescent silica nanoparticles which prepared with inverse microemulsion polymerisation method labeling technique for the determination of staphylococcal enterotoxin C_1(SEC_1),recombinant human interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α) were proposed.Electrogenerated chemiluminescence sensors for metoclopramide,itopride and tripropylamine with Ru(bpy)_3~(2+)-doped silica nanoparticles/chitosan,perfluoinated ion-exchange resin and Ru(bpy)_3~(2+)-doped titania nanoparticles/perfluoinated ion-exchange resin composite films modified electrode were developed.
     This dissertation consists of three parts and very part contains four chapters.The major contents in this dissertation are described as follows:
     Part One Fluorescent Nanoparticle Probe for Cancer Imaging
     Chapter One The Development of Fluorescent Nanoparticle Probe for Cancer Imaging
     In this chapter,the development and the tendency of the cancer imaging based on the fluorescent nanoparticle probes are reviewed.It covers characteristics of the quantum dots(QDs),fluorescent silica nanoparticle and multimodal fluorescent silica nanoparticle and their applications in the cancer imaging.
     Chapter Two Folate Conjugated Fluorescent Nanoparticle Probe for Cervical Cancer Imaging
     Fluorescent nanoparticles with excellent character such as non-toxicity and photostability were first synthesized with a simple,cost-effective and environmentally-friendly modified St(o|¨)ber synthesis method,and then successfully modified with folate.This kind of fluorescence probe based on the folate conjugated fluorescent nanoparticles(FCFNs) has been used to detect cervical cancer cells with fluorescence microscopy imaging technology.The experimental results demonstrate that the folate conjugated fluorescent nanoparticles can effectively recognize cervical cancer cells and exhibited good sensitivity and exceptional photostability,which would provide a novel way for the diagnosis and curative effect observation of cervical cancer cells and offer a new method in detecting folate receptors.
     Chapter Three Anti-Epidermal Growth Factor Receptor Antibody Conjugated Fluorescent Nanoparticle Probe for Breast Cancer Imaging
     Although lung cancer is now the leading cause of cancer death among women,breast cancer still constitutes the most commonly diagnosed malignancy in women after skin cancer.In this study, anti-EGFR(epidermal growth factor receptor) antibody conjugated fluorescent nanoparticles anti-EGFR antibody conjugated fluorescent nanoparticles probe prepared with modified St(o|¨)ber synthesis method was used to detect breast cancer cells with fluorescence microscopy imaging technology.This method may be used in the detecting and recognizing of breast cancer cells and tissue which express epidermal growth factor receptor.
     Chapter Four The Preparation of a Novel Kind of Polymer Fluorescent Nanoparticle Probe and its Application in Ovarian Cancer Imaging
     A novel kind of polymer fluorescent nanoparticles(PFNPs) was synthesized with precipitation polymerization by using methaerylic acid as monomer,trimethylolpropane trimethacrylate as cross-linker,azobisisobutyronitrile as radical initiator and butyl rhodamine B as fluorescent dye.With this method the PFNPs can be prepared easily.And then the PFNPs were successfully modified with anti-Her-2 monoclonal antibody.The fluorescence probe based on anti-Her-2 monoclonal antibody conjugated PFNPs has been used to detect ovarian cancer cells with fluorescence microscopy imaging technology.The experimental results demonstrate that the PFNPs can effectively recognize ovarian cancer cells and exhibited good sensitivity and exceptional photostability.
     Part Two Fluorescent Nanoparticle Labeled Fluoroimmunoassay
     Chapter One The Development of Fluoroimmunoassay Using Nanoparticles as Labels
     In this chapter,the developments and applications of fluoroimmunoassay using nanoparticles as labels were reviewed.The labels including quantum dots,silica fluorescent nanopaticals,polymer fluorescent nanopaticals,europium oxide nanoparticles,up-converting nanoparticles and liposome fluorescent nanoparticles are all reviewed.
     Chapter Two Fluorescent Nanoparticles Used as a Fluorescent Labels in Fluoroimmunoassay for IL-6
     Nanoparticle labels conjugated with biomolecules are used in a variety of different assay applications.In this paper,a sensitive fluoroimmunoassay for recombinant human interleukin-6(IL-6) with the Rubpy-encapsulated fluorescent silica nanoparticles labeling technique has been proposed. IL-6 was measured based on the specific interaction between captured IL-6 antigen and fluorescent nanoparticles-labeled anti-IL-6 monoclonal antibody.The calibration graph for IL-6 was linear over the range 20.0-1250.0 pg/mL with a detection limit of 7 pg/mL(3σ).The regression equation of the working curve is I_F=7.66+32.50[IL-6](ng/mL)(R=0.9980).The RSD for eleven parallel measurements of 78.0 pg/mL IL-6 was 3.2%.Furthermore,the application of fluorescence microscopy imaging in the study of the antibody labeling and sandwich fluoroimmunoassay with the fluorescent nanoparticles was also explored.This proposed method has the advantage of showing the specificity of immunoassay and sensitivity of fluorescent nanoparticle labels technology.The results demonstrate that the method offers potential advantages of sensitivity,simplicity and reproducibility for the determination of IL-6,and is applicable to the determination of IL-6 in serum samples and enabling fluorescence microscopy imaging for the determination of IL-6.
     Chapter Three A Novel Sensitive Staphylococcal Enterotoxin C_1 Fluoroimmunoassay Based on Fluorescent Nanoparticle Labels
     A highly sensitive fluoroimmunoassay for the determination of staphylococcal enterotoxin C_1 (SEC_1) is proposed.It is based on the fluorescent nanoparticles as the label coated with anti-SEC_1 monoclonal antibodies in "sandwich" fluoroimmunoassay.With the simple inverse microemulsion polymerisation method the fluorescent nanoparticles were prepared easily.The preparation process produces a silica shell on the surface of the Ru(bpy)_3Cl_2(Rubpy) dye with one step cohydrolysis of tetraethylorthosilicate(TEOS) and the coupling agent(3-aminopropyl)triethoxysilane(APS) provided the amine groups that can be used for biological conjugation.The nanoparticles were then labeled with the anti-SEC_1 monoclonal antibodies and the antibody-labeled nanoparticles were successfully used for the determination of SEC_1.The calibration graph for SEC_1 was linear over the range 1.0~75.0 ng/mL with a detection limit of 0.3 ng/mL.The regression equation of the working curve was I_F=24.58+ 0.64[SEC_1](ng/mL)(R=0.9991).The RSD for eleven parallel measurements of 25.0 ng/mL SEC_1 was 2.5%.Furthermore,the application of fluorescence microscopy imaging in the study of the antibody labeling and sandwich fluoroimmunoassay with the fluorescent nanoparticles was also explored.The results demonstrate that the method offers potential advantages of easily labeling to the antibody,sensitivity,simplicity and reproducibility for the determination of SEC_1 and is applicable to the determination of SEC_1 in real samples and enabling fluorescence microscopy imaging for the determination of SEC_1.
     Chapter Four Fluoroimmunoassay for Tumor Necrosis Factor-αin Human Serum Using Fluorescent Nanoparticles as Labels
     A novel fluoroimmunoassay method was developed for the determination of tumor necrosis factor-α(TNF-α) in this study.The proposed method has the advantage of showing the specificity of immunoassays and sensitivity of fluorescent nanoparticles label technology.With the well-established inverse microemulsion polymerisation process,the tris(2′2-bipyridyl)dichlororuthenium(Ⅱ) hexahydrate(Rubpy)-doped fluorescent silica nanoparticles(RuDFSNs) were prepared.Then a RuDFSNs-labeled anti-TNF-αmonoclonal antibody was prepared and used for fluoroimmunoassay of TNF-αin human serum samples with a sandwich fluoroimmunoassay by using the low-fluorescent ninety-six well transparent microtiter plates.The assay response was linear from 1.0 to about 250.0 pg/mL with a detection limit of 0.1 pg/mL for TNF-α.The intra- and inter-assay precision are 4.9%, 4.4%,4.6%;6.1%,5.9%,5.3%for five parallel measurements of 2.0,20.0,200.0 pg/mL TNF-αrespectively,and the recoveries are in the range of 95.5~105.0%for human serum sample measurements by standard-addition method.We also explored the application of fluorescence microscopy imaging in the study of the fluoroimmunoassay for TNF-αwith the fluorescent nanoparticales labels.The results demonstrate that the method offers potential advantages of sensitivity,simplicity and good reproducibility for the determination of TNF-α,and is applicable to the determination of TNF-αin serum samples and being capable of fluorescence microscopy imaging for the determination of TNF-α.
     Part Three Electrogenerated Chemiluminescence Sensor Based on Nanoparticles Modified Electrode
     Chapter One The Progress of Electrogenerated Chemiluminescence Sensor Based on Nanoparticles Modified Electrode
     The review gives emphasis on the development of electrogenerated chemiluminescence(ECL) with modified electrodes using nanomaterials including carbon nanotubes,gold nanoparticles,silica nanoparticles and titania nanoparticles.Furthermore,the development of Ru(bpy)_3~(2+)-doped silica nanoparticles in ECL was also disscused.
     Chapter Two Electrogenerated Chemiluminescence Sensor for Metoclopramide Determination Based on Ru(bpy)_3~(2+)-doped Silica Nanoparticles Dispersed in Nafion on Glassy Carbon Electrode
     The aim of the study presented here is to develop and validate a novel method for the determination of metoclopramide(MCP) with the electrogenerated chemiluminescence(ECL) by using tris(2,2′-bipyridyl)dichlororuthenium(Ⅱ)(Ru(bpy)_3~(2+))-doped silica(RuDS) nanoparticles/perfluoinated ion-exchange resin(Nafion) nanocomposites membrane modified glassy carbon electrode(GCE).The immobilization of Ru(bpy)_3~(2+) in a RuDS nanoparticles/Nafion nanocomposites membrane modified GCE was achieved in this study.The Ru(bpy)_3~(2+) encapsulation interior of the silica nanoparticle maintains its electrochemical activities and also reduces Ru(bpy)_3~(2+) leaching from the silica matrix when immersed in water due to the electrostatic interaction.The ECL analytical performances of this ECL sensor for MCP were investigated in detail.Under the optimum experimental conditions,it showed good linearity in the concentration range from 2.0×10~(-8) to 1.0×10~(-5) mol/L(R=0.9989) with a detection 7×10~(-9) mol/L.The RSD(n=11) was 3.2%for detecting 1.2×10~(-6) mol/L MCP.And the recoveries are in the range of 97.0~104.4%for sample measurements by standard-addition method. This method has been applied successfully to determine MCP in pharmaceutical preparations and in human urine.Statistical analysis(Student's t-test and variance ratio F-test) of the obtained results showed no significant difference between the proposed method and the reference method.
     Chapter Three Electrogenerated Chemiluminescence Sensor for Itopride with Ru(bpy)_3~(2+)-doped Silica Nanoparticles/Chitosan Composite Films Modified Electrode
     A electrogenerated chemiluminescence(ECL) sensor for itopride was developed based on tris(2,2′-bipyridyl)dichlororuthenium(Ⅱ)(mu(bpy)_3~(2+))-doped silica(RuDS) nanoparticles/biopolymer chitosan composites membrane modified glassy carbon electrode(GCE).The RuDS nanoparticles(52±5nm) were prepared by a modified St(o|¨)ber synthesis method and were characterized by electrochemical,fluorometric and transmission electron microscopy technology.The Ru(bpy)_3~(2+) encapsulation interior of the silica nanoparticle maintains its electrochemical activities and also reduces Ru(bpy)_3~(2+) leaching from the silica matrix when immersed in water due to the electrostatic interaction. The ECL analytical performances of this ECL sensor for itopride based on its enhancement ECL emission of Ru(bpy)_3~(2+) were investigated in details.Under the optimum condition,the enhanced ECL intensity was linear with the itopride concentration in the range of 1.0×10~(-8) to 2.0×10~(-5) g/mL(R= 0.9978).The detection limit was 3×10~(-9) g/mL,and the RSD was 2.3%for 8.0×10~(-8) g/mL itopride(n= 11).The method was successfully applied to the determination of itopride in pharmaceutical and human serum samples with satisfactory results.The as-prepared ECL sensor for the determination of itopride displayed good sensitivity and stability.
     Chapter Four A Novel Electrogenerated Chemiluminescence Sensor Based on Ru(bpy)_3~(2+)-doped Titania Nanoparticles Dispersed in Nafion on Glassy Carbon Electrode
     A novel electrogenerated chemiluminescence(ECL) sensor based on Ru(bpy)_3~(2+)-doped titania (RuDT) nanoparticles dispersed in a perfluorosulfonated ionomer(Nafion) on a glassy carbon electrode (GCE) was developed in this paper.The electroactive component-Ru(bpy)_3~(2+) was entrapped within the titania nanoparticles by the inverse microemulsion polymerization process that produced spherical sensors in the size region of 38±3nm.The RuDT nanoparticles were characterized by electrochemical,transmission electron and scanning microscopy technology.The Ru(bpy)_3~(2+) encapsulation interior of the titania nanoparticles maintains its ECL efficiency and also reduces Ru(bpy)_3~(2+) leaching from the titania matrix when immersed in water due to the electrostatic interaction. This is the first attempt to prepare the RuDT nanoparticles and extend the application of electroactive component-doped nanoparticles into the field of ECL.Since a large amount of Ru(bpy)_3~(2+) was immobilized three-dimensionally on the electrode,the Ru(bpy)_3~(2+) ECL signal could be enhanced greatly,which finally resulted in the increased sensitivity.The ECL analytical performance of this ECL sensor for tripropylamine(TPA) was investigated in detail.This sensor shows a detection limit of 1 nmol/L for TPA.Furthermore,the present ECL sensor displays outstanding long-term stability.
引文
[1]Santra S,Dutta D,Walter G A,Moudgil B M.Fluorescent nanoparticle probes for cancer imaging[J].Technol.Cancer Res.Treat.,2005,4:593-602.
    [2]Wang H Z,Wang H Y,Liang R Q,Ruan K C.Detection of tumor marker CA125 in ovarian carcinoma using quantum dots[J].Acta Biochem.Biophys.Sin.,2004,36(10):681-686.
    [3]Chan W C,Nie S M.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281:2016-2018.
    [4]Bruchez M J,Moronne M,Gin P,Weiss S,Alivisatos A P.Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281:2013-2016.
    [5]Grecco H E,L idke K A,Heintzmann R,Lidke D S,Spagnuolo C,Martinez O E,Jares-Erijman E A,Jovin T M.Ensemble and single particle photophysical properties(Two-photon excitation,anisotropy,FRET,lifetime,spectral conversion)of commercial quantum dots in solution and in live cells[J].Microsc.Res.Tech.,2004,65:169-179.
    [6]Costa-Fernandez J M,Pereiro R,Sanz-Medel A.The use of luminescent quantum dots for optical sensing[J].Trend.Anal.Chem.,2006,25(3):207-218.
    [7]邹明强,杨蕊,李锦丰.量子点的光学特征及其在生命科学中的应用[J].分析测试学报,2005,24(6):133-137.
    [8]Kim S,Lim Y T,Soltesz E G,De Grand A M,Lee J,Nakayama A,Parker J A,Mihalijevic T,Laurence R G,Dor D M,Cohn L H,Bawendi M G,Frangioni J V.Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping[J].Nat.Biotechnol.,2004,22:93-97.
    [9]赵承军,唐军民.量子点在生物医学中的应用[J].解剖学报,2006,37(4):484-486.
    [10]陈良冬,李雁,袁宏银.量子点在肿瘤研究中的应用[J].癌症,2006,25(5):651-656.
    [11]Rosenthal S J.Bar-coding biomolecules with fluorescent nanocrystals[J].Nat.Biotechnol.,2001,19:621-622.
    [12] Jaiswal J K, Mattoussi H, Mauro J M, Simon S M. Long-term multiple color imaging of live cells using quantum dot bioconjugates[J]. Nat. Biotechnol., 2003, 21: 47-51.
    [13] Hsieh S C, Wang F F, Lin C S, Chen J Y, Hung S C, Wang Y J. The inhibition of osteogenesis with human bone marrowmesenchymal stem cells by CdSe/ZnS quantum dot labels[J]. Biomaterials, 2006, 27: 1656-1664.
    [14] Lidke D S, Nagy P, Heintzmann R, Jovin D J, Post J N, Grecco H E, Jares Erijman E A, Jovin T M. Quantumdot ligands provide newinsights into erbB/HER receptor-mediated signal transduction[J]. Nat. Biotechnol., 2004, 22: 198-203.
    [15] Jamiesona T, Bakhshia R, Petrovaa D, Pococka R, Imanib M, Seifaliana A M. Biological applications of quantum dots[J]. Biomaterials, 2007, 28: 4717-4732.
    [16] Weng J F, Ren J C. Luminescent quantum dots: A very attractive and promising tool in biomedicine[J]. Curr. Med. Chem., 2006,13: 897-909.
    [17] Jorge P, Martins M A, Trindade T, Santos J L, Farahi F. Optical fiber sensing using quantum dots[J]. Sensors, 2007, 7: 3489-3534.
    [18] Alivisatos A P, Gu W W, Larabell C. Quantum dots as cellular probes[J]. Annu. Rev. Biomed. Eng., 2005, 7: 55-76.
    [19] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005, 307(5709): 538-544.
    [20] Esteves A C C, Trindade T. Synthetic studies on II/VI semiconductor quantum dots[J]. Curr. Opin. Solid State Mater. Sci., 2002, 6(4): 347-353.
    [21] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites[J]. J. Am. Chem. Soc, 1993,115:8706-8715.
    [22] Hines M A, Guyot-Sionnest P. Synthesis and charcacterization of stongly luminescing ZnS-capped CdSe nanocrystals[J]. J. Phys. Chem., 1996,100: 468-471.
    [23] Dabbousi B O, Rodiguez-Viefo F V. Mikulec J R, Heine H, Rober, K F, Jensen M G, Bawendi M G. (CdSe) ZnS core shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystals[J]. J. Phys. Chem. B, 1997, 101: 9463-9475.
    [24] Peng Z A, Peng X G. Formation of high-quality CdTe, CdSe and CdS nanocrystals as precursor[J]. J. Am. Chem. Soc, 2001,123: 183-184.
    [25] Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility[J].J,Am,Chem,Soc.,1997,119:7019-7029.
    [26]Chen H M,Huang X F,Xu L,Xu J,Chen K J,Feng D.Self-assembly and photoluminescence of CdS-mercaptoacetic clusters with interanl structures[J].Superlattices Microstruct.,2000,27(1):1-5.
    [27]Riegler J,Nann T.Application of luminescent nanocrystals as labels for biological molecules[J].Anal.Bioanal.Chem.,2004,379:913-919.
    [28]Medintz I L,Uyeda H T,Goldman E R,Mattoussi H.Quantum dot bioconjugates for imaging,labeling and sensing[J].Nat.Mater.,2006,4:435-446.
    [29]Klostranec J M,Chan W C W.Quantum dots in biological and biomedical research:Recent progress and present challenges[J].Adv.Mater.,2006,18:1953-1964.
    [30]Ballou B,Ernst L A,Waggoner A S,Fluorescence imaging of tumors in vivo[J].Curr.Med.Chem.,2005,12:795-805.
    [31]张海丽,刘天才,王建浩,黄振立,赵元弟,骆清铭.量子点成像的新研究进展[J].分析化学,2006,34(10):1491-1495.
    [32]胡怡,蔡继业.量子点荧光探针在生物成像中的应用进展[J].生理科学进展,2007,3 8(3):280-282.
    [33]李步洪,张镇西,谢树森.量子点在生物学中的研究进展[J].激光生物学报,2006,15(2):214-220.
    [34]陈创,陈良冬,张志凌,李雁.量子点在肿瘤标志物研究中的应用进展[J].中国癌症杂志,2007,17(10):813-818.
    [35]Wu X Y,Liu H J,Liu J Q,Haley K N,Treadway J A,Larson J P.Immunofluorescent labeling of cancer marker Her-2 and their cellular targets with semiconductor quantum dots[J].Nat.Biotechnol.,2003,21(1):41-46.
    [36]Wang H Z,Wang H Y,Liang R Q,Ruan K C.Detection of tumor marker CA125 in ovarian carcinoma using quantum dots[J].Acta Biochem.Biophys.Sin.,2004,36(10):681-686.
    [37]Sukhanova V,Devy J,Venteo L,Kaplan H,Artemyev M.Biocompatible fluorescent nanocrystels for immunolabeling of membrane protein and cell[J].Anal.Biochem.,2004,324(1):60-67.
    [38]Stsiapura V,Sukhanova A,Artemyev M,Pluot M,Cohen J H M,Nabiev I.Functionalized nanocrystal-tagged fluorescent polymer beads:Synthesis,physicochemical characterization,and immunolabeling application[J].Anal.Biochem.,2004,334(2):257-265.
    [39]Kim S,Lim Y T,Soltesz E G,De Grand A M,Lee J,Nakayama A,Parker J A.Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping[J].Nat.Biotechnol.,2004,22(1):93-97.
    [40]Parak W J,Boudreau R,Gros M L,Gerion D,Zanchet D,Micheel C M,Williams S C,Alivisatos P A,Larabell C A.Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks[J].Adv.Mater.,2002,14:882-885.
    [41]Pellegrino T,Parak W J,Boudreau R,Gros M L,Gerion D,Alivisatos A P,Larabell C A.Quantum dot-based cell motility assay[J].Differentiation,2003,71:542-548.
    [42]Akerman M E,Chan W C W,Laakkonen P.Nanocrystal targeting in vivo[J].Proc.Nat.Acad.Sci.USA,2002,99:12617-12621.
    [43]Wu X Y,Larson J P,Ge N F,Peale F,Bruchez M P.Immunofluorescent labeling of cancer marker Her-2 and other cellular targets with semiconductor quantum dots[J].Nat.Biotechnol.,2003,21:41-46.
    [44]Gao X H,Cui Y Y,Levenson R M,Chung L W,Nie S M.In vivo cancer targeting and imaging with semiconductor quantum dots[J].Nat.Biotechnol.,2004,22:969-976.
    [45]Morgan N Y,English S,Chen W,Chemomordik V,Russo A,Smith P,Gandjbakhche A.Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots[J].Acad.Radiol.,2005,12(3):313-323.
    [46]Voura E B,Jaiswal J K,Mattoussi H,Simon S M.Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy[J].Nat.Med.,2004,10:993-998.
    [47]Winter J O,Liu T Y,Korgel B A,Schmidt C E.Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells[J].Adv.Mater.,2001,13:1673-1677.
    [48]张杰,吕蔡,白志明,张孝斌,赵薇,庞代文.人肾癌中HSP70的量子点标记检测及意义[J].肿瘤,2007,27(2):101-103.
    [49]吕蔡,张杰,庞代文,赵薇,杨欢.量子点荧光技术标记肿瘤细胞中HSP的应用研究[J].中国组织化学与细胞化学杂志,2006,15(5):513-516.
    [50]陈良冬,刘佳,李雁.量子点对肝癌细胞的免疫荧光成像作用[J].中华实验外杂志,2006,23(9):1085-1087.
