用户名: 密码: 验证码:
纳米功能材料的合成及高压效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压科学已经成为现代科学技术的一个重要领域,作为温度之外的另一维条件,压力对物质的各种性质都存在着不同程度的影响。它对物质作用的基本效应是减小分子间或原子间的距离,从而引起物质组成结构(晶体结构、分子结构、原子排列方式)的变化,进而造成材料的能带结构、电子轨道结构、电子态密度等性质的一系列变化。同时,高压或高温高压又是一种非常有效的合成各种功能材料的手段。因此,对高压下材料的物性变化以及高压下功能材料合成的研究就显得非常重要。本文就围绕这两点展开工作,研究了高压下几种纳米晶体系的物性变化,并利用高温高压手段合成出ZnO基纳米功能材料。本文共包含以下七章:
     第一章简要介绍了高压技术及研究方法,回顾了几种高压效应及相关领域的研究进展。
     第二章对纳米材料和纳米技术作了介绍,重点综述了不同维度的纳米材料在高压下的物性研究。
     第三章通过高压下的发光光谱手段对CdSe、CdZnSe、CdSe/ZnS三种量子点在高压下的结构和带隙调节作了比较。研究发现,CdSe在约5.9 GPa时从纤维锌矿结构转变为岩盐矿结构,而CdZnSe的该相变压力在5.4 GPa,合金中Zn的存在对CdSe的结构起到了稳定作用。在相变前,CdSe和CdZnSe合金量子点的Γ带隙均随压力线性蓝移,压力系数分别是28.4 meV/GPa和35.4meV/GPa。合金较大的带隙压力系数归因于合金化导致的阴阳离子s-s轨道耦合增强及p-d轨道耦合减弱效应。对于CdSe/ZnS核壳量子点,大约在7 GPa时发生上述相变,说明表面包裹一定厚度的宽带隙半导体壳层对核CdSe的结构起到了非常大的稳定作用。另外,随着压力的增加,CdSe/ZnS核壳量子点与CdZnSe合金量子点不同,发光峰发生非线性蓝移,说明合金化和表面修饰在对CdSe量子点带隙调节的机制上存在明显差异。
     第四章,利用溶胶-凝胶和水热法相结合的手段合成出锐钛矿相粒径20nm的Eu~(3+)掺杂TiO_2纳米晶,及5.6 nm、8.6 nm、19.6 nm的纯TiO_2纳米晶。再用Raman光谱和荧光光谱研究了这些纳米晶的压力结构稳定性。Raman光谱显示,Eu~(3+)掺杂TiO_2纳米晶在8.2-10.6 GPa之间发生结构相变,由Eu~(3+)的发光光谱计算可知,峰强比I_2(~5D_0—~7F_2)/I_1(~5D_0—~7F_1)随着压力增加而减小,并在8GPa左右存在一个拐点,这也间接证明了TiO_2纳米晶结构相变的出现。不同尺寸TiO_2纳米晶高压下Raman光谱显示,尺寸小于10 nm的样品在高压下转变为无定型结构,而19.6 nm的样品在10.3-13.3 GPa转变为斜锆石结构相。这表明尺寸效应是纳米晶体系高压相变中的重要因素。
     第五章,测定了激光染料Rhodamine 101粉末及其在溶剂(甲醇、乙醇、水的混合液)中的高压荧光光谱。结果表明,粉末样品和溶液样品在高压下的发光性质有很大的区别。对于粉末样品,随着压力的增加,Rhodamine 101的荧光强度下降很快,在大约8 GPa时荧光峰几乎消失;伴随着荧光强度的变化,荧光峰峰位发生了显著红移(8 GPa内红移了近100 nm)。对于溶液样品,其荧光强度随压力的增加降低较慢,到13GPa时强度约为常压的10%,荧光峰峰位红移较小(13 GPa内红移约50 nm)。在压力作用下,Rhodamine 101分子结构的变化和特殊的溶剂效应分别是影响粉末状态和溶液中荧光性质的主要因素。
     第六章,采用热蒸发方法,在不加贵金属催化剂的条件下快速、大量地合成出纤维锌矿结构的单晶ZnO纳米线。通过电子自旋共振和变温发光光谱分别对样品常温下的缺陷发光和近带边发光作了指认:缺陷发光来源于氧空位,而近带边发射则是自由激子和导带电子与受主空穴复合发光的交叠。利用经验公式对自由激子发光峰能量和半宽随温度的变化进行拟合后,得到该样品的激子和声学声子耦合强度、激子和LO光学声子耦合强度分别63.44μeV/K和898 meV,Einstein特征温度为251 K。利用溶剂热方法,不加表面活性剂的条件下合成出花状ZnO纳米结构,对其生长机制进行了简单探讨,并通过吸收光谱、发光光谱、Raman光谱等手段对其光学性质作了深入研究。利用溶剂热方法合成出ZnO掺Co~(2+)纳米棒结构,通过磁性测量发现其具有室温铁磁性。对其XRD、吸收光谱的研究发现,样品中Co以四面体配位的Co~(2+)存在,我们认为铁磁性是由四面体晶体场中出现的Co~(2+)高自旋态所导致的内在属性。
     第七章对前面的内容作了总结。
High pressure science has been an important field in modern science and technology.As another condition in addition to temperature, pressure affects many propertiesof materials to a large extent. The primary effect it brings is to reduce the distancebetween molecules or atoms of the materials, which results in the variation of structure(crystal structure, molecular structure, the alignment of atoms), and induces further aseries of changes on, such as, the energy band structure, the electron orbital configurationand density of states of electrons. Meanwhile, high pressure (or together withhigh temperature) can be a highly effective method on synthesizing various functionalmaterials. For those reasons above, investigations of physical properties and synthesizingfunctional materials under high pressure condition is of great importance. Thisthesis concerns thus these two aspects: The pressure effects on physical properties ofseveral kinds of nanocrystallines are studied, and the ZnO-based nano-sized functionalmaterial is synthesized under high temperature and high pressure. The thesis consistsof seven chapters.
     Chapter One briefly introduces high pressure techniques and research methods aswell as presents a review of high pressure effects and research progress in related fields.Chapter Two gives an introduction to nanomaterials and nanotechnology and,mainly summarizes high pressure studies on physical properties of nanomaterials ofdifferent dimensions.
     Chapter Three studies the pressure dependence of photoluminescence of CdSe,CdZnSe alloy and CdSe/ZnS core/shell quantum dots (QDs) synthesized via a hotsolutionmethod. High pressure technique was used to compare the gap turning and thestructural properties of these QDs. It is found that a phase transition from wurtzite torocksalt occurs at about 5.9 GPa for CdSe QDs, and 5.4 GPa for CdZnSe alloy QDs.The existence of Zn element plays an important role on the structural stability of CdSeQDs. The directΓenergy gaps of wurtzite QDs were found to increase linearly withpressure before phase transition; the pressure coefficient is about 35.4 meV/GPa for CdZnSe, and, 28.4 meV/GPa for CdSe QDs. The larger value of gap pressure coefficientfor CdZnSe alloy QDs is attributed to the alloying effect for strengthening theanion-cation s - s orbital coupling and weakening p - d orbital coupling in the alloy.It is found that CdSe/ZnS core/shell QDs transform to rocksalt at about 7 GPa, indicatingthat the wide gap semiconductor shell contributes significantly to the structuralstability of CdSe core. Furthermore, the luminescence peak is nonlinearly blueshiftedwith increasing pressure, therefore, the surface modification and alloying play differentroles in the modulation of the energy gap of CdSe QDs.
     In Chapter Four, the 5.6 nm, 8.6 nm, 19.6 nm TiO_2 and Eu~(3+)-doped TiO_2 nanocrystallinesare synthesized by the sol-gel method and hydrothermal treatment. The structuralstability of these nanocrystallines on pressure is investigated by Raman and photoluminescencespectroscopies. A phase transition is observed at 8.2-10.6 GPa forEu~(3+)-doped TiO_2 from Raman spectra. This is also confirmed by the fact that the PLintensity ratio, I_2(~5D_0-~7F_2)/I_1(~5D_0-~7F_1), reduces with increasing pressure and has ainflection at 8 GPa. For TiO_2 of different sizes, Raman spectra show that, the sampleswith sizes smaller than 10 nm transform to amorphous structure and another 19.6 nmTiO_2 transforms to baddeleyite structure at 10.3-13.3 GPa. This indicating that the sizeeffect plays an importmant role on pressure induced phase transition of nanomaterials.
     In Chapter Five, the fluorescence spectra of both Rhodamine 101 powder and solution(mixture of methanol, ethanol and water as solvent) have been measured underhigh pressure. It has been found that the emission property of Rhodamine 101 powderis quite different from that in solvent under high pressures. For Rhodamine 101 powder,the fluorescence intensity drops quickly with the increase of pressure and disappearsalmost at 8 GPa, while the emission peaks shift to lower frequency dramatically (about100 nm within 8 GPa). For Rhodamine 101 solution, the fluorescence intensity decreasesslowly with the increase of pressure; the emission intensity at 13 GPa is about10% of that at the ambient pressure. Moreover, the emission peak position decreasesmore slowly (about 50 nm within 13 GPa). The change of molecular structure andspecial solvent effect are the primary factors that influence the emission character ofRhodamine 101 powder and solution under high pressure, respectively.
     In Chapter Six, a mass production of single crystal ZnO nanowires with wurtzite structure were synthesized by a simple and rapid method based on thermal evaporationwithout the use of noble metal catalyst. The defect and near band edge emissionat room temperature are considered to come from the singly ionized oxygen vacancyand the overlap of free exciton and free-to-band emission respectively by EPR and lowtemperature photoluminescence spectra. The coupling parameters of exciton-acousticphonon and of exciton-longitudinal-optical phonon were determined as 63.44μeV/Kand 898 meV, and 251 K for Einstein temperature by fitting the temperature dependenceof free exciton emission peak energy and FWHM to empirical formulas. Theflower-like ZnO nanostructure are synthesized via hydrothermal method without anysurfactant. The growth mechanism is discussed and the optical properties are alsoinvestigated in detail by absorption, luminescence and Raman spetra. Magnetic Co~(2+)-doped ZnO nanorods are fabricated via direct hydrothermal synthesis. The measurementsof XRD and absorption spectra demonstrate the presence of cobalt in the +2state in a tetrahedral crystal field. The room-temperature ferromagnetism is attributedto inherent property of the materials caused by the presence of cobalt in high-spinconfiguration in a tetrahedral crystal field.
     Chapter Seven summarizes the contents of six chapters above.
引文
[1]张葳葳.PhD thesis.吉林大学.2003.
    
    [2]王华馥、吴自勤.固体物理实验方法.高等教育出版社,北京,1997.
    
    [3] M.I. McMahon and R.J. Nelmes. Chem. Soc. Rev., 35: 943, 2006.
    
    [4] B. Olinger and W. Shaner. Science, 219: 1071,1983.
    
    [5] M. Hanfland, K. Syassen, N.E. Christensen, and D.L. Novikov. Nature, 408: 174, 2000.
    
    [6] A.F. Goncharov, V.V. Struzhkin, H.K. Mao, and R.J. Hemley. Phys. Rev. B, 71: 184114,2005.
    
    [7] M. Hanfland, I. Loa, and K. Syassen. Phys. Rev. B, 65: 184109, 2002.
    
    [8] K. Syassen. 40th European High-Pressure Research Group Meeting. 2002.
    
    [9] H. Olijnyk and W.B. Holzapfel. Phys. Lett. A, 99: 381,1982.
    
    [10] M. Winzenick, V. Vijayakumar, and W.B. Holzapfel. Phys. Rev. B, 50: 12381, 1994.
    
    [11] L.G. Liu. J. Phys. Chem. Solids, 47:1067,1986.
    
    [12] M.I. McMahon, R.J. Nelmes, U. Schwarz, and K. Syassen. Phys. Rev. B, 74:140102,2006.
    
    [13] K. Nakano, Y. Akahama, and H. Kawamura. J. Phys.: Condens. Matter, 14:10569, 2002.
    
    [14] H. Olijnyk and W.B. Holzapfel. Phys. Rev. B, 31:4682,1985.
    
    [15] M. Winzenick and W.B. Holzapfel. High Pressure Science and Technology. W. Trzeci-akowski, Singapore, 1996.
    
    [16] H. Olijnyk and W.B. Holzapfel. Phys. Lett. A, 100: 191, 1984.
    
    [17] T. Yabuuchi, Y. Nakamoto, K. Shimizu, and T. Kikegawa. J. Phys. Soc. Jpn., 74:2391,2005.
    
    [18] T. Bovornratanaraks, D.R. Allan, S.A. Belmonte, M.I. McMahon, and R.J. Nelmes. Phys.Rev.B,73: 144112,2006.
    
    [19] M.I. McMahon, T. Bovornratanaraks, D.R. Allan, S.A. Belmonte, and R.J. Nelmes. Phys.Rev. B,61:3135,2000.
    
    [20] Y.K. Vohra, A. Grosshans, and W.B. Holzapfel. Phys. Rev. B, 25: 6019, 1982.
    
    [21] Y.C. Zhao, F. Porsch, and W.B. Holzapfel. Phys. Rev. B, 54: 9715, 1996.
    [22] Y. Akahama, H. Fujihisa, and H. Kawamura. Phys. Rev. Lett., 94: 195503, 2005.
    
    [23] Y.K. Vohra and P.T. Spencer. Phys. Rev. Lett., 86: 3068, 2001.
    
    [24] Y. Akahama, H. Kawamura, and T. Le Bihan. Phys. Rev. Lett., 87: 275503, 2001.
    [25] Y. Akahama, H. Kawamura, and T. Le Bihan. J. Phys.: Condens. Matter., 14: 10583, 2002.
    
    [26] Y. Akahama, M. Kobayashi, and H. Kawamura. J. Phys. Soc. Jpn., 60: 3211, 1991.
    
    [27] J.C. Jamieson and A.W. Lawson. J. Appl. Phys., 33: 776, 1992.
    
    [28] T. Takahashi and W.A. Bassett. Science, 145: 483,1964.
    
    [29] H.K. Mao, Y. Wu, L.C. Chen, J.F. Shu, and R.J. Hemley. High Pressure Res., 5: 773, 1990.
    
    [30] C.S. Yoo, H. Cynn, P. Soderlind, and V. Iota. Phys. Rev. Lett., 84: 4132, 2000.
    
    [31] R.G. Green, H. Luo, and A.L. Ruoff. Phys. Rev. Lett., 73: 2075, 1994.
    
    [32] Y. Akahama, M. Nishimura, K. Kinoshita, H. Kawamura, and Y. Ohishi. Phys. Rev. Lett.,96: 045505,2006.
    
    [33] J. Donohue. The Structure of the Elements. Robert E. Krieger Publishing Company, Malabar,1982.
    
    [34] J.D. Barnett, V.E. Dean, and H.T. Hall. J. Appl. Phys., 37: 875, 1966.
    
    [35] S. Desgreniers, Y.K. Vohra, and A.L. Ruoff. Phys. Rev. B, 39: 10359, 1989.
    
    [36] T. Takahashi, H.K. Mao, and W.A. Bassett. Science, 165: 1352, 1969.
    
    [37] C.A. Vanderborgh, Y.K. Vohra, H. Xia, and A.L. Ruoff. Phys. Rev. B, 41: 7338, 1990.
    
    [38] M. Ueno, A. Onodera, O. Shimomura, and K. Takemura. Phys. Rev. B, 45: 10123, 1992.
    
    [39] M.I. Eremets, K. Takemura, H. Yusa, D. Golberg, Y. Bando, V.D. Blank, Y. Sato, and K.Watanabe. Phys. Rev. B, 57: 5655, 1998.
    
    [40] R.M. Wentzcovitch, M.L. Cohen, and P.K. Lam. Phys. Rev. B, 36: 6058, 1987.
    
    [41] P. Perlin, I. Gorczyca, I. Gregory, N. Suski, N.E. Christensenand, and A. Polian. Japan. J.Appl. Phys., 32: 334,1993.
    
    [42] P.E. Vancamp and V.E. Vandoren. Solid State Commun., 95: 173, 1995.
    [43] H. Xia, Q. Xia, and A.L. Ruoff. Phys. Rev. B, 47: 12925,1993.
    [44] Q. Xia, H. Xia, and A.L. Ruoff. J. Appl. Phys., 73: 8198,1993.
    
    [45] M. Ueno, M. Yoshida, A. Onodera, O. Shimomura, and K. Takemura. Phys. Rev. B, 49: 14,1994.
    [46] R.G. Greene, H. Luo, and A.L. Ruoff. J. Appl. Phys., 76: 7296,1994.
    
    [47] A. Onodera, N. Kawi, K. Ishizaki, and I.L. Spain. Solid State Commun., 14: 803,1974.
    
    [48] M. Baublitz and A.L. Ruoff. J. Appl. Phys., 53: 6179, 1982.
    
    [49] R.J. Nelmes, M.I. Mcmahon, and S.A. Belmonte. Phys. Rev. Lett., 79: 3668, 1997.
    