    [51]Li-Shishido S,Watanabe T M,Tada H.Reduction in nonfluorescence state of quantum dots on an immunofluorescence staining[J].Biochem.Biophys.Res.Commun.,2006,351(1):7-13.
    [52]Yu W W,Chang E,Falkner J C.Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers[J].J.Am.Chem.Soc.,2007,129(10):2871-2879.
    [53]Nida D L,Rahrnan M S,Carlson K D.Fluorescent nanocrystals for use in early cervical cancer detection[J].Gynecol.Oncol.,2005,99(Suppl 1):S89-S94.
    [54]Rahrnan M,Abd-E1-Barr M,Mack V,Tkaczyk T,Sokolov K,Richards-Kortum R.Optical imaging of cervical precancers with strucrured illumination:an integrated approach[J].Gynecol.Oncol.,2005,99(Suppll):S112-S115.
    [55]程铎,储茂泉,宋馨,丁祖泉,祝建.应用量子点纳米探针研究丹酚酸B与肿瘤细胞间的直接作用[J].中国药学杂志,2007,42(18):1389-1393.
    [56]李朝辉,王柯敏,谭蔚泓,李军,付志英,王益林,刘剑波,羊小海.硅壳包被的核壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用[J].科学通报,2005,50(3):8-1322.
    [57]Kim G J,Nie S M.Targeted cancer nanotherapy[J].Nanotoday,2005,8(Suppl):28-33.
    [58]Soltesz E G,Kim S,Laurence R G,DeGrand A M,Parungo C P.Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots[J].Ann.Thoracic.Surg.,2005,79:269-277.
    [59]Parungo C P,Colson Y L,Kim S W,Kim S,Cohn L H,Bawendi M G,Frangioni J V.Sentinel lymph node mapping of the pleural space[J].Chest,2005,127:1799-1804.
    [60]Hoshino A,Hanaki K,Suzuki K.Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body[J].Biochem.Bioph.Res.Comm.,2004,314(1):46-53.
    [61]Dubertret B,Skourides P,Norris D J.In vivo imaging of quantum dots encapsulated in phospholipid micelles[J].Science,2002,298(29):1759-1762.
    [62]Ballou B,Lagerholm B C,Ernst L A.Noninvasive imaging of quantum dots in mice[J].Bioconjugate.Chem.,2004,15(1):79-86.
    [63]陈良冬,刘佳,喻学锋.量子点探针对人肝癌裸鼠模型的体内靶向成像研究[J].中华病理学杂志,2007,36(6):394-399.
    [64]Yu X F,Chen L D,Deng Y L.Fluorescence analysis with quantum dot probes for hepatoma under one-and two-photon excitation[J].J.Fluoresc.,2007,17(2):243-247.
    [65]Rakesh K J,Stoh M.Zooming in and out with quantum dots[J].Nat.Biotechnol.,2004,22(8):959-960.
    [66]Ohnishi S,Lomnes S J,Laurence R G,Gogbashian A,Mariani G,Frangioni J V.Organic alternatives to quantum dots for intraoperative near-infrared fluorescent sentinel lymph node mapping[J].Mol.Imaging.,2005,4:172-181.
    [67]Parungo C P,Ohnishi S,Kim S W,Kim S,Laurence R G,Soltesz E G,Chen F Y,Colson Y L,Cohn L H,Bawendi M G,Frangioni J V.Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging[J].J,Thorac.Cardiov.Sur.,2005,129(4):844-850.
    [68]Minet O,Dressier C,Beuthan J.Heat stress induced redistribution of fluorescent quantum dots in breast tumor cells[J].J.Fluoresc.,2004,14:241-247.
    [69]Beuthan J,Dressier C,Minet O.Laser-induced fluorescence detection of quantum dots redistributed in thermally stressed tumor cells[J].Laser Phys.,2004,14:213-219.
    [70]Qhobosheane M,Zhang P,Tan W H.Assembly of silica nanoparticles for two-dimensional nanomaterials[J].J.Nanosc.Nanotechno.,2004,4:635-640.
    [71]Santra S,Yang H,Stanley J T,Holloway P H,Moudgil B M,Walter G.Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots[J].Chem.Commun.,2005,25:3144-3146.
    [72]van Blaaderen A,Vrij A.Synthesis and characterization of colloidal dispersions of fluorescent,monodisperse silica spheres[J].Langmuir,1992,8:2921-2931.
    [73]Verhaegh N A M,van Blaaderen A.Dispersions of rhodamine-labeled silica spheres:Synthesis,characterization,and fluorescence confocal scanning laser microscopy[J].Langmuir,1994,10:1427-1438.
    [74]Santra S,Liesenfeld B,Dutta D.Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells[J].J.Nanosci.Nanotechnol.,2005,5:899-904.
    [75]Santra S,Yang H,Dutta D Stanley J T.TAT conjugated,FITC doped silica nanopartictes for bioimaging applications[J].Chem.Commu.,2004,24:2810-2811.
    [76]Yuan J L,Estevez M C,Smith J E.,Wang K M,He X X,Wang L,Tan W H.Dye-doped nanoparticles for bioanalysis[J].Nanotoday,2007,2(3):44-50.
    [77]Kim M S,Seok S I,Ahn B Y,Koo S M,Paik S U.Encapsulation of water-soluble dye in spherical sol-gel silica matrices[J].J.Sol-Gel Sci.Tech.,2003,27:355-361.
    [78]Santra S,Zhang P,Wang K M,Tapec R,Tan W H.Conjugation of biomolecules with luminophore doped silica nanoparticles for photostable biomarkers[J].Anal.Chem.,2001,73:4988-4993.
    [79]原茵,何晓晓,王柯敏,谭蔚弘,彭娇凤,黄杉生,林霞.嵌合异硫氰酸罗丹明 B核壳荧光纳米颗粒制备的新方法研究[J].高等学校化学学报,2005,26(3):446-448.
    [80]Peng J F,Wang K M,Tan W H,He X X,He C M,Wu P,Liu F.Identification of live liver cancer cells in a mixed cell system using galactose-conjugated fluorescent nanoparticles[J].Talanta,2007,71:833-840.
    [81]Santra S,Wang K M,Tapec R,Tan W H.Development of novel dye-doped silica nanoparticles for biomarker application[J].J.Biomed.Opt.,2001,6:160-166.
    [82]Qhobosheane M,Santra S,Zhang P,Tan W H.Biochemically functionalized silica nanoparticles[J].Analyst,2001,126:1274-1278.
    [83]He X X,Duan J H,Wang K M,Tan W H,Lin X,He C M.A novel fluorescent label based on organic dye doped silica nanoparticles for HepG liver cancer cell recognition[J].J.Nanosci.Nanotechnol.,2004,4:585-589.
    [84]Santra S,Dutta D,Moudgil B M.Functional dye-doped silica nanoparticles for bioimaging,diagnostics and therapeutics[J].Food Bioprod.Process.,2005,83:136-140.
    [85]郭小英,王永宁,顾林岗,贺艳峰,张春秀,唐祖明,陆祖宏.Co@SiO_2核壳式纳米磁性粒子的合成、性质表征及在细胞分离和细胞芯片上的应用[J].高等学校化学学报,2006,27(9):1725-1728.
    [86]Kircher M F,Mahmood U,King R S,Weissleder R,Josephson L.A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation[J].Cancer Res.,2003,63:8122-8125.
    [87]Huber M M,Staubli A B,Kustedjo K,Gray M H B,Shih J,Fraser S E.Fluorescently detectable magnetic resonance imaging agents[J].Bioconjugate Chem.,1998,9:242-249.
    [88]Santra,S,Bagwe R P,Durra D,Stanley J T,Walter G A,Tan.W H,Moudgil B M,Mericle R A.Synthesis and characterization of novel fluorescent,radio-opaque and paramagnetic silica nanoparticles for multimodal bioimaging applications[J].Adv.Mater.,2005,17:2165-2169.
    [89]Wu J,Ye Z Q,Wang G L,Yuan J L.Multifunctional nanoparticles possessing magnetic,long-lived fluorescence and bio-affinity properties for time-resolved fluorescence cell imaging[J].Talanta,2007,72:1693-1697.
    [90]谭蔚泓,王柯敏,肖丹.核壳型纳米颗粒:中国,CN1342515A[P],2002-4-13.
    [91]Chatterjeea D K,Rufaihaha A J,Zhang Y.Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals[J].Biomaterials,2008, 29(7): 937-943.
    [1] American Cancer Society Cancer Facts and Figures. Atlanta' American Cancer Society 2007, p. 4.
    [2] Parkin D M, Bray F I, Devesa S S. Cancer burden in the year 2000. The global picture[J]. Eur. J. Cancer., 2001, 37(Suppl 8): 4-66.
    [3] Parkin D M, Pisani P, Ferlay J. Estimates of the worldwide incidence of twenty five majors cancers in 1990[J]. Int. J. Cancer., 1999, 80: 827-841.
    [4] Wu Y. P, Chen Y L, Li L Y, Yu G F, Zhang Y L, He Y. Association of high-risk HPV types and viral load with cervical cancer in China[J]. J. Clin. Virol., 2006, 35: 264-269.
    [5] American Cancer Society Cancer Facts and Figures. Atlanta' American Cancer Society 2005, p.7.
    [6] He X X, Wang K M, Tan W H, Xiao D, Li J, Yang X H. A novel fluorescent label based on biological fluorescent nanoparticles and its application in cell recognition[J]. Chinese Sc. Bull., 2001,46 (23): 1962-1965.
    [7] Wang H Z, Wang H Y, Liang R Q, Ruan K C. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots[J]. Acta Biochem. Biophys. Sin., 2004, 36(10): 681-686.
    [8] Nida D L, Rahman M S, Carlson K D, Richards-Kortum R Follen M. Fluorescent nanocrystals for use in early cervical cancer detection[J]. Gynecol. Oncol., 2005, 99: S89-S94.
    [9] Lidke D S, Nagy P, Heintzmann R, Arndt-Jovin D J, Post J N, Grecco H E, Jares-Erijman E A, Jovin T M. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction[J]. Nat. Biotechnol., 2004, 22: 198-203.
    [10] Chen G Y J,.Yao S Q. Lighting up cancer cells with "dots"[J]. The Lancet., 2004, 364:2001-2003.
    
    [11] Gao X H, Cui Y Y, Levenson R M, Chung L W, Nie S M. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat. Biotechnol., 2004, 22: 969-976
    
    [12] Zhang C Y, Ma H, Nie S M, Ding Y, Jin L, Chen D Y. Quantum dot-abeled trichosanthin[J]. Analyst, 2000,125: 1029-1031.
    [13] Jaiswal J K, Goldman E R, Mattoussi H, Simon S M. Use of quantum dots for live cell imaging[J]. Nat. Methods, 2004,1: 73-78.
    [14] Santra S, Zhang P, Wang K M, Tapec R, Tan W H. Conjugation of biomolecules with luminophore doped silica nanoparticles for photostable biomarkers[J]. Anal. Chem., 2001, 73: 4988-4993.
    [15] Lee-Koo Y-E, Cao Y, Kopelman R, Koo S M, Brasuel M G, Philbert M A. Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors[J]. Anal. Chem., 2004, 76: 2498-2505.
    [16] Tang W H, Xu H, Kopelman R, Philbert M A. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms[J]. Photochem. Photobiol., 2005, 81: 242-249.
    [17] Sumner J P, Westerberg N M, Stoddard A K, Fierke C A. Kopelman R, Cu~+ and Cu~(2+) sensitive PEBBLE fluorescent nanosensors using Ds Red as the recognition element[J]. Sensor. Actuat. B-Chem., 2005,113: 760-767.
    [18] Buck S M, Xu H, Brasuel M, Philbert M A, Kopelman R. Nanoscale probes encapsulated by biologically localized embedding (PEEBBLEs) for ion sensing and imaging in live cells[J]. Talanta, 2004, 63: 41-59.
    [19] Sumner J P, Aylott J W, Monson E, Kopelman R. A fluorescent PEBBLE nanosensor for intracellular free zinc[J]. Analyst, 2002, 127: 11-16.
    [20] Buck S M, Koo Y-E L, Park E, Xu H, Philbert M A, Brasuel M A, Kopelman R. Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding[J]. Curr. Opin. Chem. Biol., 2004, 8: 540-546.
    [21] Park E J, Brasuel M, Behrend C, Philbert M A, Kopelman R. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells[J]. Anal. Chem., 2003, 75: 3784-3791.
    [22] Sumner J P, Kopelman R. Alexa Fluor 488 as an iron sensitive indicator and its application in PEBBLE nanosensors[J]. Analyst, 2005,130: 528-533.
    [23] Hun X, Zhang Z J. Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum[J]. Microchim. Acta, 2007, 159: 255-262.
    [24] Santra S, Dutta D, Walter G A. Moudgil B M. Fluorescent nanoparticle probes for cancer imaging[J]. Technol. Cancer Res. Treat., 2005, 4: 593-602.
    [25] Santra S, Liesenfeld B, Dutta D, Chatel D, Batich C D, Tan W H, Moudgil B M, Mericle R A. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells[J]. J Nanosci. Nanotechno., 2005, 5: 899-904.
    [26] He X X, Duan J H, Wang K M, Tan W H, Lin X, He C M. A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition[J]. J. Nanosci. Nanotechno., 2004,4: 585-589.
    [27] Qhobosheane M. Santra S, Zhang P, Tan W H. Biochemically functionalized silica nanoparticles[J]. Analyst, 2001,126:1274-1278.
    [28] Santra S, Dutta D, Moudgil B M. Functional dye-doped silica nanoparticles for. bioimaging, diagnostics and therapeutics [J]. Food Bioprod. Process., 2005, 83: 136-140.
    [29] Lee J W, Lu J Y, Low P S, Fuchs P L. Synthesis and evaluation of taxol-folic acid conjugates as targeted antineoplastics[J]. Bioorgan. Med. Chem., 2002, 10(7): 2397-2414.
    [30] Santra S, Yang H, Dutta D, Stanley J T, Holloway P H, Tan W H, Moudgil B M, Mericle R A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications[J]. Chem. Commun., 2004,24: 2810-2811.
    [31] Kircher M F, Mahmood U, King R S, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation[J]. Cancer Res., 2003, 63: 8122-8125.
    [32] Huber M M, Staubli A B, Kustedo K, Gray H B M, Shih J, Fraser S E, Jacobs R E, Meade T J. Fluorescently detectable magnetic resonance imaging agents[J]. Bioconjugate Chem., 1998, 9: 242-249.
    [33] Santra S, Wang K M, Tapec R, Tan W H. Development of novel dyedoped silica nanoparticles for biomarker application[J], J. Biomed. Opt., 2001, 6: 160-166.
    [34] Moran C E, Hale G D, Halas N J. Synthesis and characterization of lanthanide-doped silica microspheres[J]. Langmuir, 2001,17: 8376-8379.
    [35] Rossi L M, Shi L F, Quina F H, Rosenzweig Z. Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays[J]. Langmuir, 2005, 21(10): 4277-4280.
    [36] McNamara K P, Rosenzweig Z. Dye-encapsulating liposomes as fluorescence-based oxygen nanosensors[J]. Anal. Chem., 1998, 70(22): 4853-4859.
    [37] Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid Interface Sci., 1968,26: 62-69.
    [38] Zhao X J, Tapec-Dytioco R. Tan W H. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles[J]. J. Am. Chem. Soc, 2003, 125: 11474-11475.
    [39]Collinson M M.Recent trends in analytical applications of organically modified silicate materials[J].Trends Anal.Chem.,2002,21(1):31-39.
    [40]Lu Y,Low P S.Folate-mediated delivery of macromolecular anticancer therapeutic agents[J].Adv.Drug Deliv.Rev.,2002,54:675-693.
    [41]Aronov O,Horowitz A T,Gabizon A,Gibson D.Folate-targeted PEG as a potential carrier for carboplatin analogs,synthesis and in vitro studies[J].Bioconjugate Chem.,2003,14:563-574.
    [42]Leamon C P,Reddy J A.Folate-targeted chemotherapy[J].Adv.Drug Deliv.Rev.,2004,56:1127-1141.
    [43]Song L,Hennink E J,Young I T,Tanke H J.Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy[J].Biophys.J.,1995,68:2588-2600.
    [44]Soper S A,Nutter H L,Keller R A,Davis L M,Shera E B.The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy[J].Photochem.Photobiol.,1993,57:972-977.
    [45]Bagwe R P,Yang C Y,Hilliard L R,Tan W H.Optimization of dye-doped silica nanoparticles prepared using reverse microemulsion method[J].Langmuir,2004,20:8336-8342.
    [1]Stabile L P,Davis A L,Gubish C T,Hopkins T M,Luketich J D,Christie N.Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen[J].Cancer Res.,2002,62:2141-2150.
    [2]Stabile L,Siegfried J.Estrogen receptor pathways in lung cancer[J].Curr.Oncol.Rep.,2004,6:259-267.
    [3]Pietras R J,Marquez D C,Chen H W,Tsai E,Weinberg O,Fishbein M.Estrogen and growth factor receptor interactions in human breast and non-small cell lung cancer cells[J].Steroids,2005,70:372-381.
    [4]American Cancer Society Cancer Facts & Figures.Atlanta:American Cancer Society 2005.p.2-3.
    [5] Gao X H, Chan W C W, Nie S M. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding[J]. J. Biomed. Opt., 7(4): 532-537.
    [6] Lee-Koo Y-E, Cao Y, Kopelman R, Koo S M, Brasuel M G, Philbert M A. Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors[J]. Anal. Chem., 2004, 76: 2498-2505.
    [7] Tang W H, Xu H, Kopelman R, Philbert M A. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms[J]. Photochem. Photobiol., 2005, 81: 242-249.
    [8] Sumner J P, Westerberg N M, Stoddard A K, Fierke C A, Kopelman R. Cu~+ and Cu~(2+) sensitive PEBBLE fluorescent nanosensors using Ds Red as the recognition element[J]. Sensor. Actuat. B-Chem., 2005, 113: 760-767.
    [9] Buck S M, Xu H, Brasuel M, Philbert M A, Kopelman R. Nanoscale probes encapsulated by biologically localized embedding (PEEBBLEs) for ion sensing and imaging in live cells[J]. Talanta, 2004, 63: 41-59.
    [10] Sumner J P, Aylott J W, Monson E, Kopelman R. A fluorescent PEBBLE nanosensor for intracellular free zinc[J]. Analyst, 2002,127: 11-16.
    [11] Buck S M, Koo Y-E L, Park E, Xu H, Philbert M A, Brasuel M A, Kopelman R. Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding[J]. Curr. Opin. Chem. Biol., 2004, 8: 540-546.
    [12] Park E J, Brasuel M, Behrend C, Philbert M A, Kopelman R. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells[J]. Anal. Chem., 2003, 75: 3784-3791.
    [13] Sumner J P, Kopelman R. Alexa fluor 488 as an iron sensitive indicator and its application in PEBBLE nanosensors[J]. Analyst, 2005,130: 528-533.
    [14] Hun X, Zhang Z J. Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum[J]. Microchim. Acta, 2007,159: 255-262.
    [15] Santra S, Dutta D, Walter G A, Moudgil B M. Fluorescent nanoparticle probes for cancer imaging[J]. Technol. Cancer Res. Treat., 2005,4: 593-602.
    [16] Santra S, Liesenfeld B, Dutta D, Chatel D, Batich C D, Tan W H, Moudgil B M, Mericle R A. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells[J]. J Nanosci. Nanotechno., 2005, 5: 899-904.
    [17] He X X, Duan J H, Wang K M, Tan W H, Lin X, He C M. A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition[J]. J. Nanosci. Nanotechno., 2004,4: 585-589.
    [18] Qhobosheane M. Santra S, Zhang P, Tan W H. Biochemically functionalized silica nanoparticles[J]. Analyst, 2001,126: 1274-1278.
    [19] Santra S, Dutta D, Moudgil B M. Functional dye-doped silica nanoparticles for. bioimaging, diagnostics and therapeutics[J]. Food Bioprod. Process., 2005, 83: 136-140.
    [20] Lee J W, Lu J Y, Low P S, Fuchs P L. Synthesis and evaluation of taxol-folic acid conjugates as targeted antineoplastics[J]. Bioorgan. Med. Chem., 2002, 10(7): 2397-2414.
    [21] Santra S, Yang H, Dutta D, Stanley J T, Holloway P H, Tan W H, Moudgil B M, Mericle R A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications[J]. Chem. Commun., 2004,24: 2810-2811.
    [22] Kircher M F, Mahmood U, King R S, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation[J]. Cancer Res., 2003, 63: 8122-8125.
    [23] Huber M M, Staubli A B, Kustedo K, Gray H B M, Shih J, Fraser S E, Jacobs R E, Meade T J. Fluorescently detectable magnetic resonance imaging agents [J]. Bioconjugate Chem., 1998, 9: 242-249.
    [24] Santra S, Wang K M, Tapec R, Tan W H. Development of novel dye doped silica nanoparticles for biomarker application[J]. J. Biomed. Opt., 2001, 6: 160-166.
    [25] Mamot C, Drummond D C, Greiser U, Hong K, Kirpotin D B, Marks J D, Park J W. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR- and EGFRvIII-overexpressing tumor cells[J]. Cancer Res., 2003, 63: 3154-3161.
    [26] Moran C E, Hale G D, Halas N J. Synthesis and characterization of lanthanide-doped silica microspheres[J]. Langmuir, 2001,17: 8376-8379.
    [27] Rossi L M, Shi L F, Quina F H, Rosenzweig Z. Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays[J]. Langmuir, 2005, 21(10): 4277-4280.
    [28] Kiselev M V, Gladilin A K, Melik-Nubarov N S, Sveshnikov P G, Miethe P, Levashov A V. Determination of cyclosporin A in 20% ethanol by a magnetic beads-based immunofluorescence assay[J]. Anal. Biochem., 1999, 269: 393-398.
    [29] Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications[J]. Angew. Chem. Int. Ed., 2000, 39: 1180-1218.
    [30] McNamara K P, Rosenzweig Z. Dye-encapsulating liposomes as fluorescence-based oxygen nanosensors[J]. Anal. Chem., 1998, 70(22): 4853-4859.
    [31] Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid Interface Sci., 1968, 26: 62-69.
    [32] Zhao X J, Tapec-Dytioco R, Tan W H. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles[J]. J. Am. Chem. Soc, 2003, 125: 11474-11475.
    
    [33] Collinson M M. Recent trends in analytical applications of organically modified silicate materials[J]. Trends Anal. Chem., 2002,21(1): 31-39.
    [34] Lee H, Hu M, Reilly R M, Allen C. Apoptotic epidermal growth factor (EGF)-conjugated block copolymer micelles as a nanotechnology platform for targeted combination therapy[J]. Molecular Pharmaceutics, 2007,4 (5): 769-781.
    [35] Hu M, Scollard D, Chan C, Chen P, Vallis K, Reilly R M. Effect of the EGFR density of breast cancer cells on nuclear importation, in vitro cytotoxicity, and tumor and normal-tissue uptake of In DTPA-hEGF[J]. Nucl. Med. Biol., 2007, 34 (8): 887-896.
    [36] Song L, Hennink E J, Young I T, Tanke H J. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy[J]. Biophys. J., 1995, 68: 2588-2600.