    [50] S. Minomura and H.G. Drickamer. J. Phys. Chem. Solids, 23:451,1962.
    
    [51] R.J. Nelmes, M.I. McMahon, and S.A. Belmonte. Phys. Rev. Lett., 79: 3668,1997.
    
    [52] A. Mujica and R.J. Needs. Phys. Rev. B, 55: 9659,1997.
    
    [53] A. Mujica and R.J. Needs. Phys. Rev. B, 56:12653,1997.
    
    [54] U.D. Venkateswaran, C.L. Cui, B.A. Weinstein, and F.A. Chambers. Phys. Rev. B, 45: 9237,1992.
    
    [55] R.G. Greene, H. Luo, T. Li, and A.L. Ruoff. Phys. Rev. Lett., 72: 2045,1994.
    
    [56] A. Kelsey, G.J. Ackland, and S.J. Clark. Phys. Rev. B, 57: R2029,1998.
    
    [57] S.T. Weir, Y.K. Vohra, C.A. Vanderborgh, and A.L. Ruoff. Phys. Rev. B, 39:1280,1989.
    
    [58] R.J. Nelmes and M.I. McMahon. Phys. Rev. B, 51: 15723,1995.
    
    [59] A. Mujica, P.R. Hernandez, S. Radescu, R.J. Needs, and A. Munoz. Phys. Status Solidi b,211: 39,1999.
    
    [60] M.I. McMahon, R.J. Nelmes, D.R. Allan, S.A. Belmonte, and T. Bovornratanaraks. Phys.Rev.B, 50: 13047, 1994.
    
    [61] M. Mezouar, J.M. Besson, G. Syfosse, J.P. Itie, D. Hausermann, and M. Hanfland. Phys.Status Solidi b, 198: 403, 1996.
    
    [62] C. Bates, W. White, and R. Roy. Science, 137: 993,1962.
    
    [63] J.C. Jamieson. Phys. Earth. Planet. Inter., 3: 201, 1970.
    
    [64] F. Decremps, J. Zhang, and R.C. Liebermann. Europhys. Lett., 51: 268, 2000.
    
    [65] F. Decremps, J. Zhang, B. Li, and R.C. Liebermann. Phys. Rev. B, 63: 224105, 2001.
    
    [66] S. Ves, U. Schwarz, N.E. Christensen, K. Syassen, and M. Cardona. Phys. Rev. B, 42: 9113,1990.
    
    [67] Y.H. Zhou, A.J. Campbell, and D.L. Heinz. J. Phys. Chem. Solids, 52: 821, 1991.
    
    [68] P.L. Smith and J.E. Martin. Phys. Lett., 19: 541, 1965.
    
    [69] R.J. Nelmes and M.I. McMahon. Semicond. Semimetals, 54: 145, 1998.
    [70] M. Uchino, T. Mashimo, M. Kodama, T. Kobayashi, E. Takasawa, T. Sekine, Y. Noguchi,H. Hikosaka, K. Fukuoka, Y. Syono, T. Kondo, and T. Yagi. J. Phys. Chem. Solids, 60: 827,1999.
    
    [71] S. Desgreniers, L. Beaulieu, and I. Lepage. Phys. Rev. B, 61: 8726, 2000.
    
    [72] H. Karzel, W. Potzel, M. Kofferlein, W. Schiessl, M. Steiner, U. Hiller, G.M. Kalvius, D.W.Mitchell, T.P. Das, P. Blaha, K. Schwarz, and M.P. Pasternak. Phys. Rev. B, 53:11425,1996.
    
    [73] M.I. McMahon and R.J. Nelmes. Phys. Status Solidi b, 198: 389, 1996.
    
    [74] A. San Miguel, A. Polian, M. Gauthier, and J.P. Itie. Phys. Rev. B, 48: 8683, 1993.
    
    [75] R.J. Nelmes, M.I. McMahon, N.G. Wright, and D.R. Allan. J. Phys. Chem. Solids, 56: 545,1995.
    
    [76] R.J. Nelmes, M.I. McMahon, N.G. Wright, and D.R. Allan. Phys. Rev. Lett., 73: 1805, 1994.
    [77] A.L. Edwards and H.G. Drickamer. Phys. Rev., 122: 1149, 1961.
    [78] A.N. Mariano and E.P. Warekois. Science, 142: 672, 1963.
    
    [79] T. Suzuki, T. Yagi, S. Akimoto, T. Kawamura, S. Toyoda, and S. Endo. J. Appl. Phys., 54:748, 1983.
    
    [80] M.I. McMahon, R.J. Nelmes, N.G. Wright, and D.R. Allan. Phys. Rev. B, 48: 16246, 1993.
    
    [81] R.J. Nelmes, M.I. McMahon, N.G. Wright, and D.R. Allan. Phys. Rev. B, 51: 15723, 1995.
    
    [82] H. Katzke and P. Toledano. J. Phys.: Condens. Matter, 19: 275204, 2007.
    
    [83] K. Shimizu, H. Ishikawa, D. Takao, T. Yagi, and K. Amaya. Nature, 419: 597, 2002.
    
    [84] N.E. Christensen and D.L. Novikov. Phys. Rev. Lett., 86: 1861, 2001.
    
    [85] V.V. Struzhkin, M.I. Eremets, W. Gan, H.K. Mao, and RJ. Hemley. Science, 298: 1213,2002.
    
    [86] K. Shimizu, H. Ishikawa, D. Takao, T. Yagi, and K. Amaya. Nature, 419: 597, 2002.
    [87] M.I. Eremets, V.V. Struzhkin, H.K. Mao, and RJ. Hemley. Science, 293: 272, 2001.
    [88] O. Zakharov and M.L. Cohen. Phys. Rev. B, 52: 12572, 1995.
    [89] V.V. Struzhkin, RJ. Hemley, H.K. Mao, and Y.A. Timofeev. Nature, 390: 382, 1997.
    
    [90] E. Gregoryanz, V.V. Struzhkin, RJ. Hemley, M.I. Eremets, H.K. Mao, and Y.A. Timofeev.Phys. Rev. B, 65: 064504, 2002.
    
    [91] E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Melnik, N.J. Curro, J.D. Thompson, and S.M. Stishov. Nature, 428: 542,2004.
    
    [92] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu. Nature, 410: 63,2001.
    
    [93] C.Q. Jin, S. Adachi, X.J. Wu, H. Yamauchi, and S. Tanaka. Physica C, 223: 238,1994.
    [94] Q.Q. Liu, X.M. Qin, Y. Yu, F.Y. Li, C. Dong, and C.Q. Jin. Physica C, 420: 23, 2005.
    
    [95] Q.Q. Liu, H. Yang, X.M. Qin, Y. Yu, L.X. Yang, F.Y. Li, R.C. Yu, C.Q. Jin, and S. Uchida.Phys. Rev. B, 74: 100506, 2006.
    
    [96] H. Li, B. Zhong, L.M. He, G.Q. Yang, Y. Li, S.K. Wu, and J. Liu. Appl. Phys. Lett., 80:2299, 2002.
    
    [97] J.M. Lang and H.G. Drickamer. J. Phys. Chem., 97: 5058,1993.
    
    [98] F.P. Bundy, H.T. Hall, H.M. Strong, and R.H. Wentorf Jr. Nature, 176: 51,1955.
    
    [99] A. Onodera, K. Terashima, T. Urushihara, and K. Suito. J. Mater. Sci., 32: 4309,1997.
    
    [100] M. Akaishi, H. Kanda, and S. Yamaoka. Science, 259:1592,1993.
    
    [101] D.J. Erskine and W.J. Nellis. Nature, 349: 317,1991.
    
    [102] M.N. Regueiro, P. Monceau, and J.L. Hodeau. Nature, 355: 237,1992.
    
    [103] Y.Z. Ma, G.T. Zou, H.B. Yang, and J.F. Meng. Appl. Phys. Lett., 65: 822,1994.
    
    [104] C.A. Fox, M.C. McMaster, W.L. Hsu, M.A. Kelly, and S.B. Hagstrom. Appl. Phys. Lett., 67:2379,1995.
    
    [105] A. Giraud, T. Jenny, E. Leroy, O.M. Kuttel, L. Schlapbach, P. Vanelle, and L. Giraud. J. Am.Chem. Soc, 123: 2271, 2001.
    
    [106] C.S. Yan, Y.K. Vohra, H.K. Mao, and R.J. Hemley. PNAS, 99: 12523, 2002.
    
    [107] W.L. Mao, H.K. Mao, C.S. Yan, J.F. Shu, J.Z. Hu, and R.J. Hemley. Appl. Phys. Lett., 83:5190,2003.
    
    [108] X.Z. Zhao, R. Roy, K.A. Cherian, and A. Badzian. Nature, 385: 513,1997.
    
    [109] Z.S. Lou, Q.W. Chen, Y.F. Zhang, W. Wang, and Y.T. Qian. J. Am. Chem. Soc, 125: 9302,2003.
    
    [110] Y.D. Li, Y.T. Qian, H.W. Liao, Y. Ding, L. Yang, C.Y. Xu, F.Q. Li, and G.E. Zhou. Science,281: 246, 1998.
    
    [111] T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya. Nature, 421: 599,2003.
    
    
    [112] L.T. Sun, J.L. Gong, Z.Y Zhu, D.Z. Zhu, S.X. He, Z.X. Wang, Y. Chen, and G. Hu. Appl.Phys. Lett., 84: 2901, 2004.
    
    [113] J. Sun, S.L. Hu, X.W. Du, Y.W. Lei, and L. Jiang. Appl. Phys. Lett., 89: 183115, 2006.
    
    [114] M.L. Cohen. Phys. Rev. B, 32: 7988,1985.
    
    [115] A.Y. Liu and M.L. Cohen. Phys. Rev. B, 41: 10727, 1990.
    
    [116] D. Zhong, S. Liu, G.Y. Zhang, and E.G. Wang. J. Appl. Phys., 89: 5939, 2001.
    
    [117] M. Lejeune, O. Durand-Drouhin, K. Zellama, and M. Benlahsen. Solid State Commun., 120:337,2001.
    
    [118] T. Szorenyi, J.P. Stoquert, J. Perierre, F. Antoni, and E. Fogarassy. Diamond Relat. Mater.,10:2107,2001.
    
    [119] I. Alves, G. Demazeau, B. Tanguy, and F. Weil. Solid State Commun., 109: 697, 1999.
    
    [120] A. Andreyew, M. Akaishi, and D. Golberg. Diamond Relat. Mater., 11: 1885, 2002.
    
    [121] A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fue, P. Kroll, and R.Boehler. Nature, 400: 340, 1999.
    
    [122] E. Soignard, M. Somayazulu, J. Dong, O.F. Sankey, and P.F. McMillan. J. Phys.: Condens.Matter, 13: 557,2001.
    
    [123] M. Schwarz, G. Miehe, A. Zerr, E. Kroke, B. Poe, H. Fuess, D.C. Rubie, and R. Riedel. Adv.Mater., 12: 883, 2000.
    
    [124] H. He, T. Sekine, T. Kobayashi, H. Hirosaki, and I. Suzuki. Phys. Rev. B, 62: 11412, 2000.
    
    [125] T. Sekine, H. He, T. Kobayashi, M. Zhang, and F. Xu. Appl. Phys. Lett., 76: 3706, 2000.
    
    [126] A. Zerr, G. Miehe, and R. Riedel. Nat. Mater., 2: 185, 2003.
    
    [127] E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H.K. Mao, and R.J. Hemley.Nat. Mater., 3: 294, 2004.
    
    [1281丁泽军.高压物理实验技术.中国科技大学.2003.
    
    [129] I.M. Chou, J.G. Blank, A.F. Goncharov, H.K. Mao, and R.J. Hemley. Science, 281: 809,1998.
    
    [130] W.L. Mao, H.K. Mao, Y. Meng, P.J. Eng, M.Y. Hu, P. Chow, Y.Q. Cai, J.F. Shu, and R.J.Hemley. Science, 314: 636, 2006.
    
    [131] N.W. Ashcroft. Phys. Rev. B, 41: 10963, 1990.
    [132] C. Narayana, H. Luo, J. Orloff, and A.L. Ruoff. Nature, 393: 46,1998.
    
    [133] K. Johnson and N.W. Ashcroft. Nature, 403: 632,2000.
    
    [134] P. Loubeyre, F. Occelli, and R.L. Toullec. Nature, 416: 613, 2002.
    
    [135] A.K. McMahan and R. LeSar. Phys. Rev. Lett., 54:1929,1985.
    
    [136] A.F. Goncharov, E. Gregoryanz, H.K. Mao, Z.X. Liu, and R.J. Hemley. Phys. Rev. Lett., 85:1262, 2000.
    
    [137] M.I. Eremets, R.J. Hemley, H.K. Mao, and E. Gregoryanz. Nature, 411:170, 2001.
    
    [138] S. Serra, C. Cavazzoni, G.L. Chiarotti, S. Scandolo, and E. Tosatti. Science, 284: 788,1999.
    
    [139] V. Iota, C.S. Yoo, and H. Cynn. Science, 283:1510,1999.
    
    [140] L.R. Benedetti, J.H. Nguyen, W.A. Caldwell, H.J. Liu, M. Kruger, and R. Jeanloz. Science,286: 100,1999.
    
    [141] A. Sharma, J.H. Scott, G.D. Cody, M.L. Fogel, R.M. Hazen, R.J. Hemley, and W.T. Huntress.Science, 295:1514,2002.
    
    [142] R.P. Feynman. California Institute of Technology journal of Engineering and Science, 4:23,1960.
    
    [143] R. Rossetti, S. Nakahara, and L.E. Brus. J. Chem. Phys., 79:1086,1983.
    [144] R. Kubo, A. Kawabata, and S. Kobayshi. Annu. Rev. Mater. Sci.,14:49,1984.
    [145] W.P. Halperin. Rev. Mod. Phys., 58: 532,1986.
    [146] P. Ball and L. Garwin. Nature, 355: 761,1992.
    
    [147]张立德、牟季美.纳米材料和纳米结构.科学出版社,北京,2001.
    
    [148]孙晓明.PhD thesis.清华大学.2005.
    
    [149] X. Wang, J. Zhuang, Q. Peng, and Y. Li. Nature, 437:121,2005.
    
    [150] X. Wang, J. Zhuang, Q. Peng, and Y.D. Li. Inorg. Chem., 45:6661,2006.
    
    [151] X. Liang, X. Wang, J. Zhuang, Q. Peng, and Y.D. Li. Adv. Funct. Mater., 17: 2757,2007.
    
    [152] Y.P. Du, Y.W. Zhang, L.D. Sun, and C.H. Yan. J. Phys. Chem. C, 112: 405,2008.
    
    [153] H.X. Mai, Y.W. Zhang, L.D. Sun, and C.H. Yan. J. Phys. Chem. C, 111:13721,2007.
    
    [154] H.X. Mai, Y.W. Zhang, R. Si, Z.G. Yan, L.D. Sun, L.P. You, and C.H. Yan. J. Am. Chem.Soc, 128: 6426,2006.
    
    [155] C.B. Murray, D.J. Norris, and M.G. Bawendi. J. Am. Chem. Soc, 115: 8706, 1993.
    [156] L. Manna, E.C. Scher, and A.P. Alivisatos. J. Am. Chem. Soc, 122: 12700, 2000.
    
    [157] X.G. Peng. Chem. Eur. J., 8: 335, 2002.
    
    [158] Z.A. Peng and X.G. Peng. J. Am. Chem. Soc, 124: 3343, 2002.
    
    [159] X.G. Peng. Adv. Mater., 15: 459, 2003.
    
    [160] Z.A. Peng and X.G. Peng. J. Am. Chem. Soc, 123: 183, 2001.
    
    [161] S. Iijima. Nature, 354: 56, 1991.
    
    [162] A.M. Morales and C.M. Lieber. Science, 279: 208, 1998.
    
    [163] Y. Wu and P. Yang. J. Am. Chem. Soc, 123: 3165, 2001.
    
    [164] J. Hu, M. Ouyang, P. Yang, and C.M. Lieber. Nature, 399: 48, 1999.
    
    [165] Y. Wu, R. Fan, and P. Yang. Nano Lett, 2: 83, 2002.
    
    [166] Z.W. Pan, Z.R. Dai, and Z.L. Wang. Science, 291: 1947, 2001.
    
    [167] Z.W. Pan, Z.R. Dai, C. Ma, and Z.L. Wang. J. Am. Chem. Soc, 124: 1817, 2002.
    
    [168] Z.L. Wang, R.P. Gao, J.L. Gole, and J.D. Stout. Adv. Mater., 12: 1938, 2000.
    
    [169] T.J. Trentler, K.M. Hickman, and S.C. Goel. Science, 270: 1791,1995.
    
    [170] X. Wang, X.M. Sun, D.P. Yu, B.S. Zou, and Y.D. Li. Adv. Mater., 15: 1442, 2003.
    