    [37] Soper S A, Nutter H L, Keller R A, Davis L M, Shera E B. The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy[J]. Photochem. Photobiol, 1993, 57: 972-977.
    [38] Lian W, Litherland S A, Badrane H, Tan W H, Wu D H, Baker H V. Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles[J]. Anal. Biochem., 2004, 334: 135-144.
    [39] Bagwe R P, Yang C Y, Hilliard L R, Tan W H. Optimization of dye-doped silica nanoparticles prepared using reverse microemulsion method[J]. Langmuir, 2004, 20: 8336-8342.
    [1] He X X, Wang K M, Tan W H, Xiao D, Li J, Yang X H. A novel fluorescent label based on biological fluorescent nanoparticles and its application in cell recognition [J]. Chinese Sc. Bull., 2001, 46 (23): 1962-1965.
    
    [2] Wang H Z, Wang H Y, Liang R Q, Ruan K C. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots[J]. Acta Biochem. Biophys. Sin., 2004, 36(10): 681-686.
    [3] Nida D L, Rahman M S, Carlson K D. Fluorescent nanocrystals for use in early cervical cancer detection [J]. Gynecol. Oncol., 2005, 99 (Suppl 1): S89-S94.
    [4] Lidke D S, Nagy P, Heintzmann R, Arndt-Jovin D J, Post J N, Grecco H E, Jares-Erijman E A, Jovin T M. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction[J]. Nat. Biotechnol, 2004, 22: 198-203.
    [5] Chen G Y J, Yao S Q. Lighting up cancer cells with "dots"[J]. The Lancet., 2004, 364: 2001-2003.
    [6] Gao X H, Cui Y Y, Levenson R M, Chung L W, Nie S M. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat. Biotechnol., 2004, 22: 969-976.
    [7] Jaiswal J K, Goldman E R, Mattoussi H, Simon S M. Use of quantum dots for live cell imaging[J]. Nat. Methods., 2004,1(1): 73-78.
    [8] Zhang C Y, Ma H, Nie S M, Ding Y, Jin L, Chen D Y. Quantum dot-labeled trichosanthin[J]. Analyst, 2000,125: 1029-1031.
    [9] Santra S, Zhang P, Wang K M, Tapec R, Tan W H. Conjugation of biomolecules with luminophore doped silica nanoparticles for photostable biomarkers[J]. Anal. Chem., 2001, 73: 4988-4993.
    [10] Lee-Koo Y-E, Cao Y, Kopelman R, Koo S M, Brasuel M G, Philbert M A. Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors[J]. Anal. Chem., 2004, 76: 2498-2505.
    [11] Tang W H, Xu H, Kopelman R, Philbert M A. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms[J]. Photochem. Photobiol., 2005, 81: 242-249.
    [12] Sumner J P, Westerberg N M, Stoddard A K, Fierke C A, Kopelman R. Cu~+ and Cu~(2+) sensitive PEBBLE fluorescent nanosensors using Ds Red as the recognition element[J]. Sensor. Actuat. B-Chem., 2005,113: 760-767.
    [13] Wu, X. Y, Larson J P, Ge N F, Peale F, Bruchez M P. Immunofluorescent labeling of cancer marker Her-2 and other cellular targets with semiconductor quantum dots[J]. Nat. Biotechnol., 2003, 21: 41-46.
    [14] Sumner J P, Aylott J W, Monson E, Kopelman R. A fluorescent PEBBLE nanosensor for intracellular free zinc[J]. Analyst, 2002,127: 11-16.
    [15] Buck S M, Koo Y-E L, Park E, Xu H, Philbert M A, Brasuel M A, Kopelman R. Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding[J]. Curr. Opin. Chem. Biol, 2004, 8: 540-546.
    [16] Park E J, Brasuel M, Behrend C, Philbert M A, Kopelman R. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells[J]. Anal. Chem, 2003, 75: 3784-3791.
    [17] Sumner J P, Kopelman R. Alexa Fluor 488 as an iron sensitive indicator and its application in PEBBLE nanosensors[J]. Analyst, 2005,130: 528-533.
    [18] Hun X, Zhang Z J. Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles, and its application to the determination of calcium in blood serum[J]. Microchim. Acta, 2007,159: 255-262.
    [19] Santra S, Dutta D, Walter G A, Moudgil B M. Fluorescent nanoparticle probes for cancer imaging[J]. Technol. Cancer Res. Treat, 2005,4: 593-602.
    [20] Santra S, Liesenfeld B, Dutta D, Chatel D, Batich C D, Tan W H, Moudgil B M, Mericle R A. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells[J]. J Nanosci. Nanotechno, 2005, 5: 899-904.
    [21] He X X, Duan J H, Wang K M, Tan W H, Lin X, He C M. A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition[J]. J. Nanosci. Nanotechno, 2004,4: 585-589.
    [22] Qhobosheane M. Santra S, Zhang P, Tan W H. Biochemically functionalized silica nanoparticles[J]. Analyst, 2001, 126: 1274-1278.
    [23] Santra S, Dutta D, Moudgil B M. Functional dye-doped silica nanoparticles for. bioimaging, diagnostics and therapeutics[J]. Food Bioprod. Process, 2005, 83: 136-140.
    [24] Lee J W, Lu J Y, Low P S, Fuchs P L. Synthesis and evaluation of taxol-folic acid conjugates as targeted antineoplastics[J]. Bioorgan. Med. Chem, 2002, 10(7): 2397-2414.
    [25] Santra S, Yang H, Dutta D, Stanley J T, Holloway P H, Tan W H, Moudgil B M, Mericle R A. TAT conjugated, FITC doped silica nanoparticles for bioimaging applications[J]. Chem. Commun, 2004, 24: 2810-2811.
    [26] Kircher M F, Mahmood U, King R S, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation[J]. Cancer Res, 2003, 63: 8122-8125.
    [27] Hiiber M M, Staubli A B, Kustedo K, Gray H B M, Shih J, Fraser S E, Jacobs R E, Meade T J.Fluorescently detectable magnetic resonance imaging agents[J].Bioconjugate Chem.,1998,9:242-249.
    [28]Santra S,Wang K M,Tapec R,Tan W H.Development of novel dyedoped silica nanoparticles for biomarker application[J].J.Biomed.Opt.,2001,6:160-166.
    [29]Yan J L,Estevez M C,Smith J E.,Wang K M,He X X,Wang L,Tan W H.Dye-doped nanoparticles for bioanalysis[J].Nanotoday,2007,2(3):44-50.
    [30]Indraccolo S,Tisato V,Agata S,Moserle L,Ferrari S,Callegaro M,Persano L,Palma M,Scaini M,Esposito G.Establishment and characterization of xenografts and cancer cell cultures derived from BRCAl-epithelial ovarian cancers[J].Eur.J.Cancer.,2006,42(10):1475-1483.
    [31]Simon I,Liu Y,Krall K L,Urban N,Wolfert R L,Kim N W,Mclntosh M W.Evaluation of the novel serum markers B7-H4,Spondin 2,and DcR3 for diagnosis and early detection of ovarian cancer[J].Gynecol.Oncol.,2007,106:112-118.
    [32]Edwards B K,Brown M L,Wingo P A,Howe H L,Ward E,Ries L A G.Annual report to the nation on the status of cancer,1975-2002,featuring population-based trends in cancer treatment[J].J.Natl.Cancer.Inst.,2005,97:1407-1427.
    [33]Mi R R,Ni H.MDM2 sensitizes a human ovarian cancer cell line[J].Gynecol.Oncol.,2003,90:238-244.
    [34]Wang W W,Das D,McQuarrie S A,Suresh M R.Design of a bifunctional fusion protein for ovarian cancer drug delivery:Single-chain anti-CA125 core-streptavidin fusion protein[J].Eur.J.Pharm.Biopharm.,2007,65:398-405.
    [35]American Cancer Society.Cancer facts and figures.Atlanta:American Cancer Society;2007.
    [36]Zhang X Y,Feng J,Ye X,Yao Y,Zhou P,Chen X X.Development of an immunocytokine,IL-2-183B2scFv,for targeted immunotherapy of ovarian cancer[J].Gynecol.Oncol.,2006,103:848-852.
    [37]Rodriguez-Burford C,Barnes M N,Berry W,Partridge E E,Grizzle W F.Immunohistochemical expression of molecular markers in an avian model:a potential model for preclinical evaluation of agents for ovarian cancer[J].Gynecol.Oncol.,2001,81:373-379.
    [38]Roby K F,Taylor C C,Sweetwood J P,Cheng Y,Pace J L,Tawfik O.Development of a syngeneic mouse model for events related to ovarian cancer[J].Carcinogenesis,2000,21:585-591.
    [39]http://www.cancer.org/docroot/CRI/CRI_2_1x.asp?dt=33.
    [40]Giles J R,Shivaprasad H L,Johnson P A.Ovarian tumor expression of an oviductal protein in the hen:a model for human serous ovarian adenocarcinoma,Gynecol.Oncol.,2004,95:530-533.
    [41]Rosen D G,Wang L,Atkinson N,Yu Y,Lu K H,Diamandis E P.Potential markers that complement expression of CA125 in epithelial ovarian cancer,Gynecol.Oncol.,2005,99:267-277.
    [42]American Cancer Society Cancer Facts & Figures.Atlanta:American Cancer Society,2005.
    [43]Lian W,Litherland S A,Badrane H,Tan W H,Wu D H,Baker H V.Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles[J].Anal.Biochem.,2004,334:135-144.
    [44]Duan J H,Wang K M,Tan W H,He X X,He C M,Liu B,Li D,Huang S S,Yang X H,Mo Y Y.A study of a novel organic fluorescent core-shell nanoparticle[J].Chem.J.Chin.Univ.,2003,24:255-259.
    [45]Zhang L H,Dong S J.Electrogenerated chemiluminescence sensors using Ru(bpy)_3~(2+) doped in silica nanoparticles[J].Anal.Chem.,2006,78(14):5119-5123.
    [46]Song L,Hennink E J,Young I T,Tanke H J.Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy[J].Biophys.J.,1995,68:2588-2600.
    [47]Soper S A,Nutter H L,Keller R A,Davis L M,Shera E B.The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy[J].Photochem.Photobiol.,1993,57:972-977.
    [48]Bagwe R P,Yang C Y,Hilliard L R,Tan W H.Optimization of dye-doped silica nanoparticles prepared using reverse microemulsion method[J].Langmuir,2004,20:8336-8342.
    [1]纂艳.用于免疫分析的新型纳米发光标记物的合成及表表征[D],济南:暨南大学,2006.
    [2]Michalet X,Pinaud F F,Bentolila L A,Tsay J M,Doose S,Li J J,Sundaresan G,Wu A M,Gambhir S S,Weiss S.Quantum dots for live cells,in vivo imaging,and diagnostics[J].Science,2005,307(5709):538-544.
    [3]Huo Q.A perspective on bioconjugated nanoparticles and quantum dots[J].Colloid.Surface.B,2007,59:1-10.
    [4]Klostranec J M,Chan W C W.Quantum dots in biological and biomedical research:recent progress and present challenges[J].Adv.Mater.,2006,18:1953-1964.
    [5]Wang Y,Tang Z Y,Kotov N A.Bioapplication of nanosemiconductors[J].Nanotoday,2005,8(5):20-31.
    [6]Yu W W,Chang E,Drezek R,Colvin V L.Water-soluble quantum dots for biomedical applications[J].Biochem.Bioph.Res.Commun.,2006,348:781-786.
    [7]Chan W C W,Nie S M.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281(5385):2016-2018.
    [8]Goldman E R,Anderson G P,Tran P T,Mattoussi H,Charles P T,Mauro J M.Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagent s for fluoroimmunoassays[J].Anal.Chem.,2002,74(4):841-847.
    [9]Goldman E R,Balighian E D,Mattoussi H.Avidin:A natural bridge for quantum dot-antibody conjugates[J].J.Am.Chem.Soc.,2002,124(22):6378-6382.
    [10]Goldman E R,Clapp A R,Anderson G P,Uyeda H T,Mauro J M,Medintz I L.Multiplexed toxin analysis using four colors of quantum dot fluororeagents[J].Anal.Chem.,2004,76(3):684-688.
    [11]Lingerfelt B M,Mattoussi H,Goldman E R,Mauro M,Anderson G P.Preparation of quantum dot-biotin conjugates and their use in immuno-chromatography assays[J].Anal.Chem.,2003,75(16):4043-4049.
    [12]Goldman E R,Medintz I L,Hayhurst A,Anderson G P,Mauro J M,Iverson B L,Georgiou G,Mattoussi H.Self-assembled luminescent CdSe-ZnS quantum dot bioconjugates prepared using engineered poly-histidine terminated proteins[J].Anal.Chim.Acta,2005,534:63-67.
    [13]Kerman K,EndoT,Tsukamoto M,Chikae M,Takamura Y,Tamiya E.Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy[J].Talanta,2007,71(4):1494-1499.
    [14]Zhang B B,Cheng J,Li D N,Liu X H,MaG P,Chang J.A novel method to make hydrophilic quantum dots and its application on biodetection[J].Mat.Sci.Eng.B,2008,149:87-92.
    [15]李雅冰.量子点及量子点编码微球在生物分析中的应用[D].吉林:吉林大学,2007.
    [16]吕会田,张云,乐加昌,张仲伦.旋转生物传感器高灵敏检测盐酸克伦特罗方法研究[J].食品科学,2007,28(08):446-450.
    [17]邵君,尤晓刚,高峰,贺蓉,崔大祥.量子点标记链霉亲和素及其生物活性检测[J].分析化学,34(11):1625-1628.
    [18]付志英,李朝辉,何晓晓,王柯敏,谭蔚泓,李慧敏.水溶性量子点荧光探针用于胃癌细胞相关抗原CA242的检测[J].分析化学,2006,34(12):1669-1673.
    [19]李晓舟,张忆华.CdTe纳米晶标记抗体荧光免疫分析方法的研究[J].分析实验室,2005,24(sup):107.
    [20]马强,王鑫岩,李雅冰,苏星光,金钦汉.利用荧光微球及半导体量子点作标记测定小鼠IgG的研究,分析实验室,2005,24(sup):47.
    [21]马慧莲.发光CdTe量子点生物偶联产物制备、及应用研究[D].沈阳:东北大学,2004.
    [22]单桂晔,白玉白.荧光纳米晶的制备及其在免疫学中应用的初步研究[D].吉林:吉林大学,2004.
    [23]王传涛,王术皓,杜凌云,庄惠生.CdS纳米晶标记抗雌二醇抗体荧光免疫分析试剂[J].河北师范大学学报(自然科学版),31(2):218-221.
    [24]Ding S Y,Chen J X,Jiang H Y,He J H,Shi W M,Zhao W S,Shen J Z.Application of quantum dot antibody conjugates for detection of sulfamethazine residue in chicken muscle tissue[J].J.Agric.Food Chem.,2006,54:6139-6142.
    [25]Sun B Q,Xie W Z,Yi G S,Chen D,Zhou Y,Cheng J.Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection[J].J.Immuno.Methods,2001,249:85-89.
    [26]Nichkova M,Dosev D,Davies A E,Gee S J,Kennedy I M,Hammock B D.Quantum dots as reporters in multiplexed immunoassays for biomarkers of exposure to agrochemicals[J].Anal.Lett.,2007,40:1423-1433.
    [27]Aoyagi S,Kudo M.Development of fluorescence change-based,reagent-less optic immunosensor[J].Biosensor.Bioelectron.,2005,20:1680-1684.
    [28]杨晓达,常文保,慈云祥.免疫分析法进展[J].化学进展,1995,7(2):83-97.
    [29]Wang S P,Mamedova N,Kotov N A,Chen W,Studer J.Antigen/Antibody immunocomplex from CdTe nanoparticle bioconjugates[J].Nano.Letters,2002,2(8):817-822.
    [30]Nikiforov T T,Beechem J M.Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores[J].Anal.Biochem.,2006,357:68-76.
    [31]Charbonniere L J,Hildebrandt N,Ziessel R F,Lohmannsroben H-G.Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy[J].J.Am.Chem.Soc.,2006,128:12800-12809.
    [32]Wang J H,Liu T C,Cao Y C,Hua X F,Wang H Q,Zhang H L,Li X Q,Zhao Y D.Fluorescence resonance energy transfer between FITC and water-soluble CdSe/ZnS quantum dots[J].Colloid.Surface.A,2007,302:168-173.
    [33]Feng H T,Law W S,Yu L J,Li S F-Y.Immunoassay by capillary electrophoresis with quantum dots[J].J.Chromatogr.A,2007,1156:75-79.
    [34]Wang H Q,Wang J H,Li Y Q,Li X Q,Liu T C,Huang Z L,Zhao Y D.Multi-color encoding of polystyrene microbeads with CdSe/ZnS quantum dots and its application in immunoassay[J].J.Colloid.Inter.Sci.,2007,316:622-627.
    [35]Ma Q,Wang X Y,Li Y B,Shi Y H,Su X G.Multicolor quantum dot-encoded microspheres for the detection of biomolecules[J].Talanta 2007,72:1446-1452.
    [36]Lao U L,Mulchandani A,Chen W.Simple conjugation and purification of quantum dot-antibody complexes using a thermally responsive elastin-protein 1 scaffold as immunofluorescent agents[J].J.Am.Chem.Soc.,2006,128:14756-14757.
    [37]Zhang Q,Zhu L,Feng H H,Ang S,Chau F S,Liu W-T.Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization[J].Anal.Chim.Acta,2006,556:171-177.
    [38]Ma Q,Song T Y,Wang X Y,Li Y B,Shi Y H,Su X G.Quantum dots as fluorescent labels for use in microsphere-based fluoroimmunoassays[J].Spectrosc.Lett.,2007,40:113-127.
    [39]Su X L,Li Y B.Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7[J].Anal.Chem.,2004,76:4806-4810.
    [40]Li W H,Xie H Y,Xie Z X,Lu Z X,Ou J H,Chen X D,Shen P.Exploring the mechanism of competence development in Escherichia coli using quantum dots as fluorescent probes[J].J.Biochem.Bioph.Meth.,2004,58:59-66.
    [41]Zhu L,Ang S,Liu W T.Quantum dot s as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia[J].Appl.Environ.Microbiol.,2004,70(1):597-598.
    [42]Yu X F,Chen L D,Li K Y,Li Y,Xiao S.Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo[J].J.Biomed.Opt.,12(1):014008-1-014008-5.
    [43]Minet O,Dressier C,Beuthan J.Heat stress induced redistribution of fluorescent quantum dots in breast tumor cells[J].J.Fluoresc.,2004,14:241-247.
    [44]Beuthan J,Dressier C,Minet O.Laser-induced fluorescence detection of quantum dots redistributed in thermally stressed tumor cells[J].Laser.Physics.,2004,14:213-219.
    [45]Qhobosheane M,Zhang P,Tan W H.Assembly of Silica Nanoparticles for Two-dimensional Nanomaterials[J].J.Nanosci.Nanotechno.,2004,4:635-640.
    [46]Santra S,Yang H,Stanley J T,Holloway P H,Moudgil B M,Walter G.Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots[J].Chem.Commun.,2005,25:3144-3146.
    [47]van Blaaderen A,Vrij A.Synthesis and characterization of colloidal dispersions of fluorescent,monodisperse silica spheres[J].Langrnuir,1992,8:2921-2931.
    [48]Verhaegh N A M,van Blaaderen A.Dispersions ofrhodamine-labeled silica spheres:synthesis,characterization,and fluorescence confocal scanning laser microscopy[J].Langmuir,1994,10:1427-1438.
    [49]Santra S,Liesenfeld B,Dutta D.Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells[J].J.Nanosci.Nanotechnol.,2005,5:899-904.
    [50]Santra S,Yang H,Dutta D Stanley J T.TAT conjugated,FITC doped silica nanoparticles for bioimaging applications[J].Chem.Commu.,2004,24:2810-2811.
    [51]Santra S,Zhang P,Wang K M,Tapec R,Tan W H.Conjugation of biomolecules with luminophore doped silica nanoparticles for photostable biomarkers[J].Anal.Chem.,2001,73:4988-4993.
    [52]Kim M S,Seok S I,Ahn B Y,Koo S M,Paik S U.Encapsulation of water-soluble dye in spherical sol-gel silica matrices[J].J.Sol-Gel.Sci.Techn.,2003,27:355-361.
    [53]Zhao X J,Hilliard L R,Mechery S J,Wang Y P,Bagwe R P,Jin S Q,Tan W H.A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles[J].PNAS,2004,101(42):15027-15032.
    [54]Wang H,Li J S,Ding Y J,Lei C X,Shen G L,Yu R Q.Novel immunoassay for Toxoplasma gondii-specific immunoglobulin G using a silica nanoparticle-based biomolecular immobilization method[J].Anal.Chim.Acta.,2004,501:37-43.
    [55]Deng T,Li J S,Jiang J H,Shen G L,Yu R Q.Preparation of near-IR fluorescent nanoparticles for fluorescence-anisotropy-based immunoagglutination assay in whole blood[J].Advanced Funct.Mater.,2006,16(16):2147-2155.
    [56]刘海波,庄峙厦,陈成祥,黄荣夫,谭芳,鄢庆枇,王小如.纳米荧光小球标记在蛋白质微阵列检测中的应用研究[J].分析化学,2006,9:1227-1230.
    [57]Ye Z Q.Tan M Q,Wang G L,Yuan J L.Preparation,characterization,and time-resolved fluorometric application of silica-coated terbium(Ⅲ) fluorescent nanoparticles[J].Anal.Chem.,2004,76:513-518.
    [58]Tan M Q,Ye Z Q,Wang G L,Yuan J L.Preparation and time-resolved fluorometric application of luminescent europium nanoparticles[J].Chem.Mater.,2004,16:2494-2498.
    [59]Hai X,Tan M,Wang G,Ye Z,Yuan J,Matsumoto K.Preparation and a time-resolved fluoroimmunoassay application of new europium fluorescent nanoparticles[J].Anal.Sci.,2004,20:245-246.
    [60]Ye Z Q,Tan M Q,Wang G L,Yuan J L.Development of functionalized terbium fluorescent nanoparticles for antibody labeling and time-resolved fluoroimmunoassay application[J].Talanta,2005,65:206-210.
    [61]Tan M Q,Wang G L,Ye Z Q,Yuan J L.Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling[J].J.Lumin.,2006,117:20-28.
    [62]Zhang H,Xu Y,Yang W,Li Q G.Dual-Lanthanide-Chelated Silica Nanoparticles as Labels for Highly Sensitive Time-Resolved Fluorometry[J].Chem.Mater.,2007,19:5875-5881.
    [63]Chen Y,Chi Y M,Wen H M,Lu Z H.Sensitized luminescent terbium nanoparticles:preparation and time-resolved fluorescence assay for DNA[J].Anal.Chem.,2007,79:960-965.
    [64]Yang W,Zhang C G,Qu H Y,Yang H H,Xu J G.Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays[J].Anal.Chim.Acta,2004.503:163-169.
    [65]Ye Z,Tan M,Wang G,Yuan J.Novel fluorescent europium chelate-doped silica nanoparticles:preparation,characterization and time-resolved fluorometric application[J].J.Mater.Chem.,2004,14,851-856.