    [171] R.X. Yan, X.M. Sun, X. Wang, Q. Peng, and Y.D. Li. Chem. Eur. J.,11: 2183, 2005.
    
    [172] X. Wang and Y.D. Li. Angew. Chem. Int. Ed, 41: 4790, 2002.
    
    [173] H. Dai, E.W. Wong, Y.Z. Liu, S. Fan, and CM. Lieber. Nature, 375: 769, 1995.
    
    [174] X.C. Jiang, B. Mayers, T. Herricks, and Y.N. Xia. Adv. Mater., 15: 1740, 2003.
    
    [175] S.M. Alfonso. Chem. Soc Rev., 35: 876, 2006.
    
    [176] S.H. Tolbert and A.P. Alivisatos. J. Chem. Phys., 102: 4642, 1995.
    
    [177] J.Z. Jiang. J. Mater. Sci., 39: 5103, 2004.
    
    [178] J.Z. Jiang, L. Gerward, D. Frost, R. Secco, J. Peyronneau, and J.S. Olsen. J. Appl. Phys., 86:6608,1999.
    
    [179] Y.W. Pan, S.C. Qu, C.X. Gao, Y.H. Han, J.F. Luo, Q.L. Cui, J. Liu, and G.T. Zou. Chin.Phys. Lett., 21: 67, 2004.
    
    [180] D. Serge, B. Lue, and L. Ian. Phys. Rev. B, 61: 8726, 2000.
    
    [181] J.Z. Jiang, L. Gerward, R. Secco, D. Frost, J.S. Olsen, and J. Peyronneau. J. Appl. Phys., 87: 2658, 2000.
    [182] S.B. Qadri, J. Yang, B.R. Ratna, E.F. Skelton, and J.Z. Hu. Appl. Phys. Lett., 69: 2205,1999.
    
    [183] Y. He, J.F. Liu, W. Chen, Y. Wang, H. Wang, Y.W. Zeng, G.Q. Zhang, L.N. Wang, J. Liu,T.D. Hu, H. Hahn, H. Gleiter, and J.Z. Jiang. Phys. Rev. B, 72: 212102, 2005.
    
    [184] J.C. Jamieson. Science, 139: 845,1963.
    
    [185] Y. Wang, A. Suna, W. Mahler, and R. Kawoski. J. Chem. Phys., 87: 7315, 1987.
    
    [186] H. Wang, J.F. Liu, Y. He, Y. Wang, W. Chen, J.Z. Jiang, J.S. Olsen, and L. Gerward. J. Phys.:Condens. Matter, 19: 156217, 2007.
    
    [187] C.S. Menoni, J.Z. Hu, and I.L. Spain. Phys. Rev. B, 34: 362, 1986.
    
    [188] Z.W. Wang and S.K. Saxena. Solid State Commun., 123: 195,2002.
    
    [189] J.Z. Jiang, J.S. Olsen, L. Gerward, and S. Morup. Europhys. Lett., 44: 620,1998.
    
    [190] J.S. Olsen, L. Gerward, and J.Z. Jiang. J. Phys. Chem. Solids, 60: 229,1999.
    
    [191] Z.W. Wang, S.K. Saxena, V. Pischedda, H.P. Liermann, and C.S. Zha. Phys. Rev. B, 64:012102,2001.
    
    [192] S. Rekhi, S.K. Saxena, and P. Lazor. J. Appl. Phys., 89: 2968, 2001.
    
    [193] G.A. Kourouklis, A. Jayaraman, and G.P. Espinosa. Phys. Rev. B, 37: 4250,1988.
    
    [194] Q. Cui, Y. Pan, W. Zhang, X. Wang, J. Zhang, T. Cui, Y. Xie, J. Liu, and G. Zou. J. Phys.:Condens. Matter, 14: 11041, 2002.
    
    [195] S. Uehara, T. Masamoto, A. Onodera, M. Ueno, O. Shimomura, and K. Takemura. J. Phys.Chem. Solids, 58: 2093,1997.
    
    [196] A. Munoz and K. Kunc. Phys. Rev. B, 44: 10372, 1991.
    
    [197] I. Gorczyca and N.E. Christorsen. Solid State Commun., 80: 335, 1991.
    
    [198] P.E. Van Camp, V.E. Van Doren, and J.T. Devreese. Solid State Commun., 81: 23, 1992.
    
    [199] Z.W. Wang, K. Tait, Y.S. Zhao, D. Schiferl, C.S. Zha, H. Uchida, and R.T. Downs. J. Phys.Chem. B, 108: 11506,2004.
    
    [200] M. Ueno, A. Onodera, O. Shimomura, and K. Takemura. Phys. Rev. B, 45: 10123, 1992.
    
    [201] F.H. Su, Z.L. Fang, B.S. Ma, K. Ding, G.H. Li, and W. Chen. J. Phys. Chem. B, 107: 6991,2003.
    
    [202] G.L. House and H.G. Drickamer. J. Chem. Phys., 67: 3230, 1997.
    [203] J. Huso, J.L. Morrison, H. Hoeck, X.B. Chen, L. Bergman, S.J. Jokela, M.D. McCluskey,and T. Zheleva. Appl. Phys. Lett., 89: 171909, 2006.
    
    [204] F. Datchi and B. Canny. Phys. Rev. B, 69: 144106, 2004.
    
    [205] S.H. Tolbert, A.B. Herhold, L.E. Brus, and A.P. Alivisatos. Phys. Rev. Lett., 76:4384, 1996.
    
    [206] S.K. Deb, M. Wilding, M. Somayazulu, and P.F. McMillan. Nature, 414: 528, 2001.
    
    [207] T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, and H. Sumiya. Nature, 421: 599,2003.
    
    [208] J.Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, and J.T. Louis. Phys. Rev. Lett., 90:037401,2003.
    
    [209] L.M. Cao, J. Liu, C.X. Gao, Y.C. Li, X.D. Li, Y.Q. Wang, Z. Zhang, Q.L. Cui, G.T. Zou,L.L. Sun, and W.K. Wang. J. Phys.: Condens. Matter, 14: 11017, 2002.
    
    [210] H.K. Poswal, N. Garg, S.M. Sharma, E. Busetto, S.K. Sikka, G. Gundiah, F.L. Deepak, and C.N.R. Rao. J. Nanosci. Nanotech., 5: 729, 2005.
    
    [211] X. Wu, Z.Y. Wu, L. Guo, CM. Liu, J. Liu, X.D. Li, and H.B. Xu. Solid State Common., 135:780, 2005.
    
    [212] Z.W. Wang, K. Finkelstein, C. Ma, and Z.L. Wang. Appl. Phys. Lett., 90: 113115, 2007.
    
    [213] H.M. Fan, Z.H. Ni, Y.P. Feng, X.F. Fan, Z.X. Shen, and B.S. Zou. J. Raman Spectrosc, 38:1112,2007.
    
    [214] L.H. Shen, X.F. Li, Y.M. Ma, K.F. Yang, W.W. Lei, Q.L. Cui, and G.T. Zou. Appl. Phys.Lett., 89: 141903, 2006.
    
    [215] W. Shan, W. Walukiewicz, J.W. Ager III, K.M. Yu, Y. Zhang, S.S. Mao, R. Kling, C. Kirch-ner, and A. Waag. Appl. Phys. Lett., 86: 153117, 2005.
    
    [216] S.J. Chen, Y.C. Liu, C.L. Shao, C.S. Xu, Y.X. Liu, L. Wang, B.B. Liu, and G.T. Zou. J. Appl.Phys., 98: 106106, 2005.
    
    [217] Z.P. Li, B.B. Liu, X.L. Li, S.D. Yu, L. Wang, Y.Y. Hou, Y.G. Zou, M.G. Yao, Q.J. Li, B. Zou,T. Cui, and G.T. Zou. J. Phys.: Condens. Matter, 19: 425227, 2007.
    
    [218] P.M. Ajayan and S. Iijima. Nature, 361: 333, 1993.
    
    [219] S.C. Tsang, Y.K. Chen, P.J.F. Harris, and M.L. Green. Nature, 372: 159, 1994.
    
    [220] N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, and D.R.M. Walton. Appl Phys.Lett., 75: 3363, 1999.
    
    [221] W. Chen, X.L. Pan, and X.H. Bao. J. Am. Chem. Soc, 129: 742, 2007.
    [222] T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, and Y.Iwasa. Nature Mater., 2: 683, 2003.
    
    [223] K. Yanagi, K. Iakoubovskii, H. Matsui, H. Matsuzaki, H. Okamoto, Y. Miyata, Y. Maniwa,S. Kazaoui, N. Minami, and H. Kataura. J. Am. Chem. Soc, 129: 4992, 2007.
    
    [224] S. Karmakar, S.M. Sharma, P.V. Teredesai, and A.K. Sood. Phys. Rev. B, 69: 165414, 2004.
    [225] R. Boehler, N. Vonbargen, and A. Chopelas. J. Geophys. Res. B, 95: 21731, 1990.
    [226] H.P. Scott, Q. Williams, and E. Knittle. Geophys. Res. Lett., 28: 1875,2001.
    [227] S. Karmakar, P.K. Tyagi, D.S. Misra, and S.M. Sharma. Phys. Rev. B, 73: 184119, 2006.
    [228] C.S. Yoo, H. Cynn, P. Soderlind, and V. Iota. Phys. Rev. Lett., 84:4132,2000.
    
    [229] A. Merlen, N. Bendiab, P. Toulemonde, A. Aouizerat, A. San Miguel, J.L. Sauvajol, G.Montagnac, H. Cardon, and P. Petit. Phys. Rev. B, 72: 035409, 2005.
    
    [230] S. Lebedkin, K. Arnold, O. Kiowski, F. Hennrich, and M.M. Kappes. Phys. Rev. B, 73:094109,2006.
    
    [231] S. Sana, D.V.S. Muthu, D. Golberg, C. Tang, C. Zhi, Y. Bando, and A.K. Sood. Chem. Phys.Lett., 421: 86, 2006.
    
    [232] C.L. Chen, W.L. Jun, T.D. Sheng, X.S. Shen, and J.C. Qing. Chin. Phys. Lett., 18: 577,2001.
    
    [233] M. Hanfland, H. Beister, and K. Syassen. Phys. Rev. B, 39:12598,1989.
    
    [234] S.J. Chen, Y.C. Liu, C.L. Shao, C.S. Xu, Y.X. Liu, C.Y. Liu, B.P. Zhang, L. Wang, B.B. Liu,and G.T. Zou. Appl, Phys. Lett, 88: 133127, 2006.
    
    [235] M. Nunez-Regueiro, L. Marques, and J.L. Hodeau. The Physics of fullerene-based and fullerene-related materials. Kluwer Academic Dordrecht, Boston, 2000.
    
    [236] S. Yamanaka, A. Kubo, K. Inumaru, K. Komaguchi, N.S. Kini, T. Inoue, and T. Irifune. Phys.Rev. Lett., 96: 076602, 2005.
    
    [237] M.V. Korobov, V.M. Senyavin, A.G. Bogachev, E.B. Stukalin, V.A. Davydov, L.S. Kashe-varova, A.V. Rakhmanina, V. Agafonov, and A. Szwarc. Chem. Phys. Lett., 381: 410, 2003.
    
    [238] V.D. Blank, S.G. Buga, G.A. Dubitsky, N.R. Serebranaya, N.Y. Popov, and B. Sundqvist.Carbon, 36: 319, 1998.
    
    [239] A.V. Talyzin, L.S. Dubrovinsky, T. Lebihan, and U. Jansson. J. Chem. Phys., 116: 2166,2002.
    [240] L. Marques, M. Mezouar, J.L. Hodeau, M. Nunez-Regueiro, N.R. Serebryanaya, V.A. Iv-denko, V.D. Blank, and G.A. Dubitsky. Science, 283: 1720,1999.
    
    [241] S.N. Luo, 0. Tschauner, T.E. Tierney, D.C. Swift, S.J. Chipera, and P.D. Asimow. J. Chem.Phys., 123:024703,2005.
    
    [242] A. San Miguel and P. Toulemonde. High Pressure Res., 25: 159, 2005.
    
    [243] S. Yamanaka, E. Enishi, H. Fukuoka, and M. Yasukawa. Inorg. Chem., 39: 56, 2000.
    
    [244] A. San Miguel, P. Keghelian, X. Blase, P. Melinon, A. Perez, A. Polian, J.P. Itie, E. Reny, C.Cros, and M. Puchard. Phys. Rev.Lett., 83: 5290, 1999.
    
    [245] L. Qin, K.L. Teo, Z.X. Shen, C.S. Peng, and J.M. Zhou. Phys. Rev. B, 64: 075312, 2001.
    [246] K.L. Teo, L. Qin, Z.X. Shen, and O.G. Schmidt. AppL Phys. Lett, 80: 2919, 2002.
    
    [247] T. Suski, H. Teisseyre, S.P. Lepkowski, P. Perlin, T. Kitamura, Y. Ishida, H. Okumura, and S.F. Chichibu. AppL Phys. Lett., 81: 232, 2002.
    
    [248] J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner. Appl. Phys. Lett., 89:231104,2006.
    
    [249] M.D. Fischbein and M. Drndic. AppL Phys. Lett., 86: 193106,2005.
    
    [250] M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A.P. Alivisatos. Science, 281: 2013, 1998.
    
    [251] X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M.Wu, S.S. Gambhir, and S. Weiss. Science, 307: 538, 2005.
    
    [252] W.Z. Guo, J.J. Li, Y.A. Wang, and X.G. Peng. J. Am. Chem. Soc, 125: 3901, 2003.
    
    [253] B.O. Dabbousi, J. Rodriguez Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F.Jensen, and M.G. Bawendi. J. Phys. Chem. B, 101: 9463, 1997.
    
    [254] M. Danek, K.F. Jensen, C.B. Murray, and M.G. Bawendi. Chem. Mater., 8: 173, 1996.
    [255] P. Reiss, J. Bleuse, and A. Pron. Nano Lett, 2:781, 2002.
    
    [256] X.G. Peng, M.C. Schlamp, A.V. Kadavanich, and A.P. Alivisatos. J. Am. Chem. Soc, 119:7019, 1997.
    
    [257] R.E. Bailey and S.M. Nie. J. Am. Chem. Soc, 125: 7100, 2003.
    
    [258] X.H. Zhong, M.Y. Han, Z.L. Dong, T.J. White, and W. Knoll. J. Am. Chem. Soc, 125: 8589,2003.
    
    [259] A.L. Edwards and H.G. Drickamer. Phys. Rev., 122: 1149, 1961.
    [260] S.H. Tolbert and A.P. Alivisatos. Science, 265: 373,1994.
    
    [261] S.H. Tolbert, A.B. Herhold, C.S. Johnson, and A.P. Alivisatos. Phys. Rev. Lett., 73: 3266,1994.
    
    [262] S.H. Tolbert and A.P. Alivisatos. J. Chem. Phys., 102: 4642, 1995.
    
    [263] C.C. Chen, A.B. Herhold, C.S. Johnson, and A.P. Alivisatos. Science, 276: 398, 1997.
    
    [264] J.N. Wickham, A.B. Herhold, and A.P. Alivisatos. Phys. Rev. Lett., 84: 923,2000.
    
    [265] K. Jacobs, D. Zaziski, E.C. Scher, A.B. Herhold, and A.P. Alivisatos. Science, 293: 1803,2001.
    
    [266] B.S. Kim, M.A. Islam, L.E. Brus, and I.P. Herman. J. Appl. Phys., 89: 8127, 2001.
    [267] R.W. Meulenberg and G.F. Strouse. Phys. Rev. B, 66: 035317, 2002.
    
    [268] W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, J. Wu, and E.E. Haller. Appl. Phys. Lett.,84: 67, 2004.
    
    [269] H. Sowa. Solid State Sci., 7:1384, 2005.
    
    [270] D. Zahn, Y. Grin, and S. Leoni. Phys. Rev. B, 72: 064110, 2005.
    
    [271] M. Grunwald, E. Rabani, and C. Dellago. Phys. Rev. Lett., 96: 255701, 2006.
    
    [272] H.M. Fan, Z.H. Ni, Y.P. Feng, X.F. Fan, J.L. Kuo, Z.X. Shen, and B.S. Zou. Appl. Phys.Lett., 90: 021921, 2007.
    
    [273] J.B. Li, G.H. Li, J.B. Xia, J.B. Zhang, Y. Lin, and X.R. Xiao. J. Phys: Condens. Matter, 13:2033, 2001.
    
    [274] J. Zeng, W. Lu, X.P. Wang, B. Wang, G.Z. Wang, and J.G. Hou. J. Colloid Interf. Sci., 298:685, 2006.
    
    [275] 曾杰. PhD thesis. 中国科技大学.2008.
    
    [276] S.H. Wei and A. Zunger. Phys. Rev. B, 60: 5404, 1999.
    
    [277] S.H. Wei and A. Zunger. Phys. Rev. B, 37: 8958,1988.
    
    [278] S. Sapra and D.D. Sarma. Phys. Rev. B, 69: 125304,2004.
    