    [66]Liu J M,Yang T L,Liang X S,Wu A H,Li L D,Lin S Q.Determination of human IgG by solid-substrate room-temperature phosphorescence immunoassay based on an antibody labeled with nanoparticles containing rhodamine 6G luminescent molecules[J].Anal.Bioanal.Chem.,2004,380:632-636.
    [67]叶志强.纳米稀土荧光材料的制备及在时间分辨荧光免疫分析中的应用[D].大连:中国科学院大连化学物理研究所,2004.
    [68]Major J.Challenges and opportunities in high throughput screening:implications for new technologies[J].J.Biomol.Screening,1998,3:13-17.
    [69]Grahn S,Kurth T,Ullmnan D,Jakubke H D.Ssubsite mapping of serine proteases based on fluorescence resonance energy transfer[J].Biochimica et Biophysica Acta,1999,1431(2):329-337.
    [70]Bubruam J.Miniaturization technologies in HTS:How fast,how small,how soon?Drug Dsicovery Today,1998,3:313-322.
    [71]廖险峰,林晓琴,李松军,胡杰,汪地强,刘白玲.用于高通量药物筛选的PMMA-Alq3荧光微球的制备[J].合成化学,2004,12(3):273.
    [72]Lovgren T,Heinonen P,Lehtinen P,Hakala H,Heinola J,Harju R.Sensitive bioaffinity assays with individual microparticles and time-resolved fluorometry[J].Clinical Chemistry.,1997,43(10):1937-1943.
    [73]Lovgren T,Heinonen P,Lethinen P,Hakala H,Heinola J,Harju R.Sensitive bioaffinity assays with individual icroparticles and time-resolved fluorometry[J].Clin.Chem.,1997,43:937-1943.
    [74]Qin Q P,Lovgren T,Pettersson K.Development of highly fluorescent detection reagent for the construction of ultrasensitive immunoassays[J].Anal.Chem.,2001,73:1521-1529.
    [75]Harma H,Soukka T,Lovgren T.Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen[J].Clin.Chem.,2001,47:561-568.
    [76]Soukka T,H(a|¨)rm(a|¨) H,Paukkunen J,L(o|¨)vgren T.Utilization of kinetically monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates[J].Anal.Chem.,2001,73:2254-2260.
    [77]V(a|¨)is(a|¨)nen V,H(a|¨)rm(a|¨) H,Lilja H,Bjartell A.Time-resolved fluorescence imaging for quantitative histochemistry using lanthanide chelates in nanoparticles and conjugated to monoclonal antibodies[J].Luminescence,2000,15(6):389-97.
    [78]H(a|¨)rm(a|¨) H,Soukka T,Lonnberg S,Paukkunen J,Tarkkinen P,Lovgren T.Zeptomole detection sensitivity of prostate-specific antigen in a rapid microtitre plate assay using time-resolved fluorescence[J].Luminescence,2000,15:351-355.
    [79]Wolfbeis O S,Bohmer M,Durlop A,Enderlein J,Gruber M,Klimant I.Advanced luminescent labels,probes and beads and their application to luminescence bioassay and imaging.In:Kraayenhof A,Visser A J W G,Gerritsen H C(Eds.),Fluorescence Spectroscopy,Imaging and Probes.Berlin,Heidelberg,New York,Springer,2002,pp.3-42.
    [80]Soukka T,Antonen K,Harma H,Pelkkikangas A M,Huhtinen P,Lovgren T.Highly sensitive immunoassay of free prostate-specific antigen in serum using europium(Ⅲ)nanoparticle label technology[J].Clin.Chim.Acta,2003,328:45-58.
    [81]Matsuya T,Tashiro S,Hoshino N,Shibata N,Nagasaki Y,Kataoka K.A core-shell-type fluorescent nanosphere possessing reactive poly(ethylene glycol)tethered chains on the surface for zeptomole detection of protein in time-resolved fluorometric immunoassay[J].Anal.Chem.,2003,75:6124-6132.
    [82]H(a|¨)rm(a|¨) H,Pelkkikangas A M,Soukka T,Huhtinen P,Houpalathi S,Lovgren T.Sensitive miniature single-particle immunoassayof prostate-specific antigen using time-resolved fluorescence[J].Anal.Chim.Acta.,2003,482:157-164.
    [83]Bruemmel Y,Chan C P,Renneberg R,Thuenemann A,Seydack M.On the influence of different surfaces in nano- and submicrometer particle based fluorescence immunoasays[J].Langmuir.2004,20:9371-9379.
    [84]Janne O K,Jonne V,Niko J M,Juhani T S,Pekka E H,Juhani L,Matti E W,Aleksi E S.Fluorescent nanoparticles as labels for immunometric assay of C-reactive protein using two-photon excitation assay technology[J].Anal.Biochem.,2004,328:210-218.
    [85]Pelkkikangas A M,Jaakohuhta S,L(o|¨)vgren T,H(a|¨)rm(a|¨) H.Simple,rapid,and sensitive thyroidstimulating hormone immunoassay using europium(Ⅲ)nanoparticle label[J].Anal.Chim.Acta.,2004,517:169-176.
    [86]Petri H,Tero S,Timo L,Harri H.Immunoassay of total prostate-specific antigen using europium(Ⅲ) nanoparticle labels and streptavidin-biotin technology[J].J.Immunol.Methods.,2004,294:111-122.
    [87]Petri H,Mirja K,Outi K,Virve H,Harri T,Heikki T.Synthesis,characterization,and application of Eu(Ⅲ),Tb(Ⅲ),Sm(Ⅲ),and Dy(Ⅲ) lanthanide chelate nanoparticle labels[J].Anal.Chem.,2005,77:2643-2648.
    [88]Antti V,Saila H,Tero S,Raija V,Timo L,Harri H.A sensitive adenovirus immunoassay as a model for using nanoparticle label technology in virus diagnostics[J].J.Clin.Virol.,2005,33:217-223.
    [89]Antti V,Saila H,Raija V,Timo,Harri H.Rapid and sensitive HBsAg immunoassay based on fluorescent nanoparticle labels and time-resolved detection[J].J.Virol.Methods.,2005,129:83-90.
    [90]Telle U,Terhi R,Laura J,Katri K,Henna P,Timo L,Tero S.Comparison of infrared-excited up-converting phosphors and europium nanoparticles as labels in a two-site immunoassay[J].Anal.Chim.Acta,2007,596:106-115.
    [91]Jaakohuhta S,Harma H,Tuomola M,Lovgren T.Sensitive Listeria spp. immunoassay based on europium(Ⅲ) nanoparticulate labels using time-resolved fluorescence[J].Int.J.Food.Microbiol.,2007,114:288-294.
    [92]H(a|¨)rm(a|¨) H,Ker(a|¨)nen A-M,L(o|¨)vgren T.Synthesis and characterization of europium(Ⅲ) nanoparticles for time-resolved fluoroimmunoassay of prostate-specific antigen[J].Nanotechnol.,2007,18:075604(7pp).
    [93]Leena K,Timo L,Tero S.Europium(Ⅲ)-chelates embedded in nanoparticles are protected from interfering compounds present in assay media[J].Anal.Chim.Acta,2007,585:17-23.
    [94]Petri H,Jonne V,Tero S,Timo L,Harri H,Petri H.Europium(Ⅲ)nanoparticle-label-based assay for the detection of nucleic acids[J].Nanotechnology,2004,15:1708-1715.
    [95]杨蕊.半导体纳米粒子的合成与应用新方法以及微流控芯片流式细胞仪的研究开发[D].吉林:吉林大学,2006.
    [96]Beverloo H B,van Schadewijk A,van Gelderen-Boele S,Tanke H J.Inorganic phosphors as new luminescent labels for immunocytochemistry and time-resolved microscopy[J].Cytometry,1990,11:784-792.
    [97]Beverloo H B,van Schadewijk A,Bonnet J,van der Geest R,Runia R,Verwoerd N P,Vrolijk J,Ploem J S,Tanke H J.Preparation and microscopic visualization of multicolor luminescent immunophosphors[J].Cytometry.1992,13:561-570.
    [98]Beverloo H B,van Schadewijk A,Zijlmans H J,Tanke H J.Immunochemical detection of proteins and nucleic acids on filters using small luminescent inorganic crystals as markers[J].Anal.Biochem.,1992,203:326-334.
    [99]Hasegawa Y,Thongchant S,Wada Y,Tanaka H,Kawai T,Sakata T,Mori H,Yanagida S.Enhanced luminescence and photomagnetic properties of surface-modified euo nanocrystals[J].Angew.Chem.Int.Ed.,2002,41(12):2073-2075.
    [100]Feng J,Shan G,Maquieira A,Koivunen M E,Guo B,Hammock B D,Kennedy I M.Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine[J].Anal.Chem.,2003,75:5282-5286.
    [101]Beaurepaire E,Buissette V,Sauviat M-P,Giaume D,Lahlil K,Mercuri A.Functionalized fluorescent oxide nanoparticles:artificial toxins for sodium channel targeting and imaging at the single-molecule level[J].Nano Lett.,2004,4(11):2079-2083.
    [102]Kang J,Zhang X Y,Sun L D,Zhang X X.Bioconjugation of functionalized fluorescent YVO4:Eu nanocrystals with BSA for immunoassay[J].Talanta,2007,71:1186-1191.
    [103]王新.纳米晶上转换发光和ZnO纳米复合物及其偶联蛋白质的研究[D].长春:长春光学精密机械与物理研究所,2006.
    [104]Zarling D A,Rossi M J,Peppers N A,Kane J,Faris G W,Dyer M J.Up-converting reporters for biological and other assays using laser excitation techniques:USA,5,674,698[P],1997-10-7.
    [105]Niedbala R S,Feindt H,Kardos K,Vail T,Burton J,Bielska B.Detection of analytes by immunoassay using up-converting phosphor technology[J].Anal.Biochem.,2001,293:22-30.
    [106]Hampl J,Hall M,Mufti N A,Yao Y M M,Macquee D B,Wright W H,Cooper D E.Upconverting phosphor reporters in immuno-chromatographic assays[J].Anal.Biochem.,2001,288(2):176-187.
    [107]Zijlmans H J M A A,Bonnet J,Burton J,Kardos K,Vail T,Niedbala R S,Tanke H J.Detection of cell and tissue surface antigens using up-converting phosphors:a new reporter technology[J].Anal.Biochem.,1999,267:30-36.
    [108]Ukonaho T,Rantanen T,Jamsen L,Kuningas K,Pakkila H,Lovgren T,Soukka T.Comparison of infrared-excited up-converting phosphors and europium nanoparticles as labels in a two-site immunoassay[J].Anal.Claim.Acta,2007,596:106-115.
    [109]Lim S F,Riehn R,Ryu W S,Khanarian N,Tung C K,Tank D,Austin R H.In vivo and scanning electron microscopy imaging of upconverting nanophosphors in caenorhabditis elegans[J].Nano.Lett.,2006,6:169-174.
    [110]Corstjens P L A M,Zuiderwijk M,Nilsson M,Feindt H,Niedbala R S,Tanke H J.Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay[J].Anal.Biochem.,2003,312:191-200.
    [111]Beverloo H B,Schadewijk van A,Zijlmans H J,Verwoerd N P,Bonnet J,Vrolijk J,Tanke H J.A comparison of the detection sensitivity of lymphocyte membrane antigens using fluorescein and phosphor immunoconjugates[J].J.Histochem.Cytochem.,1993,41:719-725.
    [112]Hampl J,Hall M,Mufti N A,Yao Y M M,MacQueen D B,Wright W H.Cooper D E,Upconverting phosphor reporters in immunochromatographic assays[J].Anal.Biochem.,2001,288:176-187.
    [113]Niedbala R S,Feindt H,Kardos K,Vail T,Burton J,Bielska B,Li S,Milunic D,Bourdelle P,Vallejo R.Detection of analytes by immunoassay using up-converting phosphor technology[J].Anal.Biochem.,2001,293:22-30.
    [114]Corstjens P L A M,Li S,Zuiderwijk M,Kardos K,Abrams W R,Niedbala S R,Tanke H J.Infrared up-converting phosphors for bioassays[J].IEE Proc.Nanobiotechnol.,2005,152:64-72.
    [115]Beverloo H B,van Schadewijk A,Zijlmans H J,Tanke H J.Immunochemical detection of proteins and nucleic acids on filters using small luminescent inorganic crystals as markers[J].Anal.Biochem.,1992,203(2):326-334.
    [116]van de Rijke R,Zijlmans H.,Li S,Vail T,Raap A K,Niedbala R S,Tanke H F.Up-converting phosphor reporters for nucleic acid microarrays[J].Nat.Biotechnol.,2001,19:273-276.
    [117]Wang J,Chen Z Y,Corstjens P L A M,Mauk M G,Bau H H.A disposable microfluidic cassette for DNA amplification and detection[J].Lab Chip,2006,6:46-53.
    [118]Kuningas K,Ukonaho T,Pakkila H,Rantanen T,Rosenberg J,Lovgren T,Soukka T.Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol[J].Anal.Chem.,2006,78:4690-4696.
    [119]Corstjens P,Zuidewrijk M,Brink A.Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences:a rapid,sensitive dna test to identify human papillomavirus type 16 infection[J].Clinical.Chem.,2001,47(10):1885-1893.
    [120]Zijlman H,Bonne J,Burton J.Detection of cell and tissue surface antigens using up-converting phosphors:a new reporter technology[J].Anal.Biochem.,1999,267:30-36.
    [121]Rijke F,Zjlmans H,Li S,Vail T,Raap A K,Niedbala R S,Tanke H J.UP-converting phosphor reports for nucleic acid microarryas[J].Nuatre Biotech.,2001,19:273-276.
    [122]Hirai T,Orikoshi T.Preparation of yttrium oxysulfide phosphor nanoparticles with infrared-to-green and-blue upconversion emission using an emulsion liquid membrane system[J].J.Colloid.Interf.Sci.,2004,273:470-477.
    [123]Kuningas K,Rantanen T,Lovgren T,Soukka T.Enhanced photoluminescence of up-converting phosphors in a solid phase bioaffinity assay[J].Anal.Chim.Acta.,2005,543:130-136.
    [124]Deng W,Cheng J,Zhang X R,Chen D P.Up-converting nanoparticles as resonance energy transfer donors in a sandwich immunoassay for protein[J].Talanta,2007,ⅹⅹⅹ(ⅹⅹⅹ-ⅹⅹⅹ).
    [125]Wei Y,Lu F Q,Zhang X R,Chen D P.Polyol-mediated synthesis of water-soluble LaF3:Yb,Er upconversion fluorescent nanocrystals[J].Mater.Lett.,2007,61:1337-1340.
    [126]Wei Y,Lu F Q,Zhang X R,Chen D P.Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter[J].J.Alloy.Compd.,2007,427:333-340.
    [127]Tian Y,Cao W H,Luo X X,Fu Y.Preparation and Luminescence Property of Gd_2O_2S:Tb X-ray phosphor nano-particles using the complex precipitation method[J].J.Alloy.Compd.,2007,433(1-2):313-317.
    [128]丁友真.载药脂质体的研究动态[J].河北医药,1995,17(3):161-163.
    [129]Borch R F,Bernstein M D,Durst H D.Cyanohydridoborate anion as a selective reducing agent[J].J.Am.Chem.Soc.,1971,93(21):2897-2898.
    [130]Liu G D,Wu Z Y,Wang S P,Shen G L,Yu R Q.Renewable amperometric immunosensor for schistosoma japonium antibody assay[J].Anal.Chem.,2001,73(14):3219-3226.
    [131]Decher G.Fuzzy nanoassemblies:toward layered polymeric multicomposites[J].Science,1997,277:1232-1237.
    [132]Khopade A J,Caruso F.Surface-modification of polyelectrolyte multilayer-coated particles for biological applications[J].Langrnuir,2003,19:6219-6225.
    [133]Trau D,Yang W,Seydack M,Caruso F,Yu N T,Renneberg R.Nanoencapsulated microcrystalline particles for superarnplified biochemical assays[J].Anal.Chem.,2002,74(21):5480-5486.
    [134]Yang W J,Dieter T,Reinhard R,Nai T Y,Frank C.Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications[J].J.Colloid.Interf.Sci.,2001,234:356-362.
    [135]Chan C P Y,Bruemmel Y,Seydack M,Sin K K,Wong L W,Merisko-Liversidge E,Trau D,Renneberg R.Nanocrystal biolabels with releasable fluorophores for immunoassays[J].Anal.Chem.,2004,76(13):3638-3645.
    [136]Mikaela N,Dosi D,Shirley J G,Bruce D H,Ian M K.Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd_2O_3 nanoparticles as fluorescent labels[J].Anal.Chem.,2005,77:6864-6873.
    [137] Marina S, Suad N, Goicoechea H C, Haldar M K, Campiglia A D, Mallik S. Artificial neural networks for qualitative and quantitative analysis of target proteins with polymerized liposome vesicles[J]. Anal. Biochem., 2007, 361: 109-119.
    [1] Lam M T, Wan Q H, Boulet C A, Le X C. Competitive immunoassay for staphylococcal enterotoxin A. using capillary electrophoresis with laser-induced fluorescence detection[J]. J. Chromatogr. A, 1999, 853: 545-553.
    [2] Giletto A, Fyffe J G. A novel ELISA format for the rapid and sensitive detection of staphylococcal enterotoxin A[J]. Biosci. Biotech. Bioch., 1998, 62: 2217-2222.
    [3] Baeyens W R G, Schulman S G, Calokerinos A C, Zhao Y, Campana A M G, Nakashima K, De Keukeleire D. Chemiluminescence-based detection: principles and analytical applications in flowing streams and in immunoassays[J]. J. Pharm. Biomed. Anal., 1998,17: 941-953.
    [4] Roda A, Pasini P, Musiani M, Girotti S, Baraldini M, Carrea G, Suozzi A. Chemiluminescent low-light imaging of biospecific reactions on macro- and microsamples using a videocamera-based luminograph[J]. Anal. Chem., 1996, 68: 1073-1080.
    [5] Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as diagnostic tool. A review[J]. Talanta, 2000, 51: 415-439.
    [6] Goldman E R, Balighian E D, Mattoussi H. Avidin: A natural bridge for quantum dot-antibody conjugates [J]. J. Am. Chem. Soc, 2002,124(22): 6378-6382.
    [7] Rowe C A, Scruggs S B, Feldstein M J, Golden J P, Ligler F S. An array immunosensor for simultaneous detection of clinical analytes[J]. Anal. Chem., 1999, 71:433-439.
    [8] Dyba M, Hell S W. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission[J]. Appl. Opt., 2003,42: 5123-5129.
    [9] Fang X H, Tan W H. Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation[J]. Anal. Chem., 1999, 71: 3101-3105.
    [10] Petrovas C, Daskas S M, Lianidou E S. Determination of TNF-α in serum by a highly sensitive enzyme amplified Lanthanide luminescence immunoassay[J]. Clin. Biochem., 1999, 32: 241-247.
    [11]Cummins C M,Koivunen M E,Stephanian A,Geeb S J,Hammock B D,Kennedy I M.Application of europium(Ⅲ) chelate-dyed nanoparticle labels in a competitive atrazine fluoroimmunoassay on an ITO waveguide[J].Biosens.Bioelectron.,2006,21:1077-1085.
    [12]Karst U.Where the worlds of nanotechnology,materials science,and bioanalysis converge[J].Anal.Bioanal.Chem.,2006,384:559.
    [13]Santra S,Wang K M,Tapec R,Tan W H.Development of novel dye-doped silica nanoparticles for biomarker application[J].J.Biomed.Opt.,2001,6:160-166.
    [14]Yang W,Zhang C G,Qu H Y,Yang H H,Xu J G.Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays[J].Anal.Chim.Acta,2004.503:163-169.
    [15]Bagwe R P,Yang C Y,Hilliard L R,Tan W H.Optimization of dye-doped silica nanoparticles prepared using reverse microemulsion method[J].Langmuir,2004,20:8336-8342.
    [16]Lian W,Litherland S A,Badrane H,Tan W H,Wu D H,Baker H V.Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles[J].Anal.Biochem.,2004,334:135-144.
    [17]Antti V,Saila H,Raija V,Timo,Harri H.Rapid and sensitive HBsAg immunoassay based on fluorescent nanoparticle labels and time-resolved detection[J].J.Virol.Methods.,2005,129:83-90.
    [18]Tan M Q,Wang G L,Ye Z Q,Yuan J L.Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling[J].J.Lumin.,2006,117:20-28.
    [19]Janne O K,Jonne V,Niko J M,Juhani T S,Pekka E H,Juhani L,Matti E W,Aleksi E S.Fluorescent nanoparticles as labels for immunometric assay of C-reactive protein using two-photon excitation assay technology[J].Anal.Biochem.,2004,328:210-218.
    [20]Ye Z Q.Tan M Q,Wang G L,Yuan J L.Preparation,characterization,and time-resolved fluorometric application of silica-coated terbium(Ⅲ) fluorescent nanoparticles[J].Anal.Chem.,2004,76:513-518.
    [21]Petri H,Mirja K,Outi K,Virve H,Harri T,Heikki T.Synthesis,characterization,and application of Eu(Ⅲ),Tb(Ⅲ),Sm(Ⅲ),and Dy(Ⅲ) lanthanide chelate nanoparticle labels[J].Anal.Chem.,2005,77:2643-2648.
    [22]Soukka T,H(a|¨)rm(a|¨) H,Paukkunen J.L(o|¨)vgren T,Utilization of kinetically monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates[J]. Anal. Chem., 2001, 73: 2254-2260.
    [23] Tan M Q, Guilan H W, Ye X D, Yuan J L. Development of functionalized fluorescent europium nanoparticles for biolabeling and time-resolved fluorometric applications[J]. Mater. Chem., 2004, 14: 2896-2901.
    [24] Soukka T, Antonen K, Harma H, Pelkkikangas A M, Huhtinen P, Lovgren T. Highly sensitive immunoassay of free prostate-specific antigen in serum using europium(III)nanoparticle label technology[J]. Clin. Chim. Acta, 2003, 328: 45-58.
    [25] Petri H, Tero S, Timo L, Harri H. Immunoassay of total prostate-specific antigen using europium(III) nanoparticle labels and streptavidin-biotin technology[J]. J. Immunol. Methods., 2004, 294: 111-122.
    [26] Yang H H, Qu H Y, Lin P, Li S H, Ding M T, Xu J G. Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels[J]. Analyst, 2003, 128: 462-466.
    [27] Liu J M, Lu Q M, Wang Yan, Xu S S, Lin X M, Li L D, Lin S Q. Solid-substrate room-temperature phosphorescence immunoassay based on an antibody labeled with nanoparticles containing dibromofluorescein luminescent molecules and analytical application[J]. J. Immunol. Methods, 2005, 307: 34-40.
    [28] Liu J M, Zhu, G H, Wu A H, Li P P, Xu H H, Li L D, Liu Z B. Determination of human IgG by solid substrate room temperature phosphorescence immunoassay based on an antibody labeled with nanoparticles containing Rhodamine 6G luminescent molecules[J]. Spectrochim. Acta A, 2005, 61: 923-927.