    [279] M. Eremets. High Pressure Experimental Methods. Oxford University Press, Oxford, 1996.
    
    [280] J.B. Li and L.W. Wang. Appl. Phys. Lett., 85: 2929, 2004.
    
    [281] S.X. Li, E.E. Haller, W. Walukiewicz, W. Shan, H. Lu, and W.J. Schaff. Appl. Phys. Lett.,83:4963, 2003.
    
    [282] Y. Al Douri. Mater. Chem. Phys., 82: 49, 2003.
    
    [283] D. Battaglia, B. Blackman, and X.G. Peng. J. Am. Chem. Soc, 127: 10889, 2005.
    
    [284] C.T. Yuan, Y.C. Lin, Y.N. Chen, Q.L. Chiu, W.C. Chou, D.S. Chuu, W.H. Chang, H.S. Lin,R.C. Ruaan, and C.M. Lin. Nanotechnology, 18: 185402, 2007.
    
    [285] A.L. Linsebigler, G. Lu, and J.J.T. Yates. Chem. Rev., 95: 735, 1995.
    
    [286] C.C. Ting, S.Y. Chen, W.F. Hsieh, and H.Y. Lee. J. Appl. Phys., 90: 5564,1995.
    
    [287] G. Zhao, H. Kozuka, and T. Yoko. Thin Solid Films, 277: 147,1996.
    
    [288] J.W. Stouwdan and C.J.M. Veggel. Chem. Phys. Chem., 5: 743, 2004.
    
    [289]李灿.紫外Raman光谱在催化科学研究中的应用.第十三届全国光散射会议.2005.
    
    [290] M. Nicol and M.Y. Fong. J. Chem. Phys., 54: 3167, 1971.
    
    [291] K. Lararec and S. Desgreniers. Solid State Commun., 94: 519, 1995.
    
    [292] N.A. Dubrovinskaia, L.S. Dubrovinsky, R. Ahuja, V.B. Prokopenko, V. Dmitriev, H.P. Weber,J. M. Osorio-Guillen, and B. Johansson. Phys. Rev. Lett, 87: 275501, 2001.
    
    [293] L.S. Dubrovinsky, N.A. Dubrovinskaia, V. Swamy, J. Muscat, N.M. Harrison, R. Ahuja, B.Holm, and B. Johansson. Nature, 410: 653, 2001.
    
    [294] Z.W. Wang, S.K. Saxena, V. Pischedda, H.P. Liermann, and C.S. Zha. J. Phys.: Condens.Matter, 13: 8317, 2001.
    
    [295] Z.W. Wang and S.K. Saxena. Solid State Commun., 118: 75, 2001.
    
    [296] V. Swamya, L.S. Dubrovinskyb, N.A. Dubrovinskaiab, A.S. Simionovicic, M.Drakopoulosc, V. Dmitrievd, and H.P. Weber. Solid State Commun., 125: 111, 2003.
    
    [297] G.R. Hearne, J. Zhao, A.M. Dawe, V. Pischedda, M. Maaza, M.K. Nieuwoudt, P. Kibasomba,O. Nemraoui, and J.D. Comins. Phys. Rev. B, 70: 134102, 2004.
    
    [298]王光美.PhD thesis.吉林大学.2007.
    
    [299] W.W. Zhang, W.P. Zhang, P.B. Xie, M. Yin, H.T. Chen, L. Jing, Y.S. Zhang, L.R. Lou, andS.D. Xia. J. Coll. Interface Sci., 262: 588,2003.
    
    [300] Q.G. Zeng, Z.J. Ding, and Z.M. Zhang. J. Lumines., 118: 301,2006.
    
    [301] F.M. Liu, T.M. Wang, J.Q. Li, C.Wang, S.K. Zheng, and M. Duan. J. Mag. Mag. Mater,251: 245, 2002.
    
    [302] H. Tang, H. Berger, RE. Schimid, F. Levy, and G. Burri. Solid State Commun., 87: 847,??1993.
    
    [303] G. Chen, R.G. Haire, and J.R. Peterson. J. Phys. Chem. Solids, 56: 1095,1995.
    
    [304] Z.G. Lu, J.W. Wang, Y.G. Tang, and Y.D. Li. J. Solid State Chem., 177: 3075, 2004.
    
    [305] D. Wang, J. Zhao, B. Chen, and C. Zhu. J. Phys.: Condens. Matter, 20: 085212, 2008.
    
    [306] J. Chen, Z.C. Feng, P.L. Ying, and C. Li. J. Phys. Chem. B, 108: 12669, 2004.
    
    [307] M.J. Li, Z.C. Feng, P.L. Ying, Q. Xin, and C. Li. Phys. Chem. Chem. Phys., 5: 5326,2003.
    
    [308] X.F. Lu, H.R. Zhang, Y. Li, J. Liu, and G.Q. Yang. Chem. Phys. Lett., 42: 545, 2001.
    
    [309]FP schafer.染料激光器.北京科学出版社,北京,1987.
    
    [310] K.G. Casey and E.L. Quitevis. J. Phys. Chem., 92: 6590,1988.
    
    [311] J.L. Dela Cruz and G.J. Blanchard. J. Phys. Chem. A, 106: 10718, 2002.
    
    [312] S. Kinoshita and N. Nishi. J. Chem. Phys., 89: 6612,1988.
    
    [313] U. Brackmann. Lambdachrome Laser Dyes. Lambda Physik AG, Germany, 2000.
    
    [314] F. Lopez Arbeloa, T. Lopez Arbeloa, and M.J. Tapia Estevez. J. Phys. Chem., 95: 2203,1991.
    
    [315] L.F. Vieira Ferreira, M.J. Lemos, and M.J. Reis. Langmuir, 16: 5673, 2000.
    
    [316]卢雪芳,张海蓉,李嫣,刘景,杨国强.物理化学学报,17:898,2001.
    
    [317] K. Kemnitz, N. Tamai, and I. Yamazaki. J. Phys. Chem., 90: 5094,1986.
    
    [318] K. Kemnitz and K. Yoshihara. J. Phys. Chem., 95: 6095, 1991.
    
    [319] F. Del Monte, M.L. Ferrer, and D. Levy. Langmuir, 17: 4812, 2001.
    
    [320] P.X. Gao, W.J. Mai, and Z.L. Wang. Nano Lett., 6: 2536,2006.
    
    [321] B.A. Buchine, W.L. Hughes, F. Levent Degertekin, and Z.L. Wang. Nano Lett., 6: 1155,2006.
    
    [322] Z.L. Wang and J.H. Song. Science, 312: 242,2006.
    
    [323] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, R. Russo, and P.D. Yang.Science, 292: 1897,2001.
    
    [324] Z. Pan, H.L. Lai, F.C.K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.S. Lee, N.B. Wong,S.T. Lee, and S. Xie. Adv. Mater., 12: 1186, 2000.
    
    [325] Z.L. Wang, Z.R. Dai, R.P. Gao, Z.G. Bai, and J.L. Gole. Appl. Phys. Lett., 77: 3349,2000.
    
    [326] H.J. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, and CM. Lieber. Nature, 375: 769, 1995.
    
    [327] W. Han, S. Fan, Q. Li, and Y. Hu. Science, 277: 1287,1997.
    
    [328] X.F. Duan and CM. Lieber. J. Am. Chem. Soc, 122: 188, 2000.
    
    [329] G.R. Yazdi, M. Syvajarvi, and R. Yakimova. Appl. Phys. Lett, 90: 123103, 2007.
    
    [330] Q.H. Xiong, G. Chen, J.D. Acord, X. Liu, J.J. Zenge, H.R. Gutierrez, J.M. Redwing, L.Voon, B. Lassen, and P.C Eklund. Nano lett., 4: 1663, 2004.
    
    [331] G.X. Wang, M.S. Park, H.K. Liu, D. Wexler, and J. Chen. Appl. Phys. Lett, 88: 193115,2006.
    
    [332] Q.H. Li, Y.X. Liang, Q. Wan, and T.H. Wang. Appl. Phys. Lett., 85: 6389, 2004.
    
    [333] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin. Appl. Phys. Lett,84: 3654, 2004.
    
    [334] S.W. Lee, M.C Jeong, J.M. Myoung, G.S. Chae, and I.J. Chung. Appl. Phys. Lett, 90:133115,2007.
    
    [335] P.C. Chang, Z.Y. Fan, D.W. Wang, W.Y. Tseng, W.A. Chiou, J. Hong, and J.G. Lu. Chem.Mater., 16:5133,2004.
    
    [336] Y.J. Zeng, Z.Z. Ye, W.Z. Xu, L.P. Zhu, and B.H. Zhao. Appl. Surf. Sci., 250: 280, 2005.
    