    [29] Feng J, Shan G, Maquieira A, Koivunen M E, Guo B, Hammock B D, Kennedy I M. Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine[J]. Anal. Chem., 2003, 75: 5282-5286.
    [30] Mikaela N, Dosi D, Shirley J G, Bruce D H, Ian M K. Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd_2O_3 nanoparticles as fluorescent labels[J]. Anal. Chem., 2005, 77: 6864-6873.
    [31] Janne O K, Jonne V, Niko J M, Juhani T S, Pekka E H, Juhani L, Matti E W, Aleksi E S. Fluorescent nanoparticles as labels for immunometric assay of C-reactive protein using two-photon excitation assay technology[J]. Anal. Biochem., 2004, 328: 210-218.
    [32] Santra S, Zhang P, Wang K M, Tapec R, Tan W H. Conjugation of biomolecules with luminophore doped silica nanoparticles for photostable biomarkers[J]. Anal. Chem., 2001, 73: 4988-4993.
    [33] Kiselev M V, Gladilin A K, Melik-Nubarov N S, Sveshnikov P G, Miethe, P, Levashov A V. Determination of cyclosporin A in 20% ethanol by a magnetic beads-based immunofluorescence assay[J]. Anal. Biochem., 1999,269: 393-398.
    [34] Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications[J]. Angew. Chem. Int. Ed., 2000, 39: 1180-1218.
    [35] Li T, Moon J, Morrone A A, Mecholsky J J, Talham D R, Adair J H. Preparation of Ag/SiO_2 nanosize composites by a reverse micelle and sol-gel technique[J]. Langmuir, 1999,15: 4328-4334.
    [36] Song L, Hennink E J, Young I T, Tanke H J. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy [J]. Biophys. J., 1995, 68: 2588-2600.
    [37] Soper S A, Nutter H L, Keller R A, Davis L M, Shera E B. The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy[J]. Photochem. Photobiol., 1993, 57: 972-977.
    [1] Ligler F S, Taitt C R, Shriver-Lake L C, Sapsford K E, Shubin Y, Golden J P. Array biosensor for detection of toxins[J]. Anal. Bioanal. Chem., 2003, 377: 469-477.
    [2] Balaban N, Rasooly A. Analytical chromatography for recovery of small amounts of staphylococcal enterotoxins fromfood[J]. Int. J. Food Microbiol., 2001, 64: 33-40.
    [3] Balaban N, Rasooly A. Staphylococcal enterotoxins[J]. Int. J. Food Microbiol., 2000, 61:1-10.
    [4] Kientz C E, Hulst A G, Wils E R J. Determination of staphylococcal enterotoxin B by online (micro) liquid chromatography-electrospray mass spectrometry[J]. J. Chromatogr. A, 1997, 757: 51-64.
    [5] Rasooly A, Ito Y. Toroidal coil countercurrent chromatography separation and analysis of staphylococcal enterotoxin A (SEA) in milk[J]. J. Liq. Chromatogr. Rel. Technol., 1999,22(9): 1285-1293.
    [6] Lam M T, Wan Q H, Boulet C A, Le X C. Competitive immunoassay for staphylococcal enterotoxin A using capillary electrophoresis with laser-induced fluorescence detection[J]. J. Chromatogr. A, 1999, 853: 545-553.
    [7] Giletto A, Fyffe J G A novel ELISA format for the rapid and sensitive detection of staphylococcal enterotoxin A[J]. Biosci. Biotech. Bioch., 1998, 62: 2217-2222.
    [8] Lin H C, Tsai W C. Piezoelectric crystal immunosensor for the detection of staphylococcal enterotoxin B[J]. Biosens. Bioelectron., 2003,18: 1479-1483.
    [9] Goldman E R, Balighian E D, Mattoussi H, Kuno M K, Mauro J M, Tran P T, Anderson G P. Avidin: a natural bridge for quantum dot-antibody conjugates[J]. J. Am. Chem. Soc, 2002,124: 6378-6382.
    [10] Mantynen V, Niemela S, Kaijalainen S, Pirhonen T, Lindstrom K. MPN-PCR-quantification method forstaphylococcal enterotoxin C1 gene from fresh cheese[J]. Int. J. Food Microbiol., 1997, 36: 135-143.
    [11] Dong S Y, Luo G. A, Feng J, Li Q W, Gao H. Immunoassay of staphylococcal enterotoxin C1 by FTIR spectroscopy and electrochemical gold electrode[J]. Electroanal., 2001,13: 30-33.
    [12] Ligler F S. Array biosensor for detection of biohazards[J]. Biosens. Bioelectron., 2000, 14: 785-794.
    [13] Luo L R, Zhang Z J, Chen L J, Ma L F. Chemiluminescent imaging detection of staphylococcal enterotoxin C_1 in milk and water samples[J]. Food Chem., 2006, 97: 355-360.
    
    [14] Van Emon J M, Gerlach C L. ACS Symp. Ser., 1996, 646: 2-8.
    [15] Aga D S, Thurman E M. Environmental immunoassays: Alternative techniques for soil and water analysis[J]. ACS Symp. Ser., 1997, 657: 1-20.
    [16] Schneider R J. Environmental immunoassays[J]. Anal. Bioanal. Chem., 2003, 375: 44-46.
    [17] Santra S, Wang K M, Tapec R, Tan W H. Development of novel dye-doped silica nanoparticles for biomarker application[J]. J. Biomed. Opt., 2001, 6: 160-166.
    [18] Bagwe R P, Yang C Y, Hilliard L R, Tan W H. Optimization of dye-doped silica nanoparticles prepared using reverse microemulsion method[J]. Langmuir, 2004, 20: 8336-8342.
    [19] Martin C R, Mitchell D T. Nanomaterials in analytical chemistry[J]. Anal. Chem., 1998, 70: 322A-327A.
    [20] Bourgeat-Lami E. Organic-inorganic nanostructured colloids[J]. J. Nanosci. Nanotech., 2002, 2(1): 1-24.
    [21] Kato M, Sakai-kato K, Matsumoto N, Toyooko T. A protein-encapsulation technique by the sol-gel method for the preparation of monolithic columns for capillary electrochromatography[J]. Anal. Chem., 2002, 74: 1915-1921.
    [22] Tang F Q, Zhang L, Jiang L. Improvement of enzymatic activity and lifetime of Langmuir-Blodgett films by using submicron SiO_2 particles[J]. Biosens. Bioelectron., 1992,7:503-507.
    [23] Tang F Q, Meng X W, Chen D, Ran J G, Gou L, Zheng Q Q. Glucose biosensor enhanced by nanoparticles[J]. Sci. Chin. Ser. B, 2000,30: 119-124.
    [24] Santra S, Zhang P, Wang K M, Tapec R, Tan W H. Conjugation of biomolecules with luminophore doped silica nanoparticles for photostable biomarkers[J]. Anal. Chem, 2001, 73: 4988-4993.
    [25] Xu H, Ayloott J W, Kopelman R, Miller T J, Philbert M. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel based spherical optical nanosensors with applications to rat C_6 glioma[J]. Anal. Chem., 2001,73: 4124-4133.
    [26] Bangs L B. New developments in particle-based immunoas-says: introduction[J]. Pure Appl. Chem., 1996, 68: 1873-1879.
    [27] Livage J, Barreau J Y, Da Costa J M, Desportes I. Optical detection of parasitic protozoa in sol-gel matrices[J]. SPIE, 1994,2288: 493-503.
    [28] Wang H, Li J S, Ding Y J, Lei C X, Shen G L, Yu R Q. Novel immunoassay for Toxoplasma gondii-specific immunoglobulin G using a silica nanoparticle-based biomolecular immobilization method[J]. Anal. Chim. Acta., 2004, 501: 37-43.
    [29] Yang W, Zhang C G, Qu H Y, Yang H H, Xu J G. Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays[J]. Anal. Chim. Acta., 2004. 503: 163-169.
    [30] Yang H H, Qu H Y, Lin P, Li S H, Ding M T, Xu J G. Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels[J]. Analyst, 2003, 128: 462-466.
    [31] Liu J M, Lu Q M, Wang Yan, Xu S S, Lin X M, Li L D, Lin S Q. Solid-substrate room-temperature phosphorescence immunoassay based on an antibody labeled with nanoparticles containing dibromofluorescein luminescent molecules and analytical application[J]. J. Immunol. Methods, 2005, 307: 34-40.
    [32] Tan M Q, Wang G L, Ye Z Q, Yuan J L. Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling[J]. J. Lumin., 2006,117:20-28.
    [33] Petri H, Tero S, Timo L, Harri H. Immunoassay of total prostate-specific antigen using europium(III) nanoparticle labels and streptavidin-biotin technology [J]. J. Immunol. Methods., 2004,294: 111-122.
    [34] Wang L, Yang C Y, Tan W H. Dual-luminophore-doped silica nanoparticles for multiplexed signaling[J]. Nano. Lett., 2005, 5(1): 37-43.
    [35] Kiselev M V, Gladilin A K, Melik-Nubarov N S, Sveshnikov P G, Miethe, P, Levashov A V. Determination of cyclosporin A in 20% ethanol by a magnetic beads-based immunofluorescence assay[J]. Anal. Biochem., 1999,269: 393-398.
    [36] van Blaaderen A, Vrij A. Synthesis and characterization of monodisperse colloidal organo-silica spheres[J]. J. Colloid. Int. Sci., 1993,156:1-18.
    [37] Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications[J]. Angew. Chem. Int. Ed., 2000, 39: 1180-1218.
    [38] McNamara K P, Rosenzweig Z. Dye-encapsulating liposomes as fluorescence-based oxygen nanosensors[J]. Anal. Chem., 1998, 70: 4853-4859.
    [39] Gao X H, Chan W C W, Nie S M. Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding[J]. J. Biomed. Opt., 7(4): 532-537.
    [40] Xie H Y, Chao Z, Liu Y, Zhang Z L, Pang D W, Li X L. Cell-targeting multifunctional nanospheres with both fluorescence and magnetism[J]. Small, 2005, 1:506-509.
    [1] Wang J, Mazza G. Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor a in LPS/IFN-γ-activated RAW 264.7 Macrophages[J]. J. Agric. Food Chem., 2002, 50: 4183-4189.
    [2] Akaike T, Fujii S, Kato A, Yoshitake J, Miyamoto Y, Sawa T, Okamoto S, Suga M, Asakawa M, Nagai Y, Maeda H. Viral mutation accelerated by nitric oxide production during infection in vivo[J]. FASEB J 2000,14: 1447-1454.
    [3] Moncada S, Palmer R M, Higgs E A. Nitric oxide: physiology, pathophysiology, and pharmacology[J]. Pharmacol. Rev., 1991, 43: 109-142.
    [4] de Kossodo S, Houba V, Grau G E, Waage A, Meager A, Kramer S M. Assaying tumor necrosis factor concentrations in human serum-a WHO international collaborative study[J]. J Immunol. Methods, 1995,182: 107-114.
    [5] Petrovas C, Daskas SM, Lianidou E S. Determination of tumor necrosis factor-α (TNF-α) in serum by a highly sensitive enzyme amplified lanthanide luminescence immunoassay[J]. Clin. Biochem., 1999, 32: 241-247.
    [6] Wang J, Liu G D, Engelhard M H, Lin Y H. Sensitive immunoassay of a biomarker tumor necrosis factor-alpha based on poly(guanine)-functionalized silica nanoparticle label[J].Anal.Chem.,2006,78:6974-6979.
    [7]Ledur A,Fitting C,David B,Hamberger C,Cavaillon J M.Variable estimates of cytokine levels produced by commercial ELISA kits:results using international cytokine standards[J].J Immunol.Methods,1995,186:171-179.
    [8]Weghofer M,Karlic H,Haslberger A.Quantitive analysis of immune-mediated stimulation of tumor necrosis factor-alpha in macrophages measured at the level of mRNA and protein synthesis[J].Ann.Hematol.,2001,80:733-736.
    [9]Linden M W,Huizinga T W J,Stoeken D J,Sturk A,Westendorp R G J.Determination of tumour necrosis factor-α and interleukin-10 production in a whole blood stimulation system:assessment of laboratory error and individual variation[J].J.Immunol.Methods 1998,218:63-71.
    [10]Teppo A M,Maury C P.Radioimmunoassay of tumor necrosis facter in serum[J].Clin.Chem.,1987,33:2024-2047.
    [11]Jones L J,Singer V L.Fluorescence microplate-based assay for tumor necrosis factor activity using SYTOX Green stain[J].Anal.Biochem.,2001,293:8-15.
    [12]Berthier F,Lambert C,Genin C,Bienvenu J.Evaluation of an automated method for cytokine measurement using the immulite immunoassay system.Clin.Chem.Lab.Med.,1999,37:593-599.
    [13]Luo L R,Zhang,Z J,Ma L F.Determination of recombinant human tumor necrosis factor-α in serum by chemiluminescence imaging[J].Anal.Chim.Acta,2005,539:277-282.
    [14]Ogata A,Tagoh H,Lee T,Kuritani T,Takahara Y,Shimamura T.A new highly sensitive immunoassay for cytokines by dissociation-enhanced lanthanide fluoroimmunoassay(DELFIA)[J].J.Immunol.Methods,1992,148:15-22.
    [15]Turpeinen U,Stenman U H.Determination of human tumour necrosis factor-alpha (TNF-alpha) by time-resolved immunofluorometric assay[J].Scand.J.Clin.Lab.Invest.,1994,54:475-483.
    [16]Evangelista R A,Pollak A,Templeton E F G.Enzyme amplified lanthanide luminescence for enzyme detection in bioanalytical assays[J].Anal.Biochem.,1991,197:213-24.
    [17]Hurst G B,Buchanan M V,Foote L J,Kennel S J.Analysis for TNF-a using solid-phase affinity capture with radiolabel and MALDI-MS detection[J].Anal.Chem.,1999,71:4727-4733.
    [18]Saito K,Kobayashi D,Komatsu M,Yajima T,Yagihashi A,Ishikawa Y,Watanabe R M N. A sensitive assay of tumor necrosis factor a in sera from duchenne muscular dystrophy patients[J]. Clin. Chem., 2000,46: 1703-1704.
    [19] Saito K, Kobayashi D, Sasaki M, Araake H, Kida T, Yagihashi A. Detection of human serum tumor necrosis factor a in healthy donors, Using a highly sensitive immmuno-PCR assay[J]. Clin. Chem., 1999; 45: 665-669.
    [20] Okubo M, Brown M P, Chiba K, Kasukawa R, Nishimaki T. Detection of TNF-α and fas ligand mRNA within synovial mononuclear cells by fluorescence in-cell labeling PCR (FICL-PCR)[J]. Mol. Biol. Rep., 1998; 25: 217-224.
    [21] Takahashi M, Funato T, Ishii KK, Kaku M, Sasaki T. Measurement of tumor necrosis factor-alpha messenger RNA in synovial fibroblasts by real-time quantitative reverse transcriptase-polymerase chain reaction[J]. J. Lab. Clin. Med., 2001,137: 101-106.
    [22] Cesaro-Tadic S, Dernick G, Juncker D, Buurman G, Kropshofer H, Michel B. High-sensitivity miniaturized immunoassays for tumor necrosis factor a using microfluidic systems[J]. Lab Chip, 2004,4: 563-569.
    [23] Dyba M, Hell S W. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission[J]. Appl. Opt., 2003,42: 5123-5129.
    [24] Fang X, Tan W. Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation[J]. Anal. Chem., 1999, 71: 3101-3105.
    [25] Zhang S B, Wu Z S, Guo M M, Shen G L, Yu R Q. A novel immunoassay strategy based on combination of chitosan and a gold nanoparticle label[J]. Talanta, 2007, 71 : 1530-1535.
    [26] Kang J, Zhang X Y, Sun L D, Zhang X X. Bioconjugation of functionalized fluorescent YVO4:Eu nanocrystals with BSA for immunoassay[J]. Talanta, 2007, 71: 1186-1191.
    [27] Karst U. Where the worlds of nanotechnology, materials science, and bioanalysis converge[J]. Anal. Bioanal. Chem., 2006, 384(3): 559.
    [28] Santra S, Zhang P, Wang K M, Tapec R, Tan W H. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers[J]. Anal. Chem., 2001, 73: 4988-4993.
    [29] Xu H, Ayloott J W, Kopelman R, Miller T J, Philbert M. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel based spherical optical nanosensors with applications to rat C_6 glioma[J]. Anal. Chem., 2001, 73: 4124-4133.
    [30] Harma H, Soukka T, Lovgren T. Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen[J]. Clin. Chem., 2001,47:561-568.
    [31] Wang H, Li J S, Ding Y J, Lei C X, Shen G L, Yu R Q. Novel immunoassay for toxoplasma gondii-specific immunoglobulin G using a silica nanoparticle-based biomolecular immobilization method[J]. Anal. Chim. Acta, 2004, 501: 37-43.
    [32] Wang Z P, Hu J Q, Jin Y, Yao X, Li J H. In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label[J]. Clin. Chem., 2006, 52: 1958-1961.
    [33] Panchapakesan B. Nanotechnology: The promise tiny technology holds for cancer care: How getting small may have large potential for the field of oncology[J]. Oncol, 2005, 22-4,6.
    [34] Santra S, Dutta D, Walter G A, Moudgil B M. Fluorescent nanoparticle probes for cancer imaging[J]. Technol. Cancer Res. Treat., 2005,4(6): 593-602.
    [35] Lian W, Litherland S A, Badrane H, Tan W H, Wu D H, Baker H V. Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles[J]. Anal. Biochem., 2004, 334: 135-144.
    [36] Yang W, Zhang C G, Qu H Y, Yang H H, Xu J G. Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays[J]. Anal. Chim. Acta, 2004, 503: 163-169.
    [37] Bagwe R P, Yang C Y, Hilliard L R, Tan W H. Optimization of dye-poped silica nanoparticles prepared using a reverse microemulsion method[J]. Langmuir, 2004, 20:8336-8342.
    [38] Valanne A, Huopalahti S, Vainionpaa R, Lovgren T, Harma H. Rapid and sensitive HBsAg immunoassay based on fluorescent nanoparticle labels and time-resolved detection[J]. J. Virol. Methods, 2005,129: 83-90.
    [39] Ye Z Q, Tan M Q, Wang G, Yuan J L. Preparation, characterization, and time-resolved fluorometric application of silica-coated terbium (III) fluorescent nanoparticles[J]. Anal. Chem., 2004, 76: 513-518.
    [40] Ye Z Q, Tan M Q, Wang G, Yuan J L. Development of functionalized terbium fluorescent nanoparticles for antibody labeling and time-resolved fluoroimmunoassay appIication[J]. Talanta, 2005, 65: 206-210.
    [41] Polunovsky V A, Wendt C H, Ingbar D H, Peterson M S, Bitterman P B. Induction of endothelial cell apoptosis by TNF-α: modulation by inhibitors of protein synthesis[J].Exp.Cell Res.,1994,214:584-594.
    [42]McNamara K P,Rosenzweig Z.Dye-encapsulating liposomes as fluorescence-based oxygen nanosensors[J].Anal.Chem.,1998,70:4853-4859.
    [43]Gao X H,Chan W C W,Nie S M.Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding[J].J.Biomed.Opt.,2002,7(4):532-537.
    [44]Xie H Y,Chao Z,Liu Y,Zhang Z L,Pang D W,Li X L.Cell-targeting multifunctional nanospheres with both fluorescence and magnetism[J].Small,2005,1:506-509.
    [1]Havery N.Luminescence during electrolysis[J].J.Phys.Chem.,1929,33:1456-1459.
    [2]Fraymann A.Recherches Invention,1930,11:36.
    [3]Bernanose A,Bremer T,Goldfinger P.Free-radical mechanism of chemiluminescence in solution[J].Bull.Soc.Chim.Belges.,1947,56:269-281.
    [4]Vojiir V,Collection C.Chem.Commun.,1954,19,864.
    [5]安镜如,林金明,陈曦.电化学发光研究及其在分析化学上的应用[J].分析化学,1991,19:1340-1346.
    [6]Kuwana T,Epstein B,Seo E.Electrochemical generation of solution luminescence[J].J.Phys.Chem.,1963,67:2243-2244.
    [7]Kuwana T.Electro-oxidation followed by light emission[J].J.Electroanal.Chem.,1963,6:164-167.
    [8]Epstein B,Kuwana T.Electrochemical generation of solution luminescence.Ⅱ.luminol and phthalhydrazide[J].Photochem.Photobiol.,1965,4,1157-1173.
    [9]Faulkner L R,Bar A J.Electroanalytical chemistry[M].New York:Maecel Dekker,1977,1-95.
    [10]Santhanam K S V,Bar A J.Chemiluminescence of electrogenerated 9,10-diphenylanthracene anion radicall[J].J.Am.Chem.Soc.,1965,87(1):139-140.
    [11]Maloy J T,Prater K B,Bar A J.Electrogenerated chemiluminescence.Ⅱ.The rotating ring-disk electrode and the pyrene-N,N,N',N'-tetramethyl-p-phenylenediamine system[J].J.Phys.Chem.,1968, 72(12):4348-4350.
    [12]Faulkner L R,Bar A J.Electrogenerated chemiluminescence.Ⅰ.Mechanism of anthracene chemiluminescence in N,N-dimethylformamide solution[J].J.Am.Chem.Soc.,1968,90(23):6284-6290.
    [13]Faulkner L R,Bar A J.Electrogenerated chemiluminescence.Ⅳ.Magnetic field effects on the electrogenerated chemiluminescence of some anthracenes[J].J.Am.Chem.Soc.,1969,91(1):209-210.
    [14]Cruser S A,Bar A J.Relation and the lifetime of radical cations of aromatic hydrocarbons in N,N-dimethylformamide solution[J].J.Am.Chem.Soc.,1969,91(2):267-275.
    [15]Faulkner L R,Bar A J.Additions and Corrections-Electrogenerated Chemiluminescence.Ⅰ.Mechanism of Anthracene Chemiluminescence in N,N-Dimethylformamide Solution[J].J.Am.Chem.Soc.,1969,91(9):2411-2411.
    [16]Chen K S,Takeshita T,Nakamura K,Hirota N.Electron paramagnetic resonance studies of the kinetics of the intermolecular cation migration process in alkali metal anthraquinone[J].J.Phys.Chem.,1973,77:708-713.
    [17]Maloy J T,Prater K B,Bar A J.Electrogenerated chemiluminescence.Ⅴ.Rotating-ring-disk electrode.Digital simulation and experimental evaluation[J].J.Am.Chem.Soc.,1971,93:5959-5968.
    [18]Chen K S,Takeshita T,Nakamura K,Hirota N.Electron paramagnetic resonance studies of the kinetics of the intermolecular cation migration process in alkali metal anthraquinone[J].J.Phys.Chem.,1973,77:708-713.
    [19]Maloy J T,Bar A J.Digital simulations of electrogenerated chemiluminescence at the rotating ring-disk electrode[J].Comput.Chem.Instrum.,1972,2:241.
    [20]Maloy J T,Bar A J.Electrogenerated chemiluminescence.Ⅵ.Efficiency and mechanisms of 9,10-diphenylanthracene,rubrene,and pyrene systems at a rotating-ring-disk electrode[J].J.Am.Chem.Soc.,1971,93(23):5968-5981.
    [21]Park S M,Paffett M T,Daub G H.Electrogenerated chemiluminescence of naphthalene derivatives.Steric effects on exciplex emissions[J].J.Am.Chem.Soc.,1977,99(16):5393-5399.
    [22]Keszthelyi C P,Bar A J.Electrogenerated chemiluminescence.ⅪⅩ.Preparation and chemiluminescence of 5,12-dibromo-5,12-dihydro-5,6,11,12-tetraphenylnaphthacene[J].J.Org.Chem.,1974,39(19):2936-2937.
    [23]Keszthelyi C P,Tokel-Takvoryan N E,Bard A J.Electrogenerated chemiluminescence. Determination of the absolute luminescence efficiency in electrogenerated chemiluminescence. 9,10-Diphenylanthracene-thianthrene and other systems[J]. Anal. Chem, 1975,47(2): 249-256.
    [24] Bulgakov R G, Kazakov V P, Korobeinkova V N. Phototransfer and photoluminescence in enropium (II) solutions as competitive processes[J]. Khim. Vys. Enery, 1973, 7: 374-375.
    [25] Bulgakov R G, Kazakov U P, Parshin G S, Sharipov G L. Chemiluminescence of rare earth ions (Dy3+, Tb3+) in concentrated H_2SO_4 under the action of ozone[J]. Nauk. SSSR, 1974, 8: 1916.
    [26] Bulgakov R G, Kazakov V P, Parshin G S, Dmitrieva E V. Chemiluminescence of race earth ion [dysprosium (3+), terbium (3+)] in concentrated sulfuric acid under the action of ozone[J]. Khim. Vys. Energ, 1974, 8: 85-86.
    [27] Epstein B, Kuwana T. Electrochemical generation of solution luminescence. II. Luminol and phthalhydrazide[J]. Photochem. Photobiol., 1965, 4, 1157-1173.
    [28] Tokel N E, Bar A J. Electrogenerated chemiluminescence. IX. Electrochemistry and emission from systems containing Tris(2,2'-bipyridine)ruthenium(II) dichloride[J]. J. Am. Chem. Soc, 1972, 94(8): 2862-2863.
    [29] Tokel-Takvoryan N E, Hemingway R E, Bar A J. Electrogenerated chemiluminescence. XIII. Electrochemical and electrogenerated chemiluminescence studies of ruthenium chelates[J]. J. Am. Chem. Soc, 1973, 95(20): 6582-6589.
    [30] Faulkner L R, Tachikawa H, Bar A J, Electrogenerated chemiluminescence. VII. Influence of an external magnetic field on luminescence intensity[J]. J. Am. Chem. Soc, 1972, 94(3): 691-699.
    [31] Tachikawa H, Bar A J. Electrogenerated chemiluminescence. XII. Magnetic field effects on ECL in the tetracene-TMPD system: Evidence for triplet-triplet annihilation of tetracene[J]. Chem. Phys. Lett, 1973, 19(2): 287-289.
    [32] Periasamy N, Shah S J, Santhanam K S V. Magnetic field enhancement of electrochemiluminescence intensity[J]. J. Chem. Phys, 1973, 58: 821-823.
    [33] Tachikawa H, Bar A J. Electrogenerated chemiluminescence. XVII. Effect of solvent and magnetic field on ECL of rubrene systems[J]. Chem. Phys. Lett, 1974, 26(2): 246-251.
    [34] Matsumoto T, Sato M, Hirayama S, Uemura S. Use of surface reflection in spectroelectrochemistry visible spectra of 9,10-diphenylanthracene radical ions[J]. Chem.Lett.,1972,11:1077-1080.
    [35]Balcerowicz K,Slawinski J.Electrogenerted chemiluminescence of lucigenine[J].Acta Phys.Pol.A,1971,19:237-240.
    [36]Measure R M.Prospects for developing a laser based on electrochemiluminescence[J].Appl.Opt.,1974,13(5):1121-1133.
    [37]Blatchford C,Malcolme-Lawes D J.Electrochemiluminescence as a detection technique for reversed-phase high-performance liquid chromatography:Ⅰ.Preliminary experiments[J].J.Chromatography A,1985,321:227-234.
    [38]Blatchford C,Humphreys E,Malcolme-Lawes D J.Electrochemiluminescence as a detection technique for reversed-phase high-performance liquid chromatography:Ⅱ.Low-frequency a.c.electrochemiluminescence[J].J.Chromatogr.A,1985,329:281-284.
    [39]Rubinstein,I,Bar A J.Electrogenerated chemiluminescence.37.Aqueous ecl systems based on Tris(2,2'-bipyridine)ruthenium(2+) and oxalate or organic acids[J].J.Am.Chem.Sot.,1981,103(3):512-516.
    [40]Rubinstein I,Bar A J.Polymer films on electrodes.4.Nation-coated electrodes and electrogenerated chemiluminescence of surface-attached Tris(2,2'-bipyridine)ruthenium(2+)[J].J.Am.Chem.Soc.,1980,102(21):6641-6642
    [41]Rubinstein I,Bar A J.Polymer films on electrodes.5.Electrochemistry and chemiluminescence at Nation-coated electrodes[J].J.Am.Chem.Soc.,1981,103(17):5007-5013.
    [42]佐滕,昌惠,山田武,崛川光彦.电气化学およぴ工业物理化学,1983,51:111
    [43]Ismail S A,Santhanam K S V.Electrobioluminescence of an earthworm[J].Bioelectrochem.Bioenergy.,1984,12:535-540.
    [44]Ismail S A,Limaye N M,Santhanam K S V.A glowing earthworm electrode:Electron injection mechanism[J].Bioelectrochem.Bioenergy.,1984,14:405-416.
    [45]Limaye N M,Santhanam K S V.902-Effect of Ca~(2+) on electrobioluminescence of Lampito mauritii[J].Bioelectrochem.Bioenergy.,1986,15:341-351.
    [46]Engstrom R C,Johnson K W,DesJarlais S.Characterization of electrode heterogeneity with electrogenerated chemiluminescence[J].Anal.Chem.,1987,59:670-673.
    [47]Franchini G,Preti C,Tassi L,Tosi G.Effects of temperature and solvent composition on conductometric titrations in nonaqueous mixed solvents[J].Anal.Chem.,1988,60:2358-2364
    [48] Robert J B, Richard L M, Christine M P, Royce C E. Observation of kinetic heterogeneity on highly ordered pyrolytic graphite using electrogenerated chemiluminescence[J]. Anal. Chem., 1989, 61: 2763-2766.
    [49] Hopper P, Kuhr W G. Characterization of the chemical architecture of carbon-fiber microelectrodes. 3. effect of charge on the electron-transfer properties of ECL reactions[J]. Anal. Chem., 1994, 66: 1996-2004.
    [50] Engstrom R C, Pharr C M, Koppang M D. Visualization of the edge effect with electrogenerated chemiluminescence[J]. J. Electroanal. Chem., 1987, 221: 251-255.
    [51] Kremeskotter J, Wilson R, Schiffrin D, J, Luff B J, Wilkinson J S. Detection of glucose via electrochemiluminescence in a thin-layer cell with a planar optical wave guide[J]. Meas. Sci. Technol., 1995, 6(9): 1325-1328.
    [52] Kuhn L S, Weber A, Weber S G. Microring electrode/optical waveguide: electrochemical characterization and application to electrogenerated chemiluminescence[J]. Anal. Chem., 1990, 62: 1631-1636.
    [53] Collinson M M, Pastore P, Maness K M, Wightman R M. Electrochemiluminescence interferometry at microelectrodes[J]. J. Am. Chem. Soc, 1994, 116: 4095-4096.
    [54] Bartelt J E, Drew S M, Wightman R M. Electrochemiluminescence at band array electrodes[J]. J. Electrochem. Soc, 1992,139: 70-74.
    [55] Walton D J, Phull S S, Bates D M, Lorimer J P, Mason T J. Ultrasonic enhancement of electrochemiluminescence[J]. Electrochim. Acta, 1993, 38: 307-310.
    [56] Lee S K, Richter M M, Strekowski L, Bar A J. Electrogenerated chemiluminescence. 61. near-IR electrogenerated chemiluminescence, electrochemistry, and spectroscopic properties of a heptamethine Cyanine dye in MeCN[J]. Anal. Chem., 1997, 69(20): 4126-4133.
    [57] Fan F-R F, Cliffel D, Bar A J. Scanning electrochemical microscopy. 37. light emission by electrogenerated chemiluminescence at SECM tips and their application to scanning optical microscopy[J]. Anal. Chem., 1998, 70(14): 2941-2948.
    [58] Heroux J A, Szczepanik A M. Quantitative-analysis of specific messenger-RNA transcripts using a competitive PCR assay with electrochemiluminescent detection[J]. PCR Methods Appl., 1995,4: 327-330.
    [59] Gudibande S R, Kenten J H, Link J, Friedman K, Massey R J. Rapid, nonseparation electrochemiluminescent DNA hybridization assays for PCR products, using 3' labeled oligonucleotide probes [J]. Mol. Cell Probes, 1992, 6: 495-503.
    [60] Vandevyver C, Motmas K, Raus J. Quantification of cytokine RNA expression by RT-PCR and electrochemiluminescence[J]. Genome Res., 1995, 5:195-201.
    [61] Schutzbank T E, Smith J J. Detection of human-immunodeficiency-virus type-1 proviral DNA by PCR using an electrochemiluminescence-tagged probe[J]. Clin. Microbiol., 1995, 33:2036-2041.
    [62] Yu H, Bruno J G, Cheng T C, Calomiris J J, Goode M T. A comparative-study of PCR product detection and quantitation by electrochemiluminescence and fluorescence[J]. J. Biolumin. Chemilumin., 1995,10: 239-245.
    [63] Uchikura Kazuo. JPN Kokai Tokkyo Koho JP 0552, 755[93 52 755] Mar. 1993 Appl. 91/242 544,27 Aug. 1991.
    [64] Lyons C H, Abbas E D, Lee J K, Rubner M F. Solid-state light-emitting devices based on the trischelated ruthenium(II) comples. 1. thin film blends with poly(ethylene oxide)[J]. J. Am. Chem. Soc, 1998,120: 12100-12107.
    [65] Rypka M, Lasovsky J. Micellar halide and energy transfer effects in electrochemiluminescence[J]. J. Electroanal. Chem., 1996,416: 41-45.
    [66] Sung Y-E, Gaillard F, Bar A J. Demonstration of electrochemical generation of solution-phase hot electrons at oxide-covered tantalum electrodes by direct electrogenerated chemiluminescence[J]. J. Phys. Chem. B., 1998, 102(49): 9797-9805.
    [67] Gaillard F, Sung Y-E, Bar A J. Hot electron generation in aqueous solution at oxide-covered tantalum electrodes. reduction of methylpyridinium and electrogenerated chemiluminescence of Ru(bpy)_3~(2+)[J]. J. Phys. Chem. B., 1999, 103(4): 667-674.
    [68] Zu Y, Fan F-R F Bar A J. Inverted region electron transfer demonstrated by electrogenerated chemiluminescence at the liquid/liquid interface[J]. J. Phys. Chem. B, 1999,103(30): 6272-6276.
    [69] Liang P, Dong L W, Martin M T. Light emission from ruthenium-labeled penicillins signaling their hydrolysis by beta-lactamase[J]. J. Am. Chem. Soc, 1996, 118, 9198-9199.
    [70] Lai R Y, Fabrizio E F, Lu L, Jenekhe S A, Bar A J. Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new donor-acceptor molecule: 3,7-[bis[4-phenyl-2-quinolyl]]-10- methylphenothiazine[J]. J. Am. Chem. Soc, 2001, 123(37): 9112-9118.
    [71] Lai, R.Y, Kong, X, Jenekhe, S.A, Bar A J. Synthesis, Cyclic voltammetric studies, and electrogenerated chemiluminescence of a new phenylquinoline-biphenothiazine donor-acceptor molecule[J].J.Am.Chem.Soc.,2003,125(41):12631-12639.
    [72]Elangovan A,Lin J-H,Yang S-W,Hsu H-Y,Ho T-I.Synthesis and electrogenerated chemiluminescence of donor-substituted phenylethynylcoumarins[J].J.Org.Chem.,2004,69(23):8086-8092.
    [73]Myung N,Ding Z,Bar A J.Electrogenerated chemiluminescence of CdSe nanocrystals[J].Nano Lett.,2002,2(11):1315-1319.
    [74]Myung N,Bae Y,Bar A J.Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals[J].Nano Lett.,2003,3(8):1053-1055.
    [75]Myung N,Lu X,Johnston K P,Bar A J.Electrogenerated chemiluminescence of ge nanocrystals[J].Nano Lett.,2004,4(1):183-185.
    [76]Bae Y,Myung N,Bar A J.Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles[J].Nano Lett.,2004,4(6):1153-1161.
    [77]Lai R Y,Chiba M,Kitamura N,Bar A J.Electrogenerated chemiluminescence.68.detection of sodium ion with a ruthenium(Ⅱ) complex with crown ether moiety at the 3,3'-positions on the 2,2'-bipyridine ligand[J].Anal.Chem.,2002,74:551-553.
    [78]Bruce D,Richter M M.Electrochemiluminescence in aqueous solution of a ruthenium(Ⅱ) bipyridyl compoex containing a crown ether moiety in the presence of metal ions[J].The Analyst,2002,127:1492-1494.
    [79]Muegge B D,Richter M M.Electrochemiluminescent detection of metal cations using a ruthenium(Ⅱ) bipyridyl complex containing a crown ether moiety[J].Anal.Chem.,2002,74:547-550.
    [80]B F Watkins.J R Behing,E Kariv,L L Miller.A chiral electrode[J].J.Am.Chem.Soc.,1975,97(12):3549-3550.
    [81]Moses P R,Wier L,Murray R W.Chemically modified tin oxide electrode[J].Anal.Chem.,1975,47:1882-1886.
    [82]金利通,仝威,徐金瑞,方禹之.化学修饰电极[M].上海:华东师范大学出版社,1992.
    [83]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,2003.
    [84]李启隆.,电分析化学[M].北京:北京师范大学出版社,1995,496.
    [85]刘有芹,颜芸,沈含熙.化学修饰电极的研究及其分析应用[J].化学研究与应用,2006,18(4):337-343.
    [86]Dominguez Renedo O,Alonso-Lomillo M A,Arcos Martinez M J.Recent developments in the field of screen-printed electrodes and their related applications[J].Talanta,2007,73(2):202-219.
    [87]卢小泉,张焱,康敬万,王志华,朱开梅,杨军.分析化学中的化学修饰碳糊电极[J],分析测试学报,2001,20(4):88-93.
    [88]王志贤,王赪胤,胡效亚.化学修饰电极的制备及其药物分析应用的研究进展[J].化学传感器,2007,27(4):8-15.
    [89]姜灵彦,刘传银,蒋丽萍,陆光汉.纳米材料修饰电极及其在电分析化学中的应用[J].化学研究与应用,2004,16(5):615-618.
    [90]Cai Y,Wei Q Q,Park H K,Lieber C M.Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J].Science,2001,293:1289-1292.
    [91]Wang F A,Wang J L,Chen H J.Assembly process of CuHCF/MPA multilayers on gold nanoparticles modified electrode and characterization by electrochemical SPR[J].J.Electroanal.Chem.,2007,600:265-274.
    [92]Zhang Y,Zeng G M,Tang L,Huang D L.A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode[J].Biosensors Bioelectron.,2007,22:2121-2126.
    [93]Liu Z M,Yang H F,Li Y F.Core-shell magnetic nanoparticles applied for immobilization of antibody on carbon paste electrode-and amperometric immunosensing[J].Sensor Actuat B:Chem.,2006,113:956-962.
    [94]Mena M L,Paloma Y S,Pingarron J M.A comparison of different strategies for the construction of amperometric enzyme biosensors using gold nanoparticle-modified electrodes[J].Anal.Biochem.,2005,336:20-27.
    [95]Maria S P F,William S C,Yoshitaka G.Carbon paste electrodes of the mixed oxide SiO_2-Nb_2O_5 prepared by the sol-gel method:disolved dioxygen sensor[J].J.Electroanal.Chem.,2005,574:291-297.
    [96]Ravinder R N,Ramana R G..Sol-gel MnO_2 as an electrode material for electrochemical capacitors[J].J.Power Sources,2003,124:330-337.
    [97]Li Q W,Wang Y M,Luo G A.Voltammetric separation of dopamine and ascorbic acid with graphite electrodes with ultrafine TiO_2[J],Mat.Sci.Eng.C,2000,11:71-74.
    [98]Luo X L,Killard A J,Morrin A,Smyth M R.Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline[J].Anal.Chim.Acta.,2006,575(1):39-44.
    [99]Davis J J,Gales R J,Hill H A O.Protein electrochemistry at carbon nanotubes electrodes[J].J.Electroanal.Chem.,1997,440:279-282.
    [100]Liu C Y,Bard A J,Wudl F,Weitz I,Heath J R.Electrochemical characterization of films of single-walled carbon nanotub es and their possible application in supereapacitorsElectrochem Solid State Lett.,1999,2:577-578.
    [101]罗红强,施祖进,李南强,庄乾坤.羧基化单壁碳纳米管修饰电极的电化学表征及其电催化作用[J].高等学校学报,2000,21(9):1372-1374.
    [102]Luo H X,Shi Z J,Li N Q,Zhuang Q K.Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode[J].Anal Chem,2001,73:915.
    [103]王宗花,刘军,颜流水,王义明.羧基化碳纳米管嵌入石墨修饰电极对多巴胺和抗坏血酸的电催化[J].分析化学,2002,30,9:1053-1057.
    [104]Wang Z H,Liu J,Liang Q L,Wang Y M.Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid[J].Analyst,2002,127,5:653-658.
    [105]Wang Z H,Liu J,Liang Q L,Wang Y M.Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid[J].J.Electroanal.Chem.,2003,540:129-134.
    [106]Wang Z H,Wang Y M.A selective voltammetric method for uric acid detection at β-cyclodextrin modified electrode incorporating carbonnanotubes[J].Analyst,2002,127(10):1353-1358.
    [107]林丽,曹旭妮,张文,周宇艳,李金花,金利通.碳纳米管修饰电极用于高效液相色谱对全血中巯基化合物的测定[J].分析化学,2003,31(3):261-266.
    [108]Zhao Y D,Zhang W D,Chen H,Luo Q M,Li S F.Direct electrochemistry of horseradish peroxidase at carbon nanotube powder microelectrode[J].Sens.Actuators.B,2002,87:168-172.
    [109]Yamamoto K,Shi G,Zhou T S,Xu F,Xu J M,Kato T,Jin J Y,Jin L.Study of carbon nanotubes-HRP modified electrode and its application for novel on-line biosensors[J].Analyst,2003,128:249-254.
    [110]Davis J,Green M L H,Hill H A O,Leung Y C,Sadaler P J,Sloan J,Xavier A V,Tsang S C.Proteins and enzymes can be immobilized on the inner surfaces of MWNTs[J].Inorganica Chimica Acta,1998,272:261-266.
    [111]Guo Z H,Dong S J.Electrogenerated chemiluminescence from Ru(Bpy)_3~(2+)ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films[J].Anal.Chem.,2004,76:2683-2688.
    [112] Lin Z Y, Chen J H, Chen G N. An ECL biosensor for glucose based on carbon-nanotube/Nafion film modified glass carbon electrode[J]. Electrochimica Acta xxx (2007) xxx-xxx.
    [113] Chen J, Lin Z, Chen G. An Electrochemiluminescent sensor for glucose employing a modified carbon nanotube paste electrode[J]. Anal, Bioanal, Chem., 2007, 388(2): 399-407.
    [114] Lin Z Y, Chen G N. Determination of carbamates in nature water based on the enhancement of electrochemiluminescent of Ru(bpy)_3~(2+) at the multi-wall carbon nanotube-modified electrode[J]. Talanta 2006, 70: 111-115.
    [115] Li J, Xu Y H, Wei H, Huo T, Wang E K. Electrochemiluminescence sensor based on partial sulfonation of polystyrene with carbon nanotubes[J]. Anal. Chem., 2007, 79: 5439-5443.
    [116] Chen J H, Lin Z Y, Chen G N. Enhancement of electrochemiluminesence of lucigenin by ascorbic acid at single-wall carbon nanotube film-modified glassy carbon electrode[J]. Electrochimica Acta, 2007, 52: 4457-4462.
    [117] Tao Y, Lin Z J, Chen X M, Huang X L, Oyama M, Chen X, Wang X R. Functionalized multiwall carbon nanotubes combined with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor[J]. Available online at www.sciencedirect.com, Sensor. Actuat. B-Chem..
    [118] Huang R F, Zheng X W, Qu Y J. Highly selective electrogenerated chemiluminescence (ECL) for sulfide ion determination at multi-wall carbon nanotubes-modified graphite electrode[J]. Anal. Chim. Acta, 2007, 582: 267-274.
    [119] Chang Z, Zheng X W. Highly sensitive electrogenerated chemiluminescence (ECL) method for famotidine with pre-anodizing technique to improve ECL reaction microenvironment at graphite electrode surface[J]. J. Electroanal. Chem., 2006, 587: 161-168.
    [120] Zhang L H, Guo Z H, Xu Z A, Dong S J. Highly sensitive electrogenerated chemiluminescence produced at Ru(bpy)_3~(2+) in Eastman-AQ55D-carbon nanotube composite film electrode[J]. J. Electroanal. Chem., 2006, 592: 63-67.
    [121] Wei H, Du Y, Kang J Z, Wang E K. Label free electrochemiluminescence protocol for sensitive DNA detection with a Tris(2,2'-bipyridyl)ruthenium(II) modified electrode based on nucleic acid oxidation[J]. Electrochem. Commun., 2007, 9: 1474-1479.
    [122]Du Y,Wei H,Kang J Z,Yan J L,Yin X B,Yang X R,Wang E K.Microchip Capillary Electrophoresis with Solid-State Electrochemiluminescence Detector[J].Anal.Chem.,2005,77:7993-7997.
    [123]Chen Y T,Lin Z Y,Chen J H,Sun J J,Zhang L,Chen G N.New capillary electrophoresis-electrochemiluminescence detection system equipped with an electrically heated Ru(bpy)_3~(2+)/multi-wall-carbon-nanotube paste electrode[J].J.Chromatogr.A,1172 2007:84-91.
    [124]Tao Y,Lin Z J,Chen X M,Chen X,Wang X R.Tris(2,2'-bipyridyl)ruthenium(Ⅱ)electrochemiluminescence sensor based on carbon nanotube/organically modified silicate films[J].Anal.Chim.Acta,2007,594:169-174.
    [125]Choi H N,Lee J-Y,Lee W-Y.Tris(2,2'-bipyridyl)ruthenium(Ⅱ) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol-gel-derived titania-Nation composite films[J].Anal.Chim.Acta.,2006,565(1):48-55.
    [126]Choi H N,Yoon S H,Lyu Y-K,Lee W-Y.Electrogenerated chemiluminescence ethanol biosensor based on carbon nanotube-titania-nafion composite film[J].Electroanal.,19(4):459-465.