    [337] G.W. Ho and A.S.W. Wong. Appl. Phys. A, 86: 457, 2007.
    
    [338] H.J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, and M. Zacharias. Nanotechnology,16: 913, 2005.
    
    [339] A. Mezy, S. Anceau, T. Bretagnon, P. Lefebbre, T. Taliercio, G.C Yi, and J.K. Yoo. SuperlatticeMicrost., 39: 358, 2006.
    
    [340] X.Q. Meng, D.Z. Shen, J.Y. Zhang, D.X. Zhao, L. Dong, Y.M. Lu, Y.C. Liu, and X.W. Fan.Nanotechnology, 16: 609, 2005.
    
    [341] Y. Sun, G.M. Fuge, and M.N.R. Ashold. Chem. Phys. Lett, 396: 21, 2004.
    
    [342] T.C. Damen, S.P.S. Porto, and B. Tell. Phys. Rev., 142: 570, 1966.
    
    [343]王志军.PhD thesis.中国科学院长春光学精密机械与物理研究所.2005.
    
    [344] R.C. Wang, C.P. Liu, J.L. Huang, and S.J. Chen. Appl. Phys. Lett., 87: 053103, 2005.
    
    [345] X. Liu, X. Wu, H. Cao, and R.P.H. Chang. J. Appl. Phys., 95: 3141, 2004.
    
    [346] Y.L. Yang, H.W. Yan, Z.P. Fu, B.F. Yang, and J. Zuo. Appl. Phys. Lett., 88: 191909, 2006.
    [347] K. Vanhesuden, C.H. Seager, W.L. Warren, D.R. Tellant, and J.A. Voigt. Appl. Phys. Lett.,68: 403,1996.
    
    [348] K. Vanhesuden, W.L. Warren, C.H. Seager, D.R. Tellant, J.A. Voigt, and B.E. Gnade. J.Appl. Phys., 79: 7983,1996.
    
    [349] D.C. Look, C. Coskun, B. Claflin, and G.C. Farlow. Physica B, 32: 340, 2003.
    [350] W.Y. Liang and A.D. Yoffe. Phys. Rev. Lett., 20: 59,1968.
    
    [351] B.P. Zhang, N.T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami. Appl. Phys. Lett., 83:1635,2003.
    
    [352] X.T. Zhang, Y.C. Liu, Z.Z. Zhi, J.Y. Zhang, Y.M. Lu, D.Z. Shen, W. Xu, G.Z. Zhong, X.W.Fan, and X.G. Kong. J. Phys. D: Appl. Phys., 34: 3430, 2001.
    
    [353] X.D. Yang, Z.Y. Xu, Z. Sun, B.Q. Sun, L. Ding, F.Z. Wang, and Z.Z. Ye. J. Appl. Phys., 99:046101, 2006.
    
    [354] W. Lee, M.C. Jeong, and J.M. Myoung. Appl. Phys. Lett., 85: 6167, 2004.
    
    [355] Q.X. Zhao, M. Willander, R.E. Morjan, Q.H. Hu, and E.E.B. Campbell. Appl. Phys. Lett.,83: 165,2003.
    
    [356] H.P. He, H.P. Tang, Z.Z. Ye, L.P. Zhu, B.H. Zhao, L. Wang, and X.H. Li. Appl. Phys. Lett.,90: 023104, 2007.
    
    [357] Y. Zhang, B.X. Lin, X.K. Sun, and Z.X. Fu. Appl. Phys. Lett., 86:131910,2005.
    [358] Y.P. Varshni and J.I. Lee. J. Appl. Phys., 84: 3848,1998.
    
    [359] K.A. Dhese, P. Devine, D.E. Ashenford, and J.E. Nicholls. J. Appl. Phys., 76: 5423, 1994.
    [360] A.B.M.A. Ashrafi, N.T. Binh, B.P. Zhang, and Y. Segawa. J. Appl. Phys., 95: 7738, 2004.
    [361] L.J. Wang and N.C. Giles. J. Appl. Phys., 94: 973, 2003.
    
    [362] T. Makino, C.H. Chia, N.T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H.Koinuma. Appl. Phys. Lett., 76: 3549, 2000.
    
    [363] F. Bogani, L. Carraresi, A. Filoramo, and S. Savasta. Phys. Rev. B, 46: 9461, 1992.
    
    [364] H. Zhang, D.R. Yang, Y.J. Ji, X.Y. Ma, J. Xu, and D.L. Que. J. Phys. Chem. B, 108: 3954,2004.
    
    [365] X.D. Gao, X.M. Li, and W.D. Yu. J. Solid State Chem., 178: 1139, 2005.
    [366] X.D. Gao, X.M. Li, and W.D. Yu. J. Phys. Chem. B, 109: 1155, 2005.
    [367] H. Zhang, D.R. Yang, X.Y. Ma, Y.J. Ji, J. Xu, and D.L. Que. Nanotechnology, 15: 622,2004.
    
    [368] N.S. Norberg and D.R. Gamelin. J. Phys. Chem. B, 109: 20810,2005.
    
    [369] J.F. Scott. Phys. Rev. B, 2: 1209, 1970.
    
    [370] H.M. Cheng, K.F. Lin, H.C. Hsu, and W.F. Hsieh. Appl. Phys. Lett., 88: 261909, 2006.
    
    [371] D.F. Zhang, L.D. Sun, and C.H. Yan. Chem. Phys. Lett., 422: 46, 2006.
    
    [372] B. Kumar, H. Gong, S.Y. Chow, S.Tripathy, and Y.N. Hua. Appl Phys. Lett., 89: 071922,2006.
    
    [373] 秦莉,张喜田,梁瑶,张锷,高红,张治国.物理学报,55:3119,2006.
    
    [374] H.M. Cheng, K.F. Lin, H.C. Hsu, C J. Lin, L.J. Lin, and W.F. Hsieh. J. Phys. Chem. B, 109:18385,2005.
    
    [375] R. Loudon. Adv. Phys., 13: 23, 1964.
    
    [376] I.P. Kaminow and W.D. Johnston. Phys. Rev., 160: 19,1967.
    
    [377] J.D. Bryan, S.M. Heald, S.A. Chambers, and D.R. Gamelin. J. Am. Chem. Soc, 126: 11640,2004.
    
    [378] W.K. Park, R.J. Ortega-Hertogs, J.S. Moodera, A. Punnoose, and M.S. Seehra. J. Appl.Phys., 91: 8093, 2002.
    
    [379] J.Y. Kim, J.H. Park, B.G. Park, H.J. Noh, S.J. Oh, J.S. Yang, D.H. Kim, S.D. Bu, T.W. Noh,H.J. Lin, H.H. Hsieh, and C.T. Chen. Phys. Rev. Lett, 90: 017401, 2003.
    
    [380] H. Ohno. Science, 281: 951, 1998.
    
    [381] S. Honda, I. Sakamoto, B. Shibayama, T. Sugiki, K. Kawai, and M. Nawate. J. Appl. Phys.,95: 7396, 2004.
    
    [382] D. Magana, S.C. Perera, A.G. Harter, N.S. Dalai, and G.F. Strouse. J. Am. Chem. Soc, 128:2931,2006.
    
    [383] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand. Science, 287: 1019, 2000.
    
    [384] O.D. Jayakumar, I.K. Gopalakrishnan, K. Shashikala, S.K. Kulshreshtha, and C. Sudakar.Appl. Phys. Lett., 89: 202507, 2006.
    
    [385] S. Ramachandran, J. Narayan, and J.T. Prater. Appl. Phys. Lett., 88: 242503, 2006.
    
    [386] C. Song, K.W. Geng, F. Zeng, X.B. Wang, Y.X. Shen, and F. Pan. Phys. Rev. B, 73: 024405,2006.
    
    
    [387] J.B. Cui, Q. Zeng, and U.J. Gibson. J. Appl. Phys., 99: 08M113, 2006.
    
    [388] J.J. Wu, S.C. Liu, and M.H. Yang. Appl. Phys. Lett., 85: 1027, 2004.
    
    [389] J. Antony, S. Pendyala, A. Sharma, X.B. Chen, J. Morrison, L. Bergman, and Y. Qiang. J.Appl. Phys., 97:10D307, 2005.
    
    [390] B. Liu and H.C. Zeng. J. Am. Chem. Soc, 125: 4430, 2003.
    
    [391] S. Ramachandran, A. Tiwari, and J. Narayan. Appl. Phys. Lett., 84: 5255, 2004.
    
    [392] J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, and Y.M. Kim. Appl. Phys. Lett., 84: 1338,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700