    [127]Guo Z H,Dong S J.Electrogenerated chemiluminescence determination of dopamine and epinephrine in the presence of ascorbic acid at carbon nanotube/Nafion-Ru(bpy)_3~(2+) composite film modified glassy carbon electrode[J].Electroanal.,2005,17(7):607-612.
    [128]Zhuang Y F,Ju H X.Determination of reduced nicotinamide adenine dinucleotide based on immobilization of Tris(2,2'-bipyridyl)Ruthenium(Ⅱ) in multiwall carbon nanotubes/nafion composite membrane[J].Anal.Lett.,2005,38(13):2077-2088.
    [129]Szunerits S,Walt D R.Fabrication of an optoelectrochemical microring array[J].Anal.Chem.,2002,74:1718-1723.
    [130]Yin X B,Qi B,Sun X P,Yang X R,Wang E K.4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification[J].Anal.Chem.,2005,77:3525-3530.
    [131]Dong Y P,Cui H,Xu Y.Comparative studies on electrogenerated chemiluminescence of luminol on gold nanoparticle modified electrodes[J].Langmuir 2007,23:523-529.
    [132]Dong Y P,Cui H,Wang C M.Electrogenerated chemiluminescence of luminol on a gold-nanorod-modified gold electrode[J].J.Phys.Chem.B 2006,110: 18408-18414.
    [133]Chen Z F,Zu Y B.Gold Nanoparticle-modified ITO electrode for electrogenerated chemiluminescence:well-preserved transparency and highly enhanced activity[J].Langmuir,2007,23:11387-11390.
    [134]Qi H L,Zhang Y,Peng Y G,Zhang C X.Homogenous electrogenerated chemiluminescence immunoassay for human immunoglobulin G using N-(aminobutyl)-N-ethylisoluminol as luminescence label at gold nanoparticles modified paraffin-impregnated graphite electrode[J].Talanta,doi:10.1016/j.talanta.2007.12.002.
    [135]Sun X P,Du Y,Dong S J,Wang E K.Method for effective immobilization of Ru(bpy)_3~(2+) on an electrode surface for solid-state electrochemiluminescene detection[J].Anal.Chem.,2005,77:8166-8169.
    [136]Cui H,Xu Y,and Zhang Z F.Multichannel electrochemiluminescence of luminol in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled electrode[J].Anal.Chem.,2004,76:4002-4010.
    [137]Cui H,Dong Y P.Multichannel electrogenerated chemiluminescence of lucigenin in neutral and alkaline aqueous solutions on a gold nanoparticle self-assembled gold electrode[J].J.Electroanal.Chem.,2006,595:37-46.
    [138]Gao W,Xia X H,Xu J J,Chen H Y.Three-dimensionally ordered macroporous gold structure as an efficient matrix for solid-state electrochemiluminescence of Ru(bpy)_3~(2+)/TPA system with high sensitivity[J].J.Phys.Chem.C 2007,111:12213-12219.
    [139]彭亚鸽,漆红兰,张成孝.金纳米粒子修饰电极上电化学发光法测定二茂铁羧酸的研究[J].陕西师范大学学报(自然科学版),2006,34(3):65-68.
    [140]苗力孝,漆红兰.金纳米粒子修饰石墨电极上鲁米诺-过氧化氢体系电化学发光行为的研究,延安大学学报(自然科学版),2007,26(2):66-68.
    [141]王辉,李延,漆红兰,张成孝.纳米金修饰电极和探针载体的DNA电化学发光分析方法研究[J].陕西师范大学学报(自然科学版),2006,34(4):68-72.
    [142]Jie G F,Liu B,Pan H C,Zhu J J,Chen H Y.CdS nanocrystal-based electrochemiluminescence biosensor for the detection of low-density lipoprotein by increasing sensitivity with gold nanoparticle amplification[J].Anal.Chem.,2007,79:5574-5581.
    [143]董文明.中性体系下鲁米诺的电化学发光增强Ag@SiO,SiO2@Ag粒子的合成与表征[D].苏州:苏州大学,2006.
    [144]Richter M M.Electrochemiluminescence(ECL)[J].Chem.Rev.,2004,104(6):3003-3036.
    [145]Maye M M,LouY B,Zhong C J.Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation[J].Langmuir,2000,16(19):7520-7523.
    [146]Xiao Y,Ju H X,Chen H Y.Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold electrode[J].Anal Biochem,2000,278:22-28.
    [147]刘英菊.新型纳米生物传感器的研制及DNA损伤的初步研究[D],湖南:湖南大学,2005.
    [148]张芬芬.新型纳米生物传感器及其应用研究[D].上海:华东师范大学,2005
    [149]Choi H N,Cho S-H,Lee W-Y.Electrogenerated chemiluminescence from Tris(2,2'-bipyridyl)ruthenium(Ⅱ) immobilized in titania-perfluorosulfonated ionomer composite films[J].Anal.Chem.,2003,75(16):4250-4256.
    [150]Choi H N,Cho S-H,Lee W-Y.Sol-gel-immobilized Tris(2,2'-bipyridyl)ruthenium(Ⅱ) electrogenerated chemiluminescence sensor for high-performance liquid chromatography[J].Anal.Chim.Acta.,2005,541(1-2):47-54.
    [151]Song H J,Zhang Z J,Wang F.Electrochemiluminescent determination of chlorphenamine maleate based on Ru(bpy)_3~(2+) immobilized in a nano-titania/nafion membrane[J].Electroanal.,2006,18(18):1838-1841.
    [152]宋红杰,章竹君.Nano-TiO_2/Nafion-联吡啶钌复合膜修饰的玻碳电极上电化学发光测定盐酸西替利嗪[J].分析试验室,2007,26(2):1-7.
    [153]Knight A W.A review of recent trends in analytical applications of electrogenerated chemiluminescence[J].Trends Anal.Chem.,1999,18:47-62 and reference therein.
    [154]Lee W-Y.Tris(2,2'-bipyridyl) ruthenium(Ⅱ) electrogenerated chemiluminescence in analytical science[J].Mikrochim.Acta,1997,127:19-39and reference therein.
    [155]Karsten A F,Miloslar P,George G G.Recent applications of electrogenerated chemiluminescence in chemical analysis[J].Talanta 2001,54:531-539.
    [156]White H S,Bar A J.Electrogenerated chemiluminescence.41.Electrogenerated chemiluminescence and chemiluminescence of the Tris(2,2'-bipyridine)ruthenium(2+)-peroxydisulfate(2-) system in acetonitrile-water solutions[J].J.Am.Chem.Soc.1982,104:6891-6895.
    [157]Jirka G P,Nieman T A.Modulated potential electrogenerated chemiluminescence of luminol and Ru(bpy)_3~(2+)[J]. Microchim. Acta, 1994,113: 339-347.
    [158] Rubinstein I, Bar A J. Unique properties of chromophore-containing bilayer aggregates: enhanced chirality and photochemically induced morphological change[J]. J. Am. Chem. Soc, 1980,102: 6642-6644.
    [159] Downey T M, Nieman T A. Chemiluminescence detection using regenerable Tris(2,2'-bipyridyl)ruthenium(II) immobilized in Nafion[J]. Anal. Chem., 1992, 64: 261-268.
    [160] Wu A, Lee T, Rubner M F. Light emitting electrochemical devices from sequentially adsorbed multilayers of a polymeric ruthenium (II) complex and various polyanions[J]. Thin Solid Films, 1998, 327-329, 663-667.
    [161] Zhang Z, Bar A J. Electrogenerated chemiluminescent emission from an organized (L-B) monolayer of a Tris(2,2'-bipyridine)ruthenium(2+)-based surfactant on semiconductor and metal electrodes[J]. J. Phys. Chem., 1988, 92: 5566-5569.
    [162] Miller C J, McCord P, Bard A J. Study of Langmuir monolayers of ruthenium complexes and their aggregation by electrogenerated chemiluminescence[J]. Langmuir, 1991, 7: 2781-2787.
    [163] Sato Y, Uosaki K. Electrochemical and electrogenerated chemiluminescence properties of Tris(2,2'-bipyridine)ruthenium(II)-tridecanethiol derivative on ITO and gold electrodes[J]. J. Electroanal. Chem., 1995, 384: 57-66.
    [164] Obeng Y S, Bard A J. Electrogenerated chemiluminescence. 53. Electrochemistry and emission from adsorbed monolayers of a Tris(bipyridyl)ruthenium(II)-based surfactant on gold and tin oxide electrodes[J]. Langmuir, 1991, 7: 195-201.
    [165] Rubinstein I, Bar A J. Polymer films on electrodes. 5. Electrochemistry and chemiluminescence at Nafion-coated electrodes[J]. J. Am. Chem. Soc, 1981, 103[J]. 5007-5013.
    [166] Lee W-Y, Nieman T A. Evaluation of use of Tris(2,2'-bipyridyl)ruthenium(III) as a chemiluminescent reagent for quantitation in flowing streams[J]. Anal. Chem., 1995, 67[J]. 1789-1796.
    [167] Wang H Y, Xu G B, Dong S J. Electrochemiluminescence of Tris(2,2'-bipyridyl)ruthenium (II) ion-exchanged in polyelectrolyte-silica composite thin-films[J]. Electroanal., 2002, 14: 853-857.
    [168] Khramov A N, Collinson M M. Electrogenerated chemiluminescence of Tris(2,2'-bipyridyl)ruthenium(II) ion-exchanged in nafion-silica composite films[J]. Anal. Chem., 2000, 72: 2943-2948.
    [169] Collinson M M, Novak B, Martin S A, Taussig J S. Electrochemiluminescence of ruthenium(II) Tris(bipyridine) encapsulated in sol-gel glasses[J]. Anal. Chem., 2000,72:2914-2918.
    [170] Sykora M, Meyer T J. Electrogenerated chemiluminescence in SiO_2 sol-gel polymer composites[J]. Chem. Mater., 1999,11: 1186-1189.
    [171] Momose F, Maeda K, Matsui K. Luminescence properties of Tris(2,2'-bipyridine)ruthenium(II) in sol-gel systems of SiO_2[J]. Chem. Mater., 1997, 9(11): 2588-2591.
    [172] Qian K J, Zhang L,Yang M L, He P G, Fang Y Z. Preparation of luminol-doped nanoparticle and its application in dna hybridization analysis[J]. Chin. J. of Chem., 2004,22 (7): 702-707.
    [173] Zhang L L, Zheng X W. A novel electrogenerated chemiluminescence sensor for pyrogallol with core-shell luminol-doped silica nanoparticles modified electrode by the self-assembled technique[J]. Anal. Chim. Acta, 2007, 570(2): 207-213.
    [174] Zhang L H, Dong S J. Electrogenerated chemiluminescence sensing platform using Ru(bpy)_3~(2+) doped silica nanoparticles and carbon nanotubes[J]. Electrochem. Commun., 2006, 8: 1687-1691.
    [175] Zhang L H, Dong S J. Electrogenerated chemiluminescence sensors using Ru(bpy)_3~(2+) doped in silica nanoparticles [J]. Anal. Chem., 2006, 78 (14): 5119-5123.
    [176] Zhang L H, Liu B F, Dong S J. Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electrochemiluminescence sensor material[J]. J. Phys. Chem. B, 2007, 111: 10448-10452.
    [177] Chang Z, Zhou J M, Zhao K, Zhu N N, He P G, Fang Y Z. Ru(bpy)_3~(2+)-doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA hybridization[J]. Electrochim. Acta, 2006, 52: 575-580.
    [178] Zhu N N, Cai H, He P G, Fang Y Z. Tris(2,2'-bipyridyl) cobalt(III)-doped silica nanoparticle DNA probe for the electrochemical detection of DNA hybridization[J]. Anal. Chim. Acta, 2003,481: 181-189.
    [179] Wang X Y, Zhou J M, Yun W, Xiao S S, Chang Z, He P G, Fang Y Z. Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)_3~(2+)-doped silica nanoparticle aptasensor via target protein-induced strand displacement[J]. Anal. Chim. Acta, 2007, 598: 242-248.
    [1] Tas C, Ozkan C.K, Savaser A, Ozkan Y, Tasdemir U, Altunay H. Nasal absorption of metoclopramide from different Carbopol(?) 981 based formulations: In vitro, ex vivo and in vivo evaluation[J]. Eur. J. Pharm. Biopharm., 2006,64(2): 246-254.
    [2] Buna M, Aaron J J, Prognon P, Mahuzier G. Effects of pH and solvent on the fluorescence properties of biomedically important benzamides. Application to determination in drugs and in human urine[J]. Analyst, 1996,121: 1551-1556.
    [3] Revanasiddappa H D, Manju B. A spectrophotometric method for the determination of metoclopramide HC1 and dapsone[J]. J. Pharm. Biomed. Anal., 2001, 25: 631-637.
    [4] Raghuveer S, Rao B E, Sricasteva C M R, Vatsa D K. East Pharm, 1992, 35: 125-144.
    
    [5] British Pharmacopoeia, Her Majesty's Stationery Office, London, 1998
    [6] Chmielewska A, Konieczna L, Plenis A, Lamparczyk H. Sensitive quantification of chosen drugs by reserved-phase chromatography with electrochemical detection at a glassy carbon electrode[J]. J. Chromatogr. B, 2006, 839: 102-111.
    [7] Radwan M A. Determination of metoclopramide in serum by HPLC assay and its application to pharmacokinetic study in rat[J]. Anal. Lett., 1998, 31: 2397-2410.
    [8] Boussairi A, Guyon F. Liquid chromatographic analysis with electrochemical detection for metoclopramide in human plasma[J]. Chromatographiam, 1987, 23: 651-652.
    [9] Venkateshwaran T G, Kimng D T, Stewart J T. HPLC determination of a metoclopramide and ondansetron mixture in 0.9% sodium chloride injection[J]. J. Liq. Chromatogr., 1995,18: 117-126.
    [10] Foda N H. Quantitative analysis of metoclopramide in tablet formulations by HPLC[J]. Anal. Lett., 1994,27: 549-559.
    
    [11] El-Sayed Y M, Khidr S H, Niazy E M. Rapid and sensitive high-performance liquid chromatographic method for the determination of metoclopramide in plasma and its use in pharmacokinetic studies[J]. Anal. Lett., 1994, 27: 55-70.
    [12] The United States Pharmacopoeia. XXIV Revision, the Nation Formulary XIX Rockville, USP Convention, 2000.
    [13] Chang Y S, Ku Y R, Wen K C, Ho L K. Analysis of synthetic gastrointestinal drugs in adulterated traditional Chinese medicines by HPCE[J], J. Liq. Chromatogr. Relat. Technol., 2000,23: 2009-2019.
    [14] Kerr R, Lung. J, Spectra 2000 [Deux-Mille] 1990,18: 33-39.
    [15] Poban C V, Frutos P, Lastres J L, Frutos G. Application of differential scanning calorimetry and X-ray powder diffraction to the solid-state study of metoclopramide[J]. J. Pharm. Biomed. Anal., 1996,15: 131-138.
    [16] Riggs K W, Szeitz A, Rurak D W, Multib A E, Abbott F S, Axelson J L. Determination of metoclopramide and two of its metabolites using a sensitive and selective gas chromatographic-mass spectrometric assay[J]. J. Chromatogr. B Biomed. Appl,, 1994, 660: 315-325.
    [17] Mostafa G A E. PVC matrix membrane sensor for potentiometric determination of metoclopramide hydrochloride in some pharmaceutical formulations[J]. J. Pharm. Biomed. Anal., 2003, 31: 515-521.
    [18] Wang Z H, Zhang H Z, Zhou S P, Dong W J. Determination of trace metoclopramide by anodic stripping voltammetry with nafion modified glassy carbon electrode[J]. Talanta, 2001, 53:1133-1138.
    [19] Hanna G M, Lau-Cam C A. 1H-NMR spectroscopic assay method for metoclopramide hydrochloride in tablets and injections[J]. Drug. Dev. Ind. Pharm., 1991,17: 975-984.
    [20] Al-Arfaj N A. Flow-injection chemiluminescent determination of metoclopramide hydrochloride in pharmaceutical formulations and biological fluids using the [Ru(dipy)_3~(2+)]-permanganate system[J]. Talanta, 2004, 62: 255-263.
    [21] Abbaspour A, Mirzajani R, Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode[J]. J. Pharmaceut. Biomed. Anal., 2007,44: 41-48.
    [22] Lian W, Litherland S A, Badrane H, Tan W H, Wu D H, Baker H V. Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles[J]. Anal. Biochem., 2004, 334: 135-144.
    [23] Bagwe R P, Yang C Y, Hilliard L R, Tan W H. Optimization of dye-doped silica nanoparticles prepared using reverse microemulsion method[J]. Langmuir, 2004, 20: 8336-8342.
    [24] Tang W H, Xu H, Kopelman R, Philbert M A. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms[J]. Photochem. Photobiol., 2005, 81: 242-249.
    [25] Chang Z, Zhou J M, Zhao K, Zhu N N, He P G, Fang Y Z. Ru(bpy)_3~(2+)-doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA hybridization[J]. Electrochim. Acta, 2006, 52: 575-580.
    [26] Zhang L H, Dong S J. Electrogenerated chemiluminescence sensors using Ru(bpy)_3~(2+) doped in silica nanoparticles[J]. Anal. Chem., 2006, 78 (14): 5119-5123.
    [27] Zhang L H, Dong S J. Electrogenerated chemiluminescence sensing platform using Ru(bpy)_3~(2+) doped silica nanoparticles and carbon nanotubes[J]. Electrochem. Commun., 2006, 8: 1687-1691.
    [28] Rashidova S S, Shakarova D S, Ruzimuradov O N, Satubaldieva D T, Zalyalieva S V, Shpigun O A, VarlamovV P, Kabulov B D. Bionanocompositional chitosan-silica sorbent for liquid chromatography[J]. J. Chromatogr. B, 2004, 800: 49-53.
    [29] Zhang F F, Wan Q, Li C X, Wang X, Zhu Z Q, Xian Y Z, Jin L T, Yamamoto K. Simultaneous assay of glucose, lactate, L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles[J]. Anal. Bioanal. Chem., 2004, 380: 637-642.
    [30] Santra S, Zhang P, Wang K M, Tapec R, Tan W H. Conjugation of biomolecules with luminophore doped silica nanoparticles for photostable biomarkers[J]. Anal. Chem., 2001, 73: 4988-4993.
    [31] Chang S Y, Liu L, Asher S A. Preparation and properties of tailored morpholgy, monodisperse colloidal silica-cadmium sulfide nanocomposites[J]. J. Am. Chem. Soc., 1994,116:6739-6744.
    [32] Shiojiri S, Hirai T, Komasawa I. Immobilization of semiconductor nanoparticles formed in reverse micelles into polyurea via in situ polymerization of diisocyanates[J]. Chem. Commun., 1998, 14: 1439-1440.
    [33] Stathatos E, Lianos P, Delmonte F, Levy D, Tsiourvas D. Formation of TiO_2 nanoparticles in reverse micells and their deposition as thin films on glass substrates[J]. Langmuir, 1997,13: 4295-4300.
    [34] Davis S S. Biomedical applications of nanotechnology-implications for drug targeting and gene therapy[J]. Trends Biotechnol, 1997,15: 217-224.
    [35] Li T, Moon J, Morrone A A, Mecholsky J J, Talham D R, Adair J H. Preparation of Ag-SiO_2 nanosize compositions by a reverse micelle and sol-gel technique[J]. Langmuir, 1999,15: 4328-4334.
    [36] Bagwe R P, Khilar K C. Effects of the intermicellar exchange rate and cations on the size of silver chloride nanoparticles formed in reverse micelles of AOT[J]. Langmuir, 1997,13: 6432-4638.
    [37] Bagwe R P, Mishra B K, Khilar K C. Effect of Chain length of oxyethylene group on particle size and absorption spectra of silver nanoparticles prepared in non-ionic water-in-oil microemulsions[J].J.Disper.Sci.Technol.,1999,20:1569-1579.
    [38]Bagwe R P,Khilar K C.Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT[J].Langmuir,2000,16:905-910.
    [39]St(o|¨)ber W,Fink A,Bohn E.Controlled growth ofmonodisperse silica spheres in the micron size range[J].J.Colloid Interface Sci.,1968,26:62-69.
    [40]de Dood M J A,Berkhout B,van Kats C M,Polman A,van Blaaderen A.Acid-based synthesis of monodisperse rare-Earth-doped colloidal SiO_2 spheres[J].Chem.Mater.,2002,14:2849-2853.
    [41]Guo Z H,Shen Y,Zhao F,Wang M K,Dong S J.Electrochemistry and electrogenerated chemiluminescence of clay nanoparticles/Ru(bpy)_3~(2+) multilayer films on ITO electrodes[J].Analyst,2004,129:657-663.
    [42]Zorzi M,Pastore P,Magno F.A single calibration graph for the direct determination of ascorbic and dehydroascorbic acids by electrogenerated luminescence based on Ru(bpy)_3~(2+) in aqueous solution[J].Anal.Chem.,2000,72:4934-4939.
    [43]Song H J,Zhang Z J,Wang F.Electrochemiluminescent determination of chlorphenamine maleate based on Ru(bpy)_3~(2+) immobilized in a nano-titania/Nation membrane[J].Electroanal.,2006,18(18):1838-1841.
    [44]Andria S E,Richardson J N,Kaval N,Zudans I,Seliskar C.J,Heineman W R.Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device.17.Improvement in detection limits using ultrathin Nation films in conjunction with a continuous sample flow[J].Anal.Chem.,2004,76:3139-3144.
    [45]McHatton R C,Anson F C.Electrochemical behavior of Ru(trpy)(bpy)(OH_2)~(3+) in aqueous solution and when incorporated in Nation coatings[J].Inorg.Chem.,1984,23:3935-3942.
    [46]Khramov A N,Collinson M M.Electrogenerated chemiluminescence of Tris(2,2'-bipyridyl)ruthenium(Ⅱ) ion-exchanged in nafion-silica composite films[J].Anal.Chem.,2000,72:2943-2948.
    [47]Editorial Committee of the Pharmacopoeia of People's Republic of China,The Pharmacopoeia of People's Republic of China,Chemical Industry Press,Beijing,2000,pp.144.
    [48]Miller J C,Miller J N.Statistics for Analytical Chemistry,Wiley,New York,NY, 1993, pp. 115-118.
    [1] Product monograph: Ganaton tablets, Hokuriku Seiyaku Co. Ltd., Japan.
    [2] Mushiroda T, Douya R, Takahara E, Nagata O. The involvement of flavin-containing monooxgenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate[J]. Drug Metab. Dispos., 2000,28:1231-1237.
    [3] Katagiri F, Shiga T, Inoue S, Sato Y, Itoh H, Takeyama M. Effects of itopride hydrochloride on plasma gut-regulatory peptide and stress-related hormone levels in healthy human subjects[J]. Pharmacol, 2006, 77: 115-121.
    [4] Takahara E, Fukuoka H, Takagi T, Nagata O, Kato H. Simultaneous determination of a new gastrointestinal prokinetic agent (HSR-803) and its metabolites in human serum and urine by high-performance liquid chromatography using automated column-switching[J]. J. Chromatogr., 1992, 576: 174-178.
    [5] Singh S S, Jain M, Sharma K, Shah B, Vyas M, Thakkar P, Shah R, Singh S, Lohray B. Quantitation of itopride in human serum by high-performance liquid chromatography with fluorescence detection and its application to a bioequivalence study[J]. J. Chromatogr. B, 2005, 818: 213-220.
    [6] Sabnis S S, Dhavale N D, Jadhav V Y, Gandhi S V. Spectrophotometric simultaneous determination of rabeprazole sodium and itopride hydrochloride in capsule dosage form[J]. Spectrochim. Acta A, 2008,69(3): 849-852.
    [7] Kaul N, Agrawal H, Maske P, Rao J R, Mahadik K R, Kadam S S. Chromatographic determination of itopride hydrochloride in the presence of its degradation products[J]. J. Sep. Sci., 2005, 28: 1566-1576.
    [8] Patel B H, Suhagia B N, P atel M M, Patel J R. Determination of pantoprazole, rabeprazole, esomeprazole, domperidone and itopride in pharmaceutical products by reversed phase liquid chromatography using single mobile phase[J]. Chromatographia. 2007, 65: 743-748.
    [9] Lee H W, Seo J H, Choi S K, Lee K T. Determination of itopride in human plasma by liquid chromatography coupled to tandem mass spectrometric detection: application to a bioequivalence study[J]. Anal. Chim. Acta, 2007, 583: 118-123.
    [10] Song H J, Zhang Z J, Wang F. Electrochemiluminescent determination of chlorphenamine maleate based on Ru(bpy)_3~(2+) immobilized in nano-titania/Nafion membrane[J].Electroanal.,2006,18:1838-1841.
    [11]Xu Z A,Guo Z H,Dong S J.Electrogenerated chemiluminescence biosensor with alcohol dehydrogenase and Tris(2,2'-bipyridyl)ruthenium(Ⅱ) immobilized in sol-gel hybrid material[J].Biosens.Bioelectron.,2005,21:455-461.
    [12]Knight A W,Greenway G M.Electrogenerated chemiluminescent determination of pyruvate using Tris(2,2-bipyridine)ruthenium(Ⅱ)[J].Analyst,1995,120:2543-2547.
    [13]Holeman J A,Danielson N D.Liquid chromatography of antihistamines using post-column Tris(2,2'-bipyridine)ruthenium(Ⅲ) chemiluminescence detection[J].J.Chromatogr.A,1994,679:277-284.
    [14]Brune S N,Bobbit D R.Role of electron-donating/withdrawing character,pH,and stoichiometry on the chemiluminescent reaction of Tris(2,2'-bipyridyl)ruthenium(Ⅲ)with amino acids[J].Anal.Chem.,1992,64:166-170.
    [15]Chen X,Sato M.High-performance liquid chromatographic determination of ascorbic acid in soft drinks and apple juice using Tris(2,2'-bipyridine)ruthenium(Ⅱ)electrochemiluminescence[J].Anal.Sci.,1995,11:749-754.
    [16]Greenway G M,Knight A W,Knight P J.Electrogenerated chemiluminescent determination of codeine and related alkaloids and pharmaceuticals with Tris(2,2'-bipyridine)ruthenium(Ⅱ)[J].Analyst,1995,120:2549-2552.
    [17]Barnett N W,Gerardi R D,Hampson D L,Russell R A.Some observations on the chemiluminescent reactions of Tris(2,2'-bipyridyl)ruthenium(Ⅲ) with certain papaver somniferum alkaloids and their derivatives[J].Anal.Commun.,1996,33:255-260.
    [18]Tsukagoshi K,Miyamoto K,Saiko E,Nakajima R,Hara T,Fujinaga K.High-sensitivity determination of emetine dithiocarbamate copper(Ⅱ) complex using electrogenerated chemiluminescence detection of Tris(2,2'-bipyridine)ruthenium(Ⅱ)[J].Anal.Sci.,1997,13:639-642.
    [19]Greenway G M,Nelstrop L J,Port S N.Tris(2,2'-bipyridyl)ruthenium(Ⅱ)chemiluminescence in a microflow injection system for codeine determination[J].Anal.Chim.Acta,2000,405:43-50.
    [20]Gonzalez J M,Greenway G M,McCreedy T,Song Q J.Determination of morpholine fungicides using the Tris(2,2'-bipyridine)ruthenium(Ⅱ)chemiluminescence reaction[J].Analyst,2000,125:765-769.
    [21]Shultz L L,Stoyanoff J S,Nieman T A.Temporal and spatial analysis of electrogenerated Ru(bpy)_3~(3+) chemiluminescent reactions in flowing streams[J].Anal. Chem.,1996,68:349-354.
    [22]Miller C J,McCord P,Bard A J.Study of Langmuir monolayers of ruthenium complexes and their aggregation by electrogenerated chemiluminescence[J].Langmuir,1991,7:2781-2787.
    [23]Sato Y,Uosaki K.Electrochemical and electrogenerated chemiluminescence properties of Tris(2,2'-bipyridine)ruthenium(Ⅱ)-tridecanethiol derivative on ITO and gold electrodes[J].J.Electroanal.Chem.,1995,384:57-66.
    [24]Collinson M M,Novak B,Martin S A,Taussig J S.Electrochemiluminescence of ruthenium(Ⅱ) Tris(bipyridine) encapsulated in sol-gel glasses[J].Anal.Chem.,2000,72:2914-2918.
    [25]Wang H Y,Xu G B,Dong S J.Electrochemiluminescence of Tris(2,2'-bipyridine)ruthenium(Ⅱ) immobilized in poly (p-styrenesulfonate)-silica-Triton X-100 composite thin-films[J].Analyst,2001,126:1095-1099.
    [26]Wang H Y,Xu G B,Dong S J.Electrochemiluminescence of Tris(2,2'-bipyridyl)ruthenium(Ⅱ) ion-exchanged in polyelectrolyte-silica composite thin-films[J].Electroanal.,2002,14:853-857.
    [27]Wang H Y,Xu G B,Dong S J.Electrochemiluminescence sensor using Tris(2,2'-bipyridyl)ruthenium(Ⅱ) immobilized in Eastman-AQ55D-silica composite thin-films[J].Anal.Chim.Acta,2003,480:285-290.
    [28]Choi H N,Cho S-H,Lee W-Y.Electrogenerated chemiluminescence from Tris(2,2'-bipyridyl)ruthenium(Ⅱ) immobilized in titania-perfiuorosulfonated ionomer composite films[J].Anal.Chem.,2003,75(16):4250-4256.
    [29]Deepa P N,Kanungo M,Claycomb G,Sherwood P M A,Collinson M M.Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design[J].Anal.Chem.,2003,75:5399-5405.
    [30]Zhuang Y F,Ju H X.Study on electrochemiluminesce of Ru(bpy)_3~(2+) immobilized in a titania sol-gel membrane[J].Electroanal.,2004,16:1401-1405.
    [31]Choi H N,Cho S-H,Lee W-Y.Sol-gel-immobilized Tris(2,2'-bipyridyl)ruthenium(Ⅱ) electrogenerated chemiluminescence sensor for high-performance liquid chromatography[J].Anal.Chim.Acta,2005,541(1-2):47-54.
    [32]Tang W H,Xu H,Kopelman R,Philbert M A.Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms[J].Photochem.Photobiol.,2005,81:242-249.
    [33] Hun X, Zhang Z J. Functionalized fluorescent core-shell nanoparticles used as a fluorescent labels in fluoroimmunoassay for IL-6, Biosens. Bioelectron., 2007, 22(11): 2743-2748.
    [34] Chang Z, Zhou J M, Zhao K, Zhu N N, He P G, Fang Y Z. Ru(bpy)_3~(2+)-doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA hybridization[J]. Electrochim. Acta, 2006, 52: 575-580.
    [35] Zhang L H, Dong S J. Electrogenerated chemiluminescence sensors using Ru(bpy)_3~(2+) doped in silica nanoparticles[J]. Anal. Chem., 2006, 78 (14): 5119-5123
    [36] Zhang L H, Dong S J. Electrogenerated chemiluminescence sensing platform using Ru(bpy)_3~(2+) doped silica nanoparticles and carbon nanotubes[J]. Electrochem. Commun., 2006, 8: 1687-1691.
    [37] Moran C E, Hale G D, Halas N J. Synthesis and characterization of lanthanide-doped silica microspheres[J]. Langmuir, 2001,17: 8376-8379.
    [38] Rossi L M, Shi L F, Quina F H, Rosenzweig Z. Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays[J]. Langmuir, 2005, 21(10): 4277-4280.
    [39] Stober W, Fink A, Bonn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid Interface Sci., 1968,26: 62-69.
    [40] Zhao X J, Tapec-Dytioco R. Tan W H. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles[J]. J. Am. Chem. Soc, 2003, 125: 11474-11475.
    
    [41] Collinson M M. Recent trends in analytical applications of organically modified silicate materials[J]. Trends Anal. Chem., 2002,21(1): 31-39.
    [42] Zorzi M, Pastore P, Magno F. A single calibration graph for the direct determination of ascorbic and dehydroascorbic acids by electrogenerated luminescence based on Ru(bpy)_3~(2+) in aqueous solution[J]. Anal. Chem., 2000, 72: 4934-4939.
    [43] Cruz J, Kawasaki M, Gorski W. Electrode coatings based on chitosan scaffolds[J]. Anal. Chem., 2000,72: 680-686.
    [44] Safavi A, Maleki N, Moradlou O, Tajabadi F. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode[J]. Anal. Biochem., 2006, 359: 224-229.
    [45] Wang H S, Wang H S, Li T. H, Jia W L, Xu H Y. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode[J]. Biosens. Bioelectron., 2006, 22: 64-669.
    [46] Guo Z H, Shen Y, Wang M K, Zhao F, Dong S J. Electrochemistry and electrogenerated chemiluminescence of SiO_2 nanoparticles/Tris(2,2'-bipyridyl) ruthenium(II) multilayer films on indium tin oxide electrodes[J]. Anal. Chem., 2004, 76:184-191.
    [47] Chen Z F, Y B Zu. Gold Nanoparticle-modified ITO electrode for electrogenerated chemiluminescence: well-preserved transparency and highly enhanced activity[J]. Langmuir, 2007,23: 11387-11390.
    [1] Santhanam K S V, Bar A J. Chemiluminescence of electrogenerated 9,10- diphenylanthracene anion radical[J]. J. Am. Chem. Soc, 1965, 87(1): 139-140.
    [2] Faulkner L R, Bar A J. Electroanalytical Chemistry[M]. New York: Maecel Dekker, 1977, 1-95.
    [3] Bar A J. Electrogenerated chemiluminescence[M]. New York: Maecel Dekker, 2004, pp.1.
    [4] Richter M M. Electrochemiluminescence (ECL)[J]. Chem. Rev., 2004, 104(6): 3003-3036.
    [5] Lai R Y, Bard A J. Electrogenerated chemiluminescence. 70. The application of ecl to determine electrode potentials of tri-n-propylamine, its radical cation, and intermediate free radical in MeCN/benzene solutions[J]. J. Phys. Chem. A, 2003, 107, 3335-3340.
    [6] Lai R Y, Kong X, Jenekhe S A, Bar A J. Synthesis, cyclic voltammetric studies, and electrogenerated chemiluminescence of a new phenylquinoline-biphenothiazine donor-acceptor molecule[J]. J. Am. Chem. Soc, 2003,125(41): 12631-12639.
    [7] Bucur C B, Schlenoff J B. Electrogenerated chemiluminescence in polyelectrolyte multilayers: efficiency and mechanism[J]. Anal. Chem., 2006, 78,2360-2365.
    [8] Knight A W. A review of recent trends in analytical applications of electrogenerated chemiluminescence[J]. Trends Anal. Chem., 1999,18: 47-62 and reference therein.
    [9] Gerardi R D, Barnett N W, Lewis S W. Analytical applications of Tris(2,2'-bipyridyl)ruthenium(III) as a chemiluminscent reagent[J]. Anal. Chim. Acta. 1999,378:1-44.
    [10] Wightman R M, Curtis C L, Flowers P A, Maus R G, McDonald E M. Microelectrodes with high-frequency electrogenerated chemiluminescence[J]. J. Phys. Chem, 1998,102: 9991-9996.
    [11] Kozlov V G, Bulovic V, Burrows P E, Forrest S R. Laser action in organic semiconductor waveguide and double heterostructure devices[J]. Nature, 1997, 389: 362-364.
    [12] Fan F-R F, Cliffel D, Bar A J. Scanning electrochemical microscopy. 37. Light emission by electrogenerated chemiluminescence at SECM tips and their application to scanning optical microscopy[J]. Anal. Chem, 1998, 70(14): 2941-2948.
    [13] Zhao X C, You T Y, Qiu H B, Yan J L, Yang X R, Wang E K. Electrochemiluminescence detection with integrated indium tin oxide electrode on electrophoretic microchip for direct bioanalysis of lincomycin in the urine[J]. J. Chromatogr. B, 2004, 810(1): 137-142.
    [14] Qiu H B, Yan J L, Sun X H, Liu J F, Cao W D, Yang X R, Wang E K. Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector[J]. Anal. Chem, 2003, 75: 5435-5440.
    [15] Yan J L, Du Y, Liu J F, Cao W D, Sun X H, Zhou W H, Yang X R, Wang E K. Fabrication of integrated microelectrodes for electrochemical detection on electrophoresis microchip by electroless deposition and micromolding in capillary technique[J]. Anal. Chem, 2003, 75: 5406-5412.
    [16] Liu J F, Yan J L, Yang X R, Wang E K. Miniaturized Tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence detection cell for capillary electrophoresis and flow injection analysis[J]. Anal. Chem, 2003, 75: 3637-3642.
    [17] Choi H N, Cho S-H, Lee W-Y. Sol-gel-immobilized Tris(2,2'-bipyridyl) ruthenium(II) electrogenerated chemiluminescence sensor for high-performance liquid chromatography[J]. Anal. Chim. Acta, 2005, 541 (1-2): 47-54.
    [18] Choi H N, Lee J-Y, Lee W-Y. Tris(2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor based on carbon nantube dispersed in sol-gel-derived titania-Nafion composite fllms[J]. Anal. Chim. Acta, 2006, 565(1): 48-55.
    [19] Zhuang Y F, Zhang D M, Ju H X. Sensitive determination of heroin based on electrogenerated chemiluminescence of Tris(2,2'-bipyridyl)ruthenium(II) immobilized in zeolite Y modified carbon paste electrode[J]. Analyst, 2005, 130: 534-540.
    [20] Guo Z H, Shen Y, Zhao F, Wang M K, Dong S J. Electrochemistry and electrogenerated chemiluminescence of clay nanoparticles/Ru(bpy)_3~(2+) multilayer films on ITO electrodes[J]. Analyst, 2004,129: 657-663.
    [21] Elliott C M, Pichot F, Bloom C J, Rider L S. Highly efficient solid-state electrochemically generated chemiluminescence from estersubstituted trisbipyridineruthenium (II)-based polymers[J]. J. Am. Chem. Soc, 1998, 120: 6781-6784.
    [22] Deepa P N, Kanungo M, Claycomb G, Sherwood P M A, Collinson M M. Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design[J]. Anal. Chem., 2003, 75: 5399-5405.
    [23] Lyons C H, Abbas E D, Lee J K, Rubner M F. Solid-state light-emitting devices based on the trischelated ruthenium(II) comples. 1. Thin film blends with poly(ethylene oxide)[J]. J. Am. Chem. Soc, 1998,120: 12100-12107.
    [24] Wu A, Lee T, Rubner M F. Light emitting electrochemical devices from sequentially adsorbed multilayers of a polymeric ruthenium (II) complex and various polyanions[J]. Thin Solid Films, 1998, 327/329: 663-667.
    [25] Collinson M M, Novak B, Martin S A, Taussig J S. Electrochemiluminescence of ruthenium(II) Tris(bipyridine) encapsulated in sol-gel glasses[J]. Anal. Chem., 2000, 72:2914-2918.
    [26] Lee W-Y. Tris (2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science[J]. Mikrochim. Acta, 1997,127(1/2): 19-39.
    [27] Chang Z, Zhou J M, Zhao K, Zhu N N, He P G, Fang Y Z. Ru(bpy)_3~(2+)-doped silica nanoparticle DNA probe for the electrogenerated chemiluminescence detection of DNA hybridization[J]. Electrochim. Acta, 2006, 52: 575-580.
    [28] Obeng Y S, Bard A J. Electrogenerated chemiluminescence. 53. Electrochemistry and emission from adsorbed monolayers of a Tris(bipyridyl)ruthenium(II)-based surfactant on gold and tin oxide electrodes[J]. Langmuir, 1991, 7: 195-201.
    [29] Miller C J, McCord P, Bard A J. Study of Langmuir monolayers of ruthenium complexes and their aggregation by electrogenerated chemiluminescence[J]. Langmuir, 1991, 7: 2781-2787.
    [30] Xu X-H, Bard A J. Electrogenerated chemiluminescence. 55. Emission from adsorbed Ru(bpy)_3~(2+) on graphite, platinum, and gold[J]. Langmuir, 1994, 10: 2409-2414
    [31] Sykora M, Meyer T J, Electrogenerated chemiluminescence in SiO_2 sol-gel polymer composites[J]. Chem. Mater., 1999,11: 1186-1189.
    [32] Zhao C Z, Egashira N, Kurauchi Y, Ohga K, Electrochemiluminescence sensor having a Pt electrode coated with a Ru(bpy)_3~(2+)-modified chitosan silica gel membrane[J].Anal.Sci.,1998,14:439-441.
    [33]Zhao C Z,Egashira N,Kurauchi Y,Ohga K.Substrate selectivity of an electrochemiluminescence Pt electrode coated with a Ru(bpy)_3~(2+)-modified chitosan silica gel membrane[J].Anal.Sci.,1997,13:333-336.
    [34]Lee W-Y,Nieman T A.Evaluation of use of Tris(2,2'-bipyridyl)ruthenium(Ⅲ) as a chemiluminescent reagent for quantitation in flowing streams[J].Anal.Chem.,1995,67:1789-1796.
    [35]Lee J K,Lee S H,Kim M,Kim H,Kim D H,Lee W-Y.Organosilicate thin film containing Ru(bpy)_3~(2+) for an electrogeneratedchemiluminescence(ECL) sensor[J].Chem.Commun.,2003,13:1602-1603.
    [36]Greenway G M,Greenwood A,Watts P,Wiles C.Solid-supported chemiluminescence and electrogenerated chemiluminescence based on a Tris(2,2'-bipyridyl)ruthenium(Ⅱ)derivative[J].Chem.Commun.,2006,1:85-87.
    [37]Santra S,Wang K M,Tapec R,Tan W H.Development of novel dye-doped silica nanoparticles for biomarker application[J].J.Biomed.Opt.,2001,6:160-166.
    [38]Zhao X J,Tapec-Dytioco R,Wang K M,Tan W H.Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers[J].Anal,Chem.,2003,75:3476-3483.
    [39]Bagwe R P,Yang C Y,Hilliard L R,Tan W H.Optimization of dye-doped silica nanoparticles prepared using reverse microemulsion method[J].Langmuir,2004,20:8336-8342.
    [40]Tang W H,Xu H,Kopelman R,Philbert M A.Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms[J].Photochem.Photobiol.,2005,81:242-249.
    [41]Hun X,Zhang Z J.Preparation of a novel fluorescence nanosensor based on calcein-doped silica nanoparticles,and its application to the determination of calcium in blood serum[J].Microchim.Acta,2007,159:255-262.
    [42]Zhang L H,Dong S J.Electrogenerated chemiluminescence sensing platform using Ru(bpy)_3~(2+) doped silica nanoparticles and carbon nanotubes[J].Electrochem.Commun.,2006,8:1687-1691.
    [43]Zhang F F,Wan Q,Li C X,Wang X,Zhu Z Q,Xian Y Z,Jin L T,Yamamoto K.Simultaneous assay of glucose,lactate,L-glutamate and hypoxanthine levels in a rat striatum using enzyme electrodes based on neutral red-doped silica nanoparticles[J].Anal.Bioanal.Chem.,2004,380:637-642.
    [44] Zhang L H, Dong S J. Electrogenerated chemiluminescence sensors using Ru(bpy)_3~(2+) doped in silica nanoparticles[J]. Anal. Chem., 2006, 78(14): 5119-5123.
    [45] Gan L M, Zhang L H, Chan H S O, Chew C H, Loo B H. A noval method for the synthesis of perovskitir-type mixed metal oxides by the inverse microemulsion technique[J]. J. Mater. Sci., 1996, 31:10711079.
    [46] Chhabra V, Pillai V, Mishra B K, Morrone A, Shah D O. Synthesis, characterization, and properties of microemulsion-mediated nanophase TiO_2 particles[J]. Langmuir, 1995,11:3307-3311.
    [47] Lal M, Chhabra V, Ayyub P, Maitra A. Preparation and characterization of ultrafine TiO_2 particles in reverse micelles by hydrolysis of titanium di-ethylhexyl sulfosuccinate[J]. J. Mater. Res. 1988,13: 1249-1254.
    [48] Santra S, Zhang P, Wang K M, Tapec R, Tan W H. Conjugation of biomolecules with luminophore doped silica nanoparticles for photostable biomarkers[J]. Anal. Chem., 2001, 73: 4988-4993.
    [49] Li T, Moon J, Morrone A A, Mecholsky J J, Talham D R, Adair J H. Preparation of Ag/SiO_2 nanosize composites by a reverse micelle and sol-gel technique[J]. Langmuir, 1999,15: 4328-4334.
    [50] Bagwe R P, Khilar K C. Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT[J]. Langmuir, 2000, 16: 905-910.
    [51] de Dood M J A, Berkhout B, van Kats C M, Polman A, van Blaaderen A. Acid-based synthesis of monodisperse rare-earth-doped colloidal SiO_2 spheres[J]. Chem. Mater., 2002,14: 2849-2853.
    [52] Niederberger M, Bartl M H, Stucky G D. Benzyl alcohol and titanium tetrachloride - a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles [J]. Chem. Mater., 2002, 14: 4364-4370.
    [53] Messina P V, Morini M A, Sierra M B, Schulz P C. Mesoporous silica-titania composed materials[J]. J. Colloid. Interf. Sci., 2006, 300, 270-278.
    [54] Stark W J, Wegner K, Pratsinis S E, Baiker A. Flame aerosol synthesis of vanadia-titania nanoparticles: Structural and catalytic properties in SCR of NO by NH_3[J]. J. Catal., 2001, 197: 182-191.
    [55] Downey T M, Nieman T A. Chemiluminescence detection using regenerable Tris(2,2'-bipyridyl)ruthenium(II) immobilized in Nafion[J]. Anal. Chem., 1992, 64: 261-268.
    [56]Guo Z H,Shen Y,Wang M K,Zhao F,Dong S J.Electrochemistry and electrogenerated chemiluminescence of SiO_2 nanoparticles/Tris(2,2'-bipyridyl)ruthenium(Ⅱ) multilayer films on indium tin oxide electrodes[J].Anal.Chem.,2004,76:184-191.
    [57]Song H J,Zhang Z J,Wang F.Electrochemiluminescent determination of chlorphenamine maleate based on Ru(bpy)_3~(2+) immobilized in a nano-titania/Nafion membrane[J].Electroanal.,2006,18(18):1838-1841.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700