用户名: 密码: 验证码:
中线法高堆尾矿坝优化理论及其关键力学问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,国内在中线法堆坝理论与工艺方面的研究很少,而且工程实践经验亦很缺乏,但许多矿山又急需采用中线法进行高堆坝,以解决尾矿堆存问题。为此,本文以云南省羊拉铜矿拟建的尾矿库为工程背景(该尾矿库处于7度地震区,采用中线法堆坝工艺,尾矿坝总高近180m),本着“为企业解决问题,对技术进行探索与创新”的原则,对强地震区采用中线法进行高堆坝的理论和工艺进行研究。先以GIS为平台,对尾矿库库址、初期坝坝址和坝体结构等进行优化分析,之后对尾矿的静力和动力学特性进行试验测试,在此基础上,对强地震区中线法堆坝极限高度进行了研究,对中线法高堆坝的地震反应进行了分析,并基于混沌优化BP神经网络理论建立了尾矿砂土液化评价模型。本文的主要研究成果如下:
     1.对中线法堆坝中涉及的三种粒径不同的尾矿土样进行了室内土工试验。大量试验结果表明,尾矿颗粒越粗孔隙比越大,渗透系数和内摩擦角φ也越大。因此,对尾矿进行分选后用于堆坝,可以增大坝体的渗透性,有利于尾矿坝的稳定。同时,试验获得的尾矿土样的物理力学参数也可为尾矿坝的稳定性计算等提供基础数据。
     2.利用动三轴试验,研究了三种尾矿砂的动力特性,以及粗粒含量对尾矿动力特性和液化特性的影响规律。试验结果表明:粗粒含量对动应变和动孔压的影响十分显著,粗粒含量与动强度呈正相关性;随动应力的增加,相同振次下的动应变加大,动应力对尾砂的动强度影响较大;动强度随着固结压力的增加而增大,二者呈正相关性;固结比K c对动强度的影响不是单一的增大和减小。如果采用振动加密法来提高尾矿堆坝的稳定性,前期加密效果较为明显,而后期加密效果十分有限,推荐最优振动时间取2~5振动周次为宜。
     3.由于不同尾矿的动孔隙压力变化特征差异显著,本文采用幂函数进行优化拟合,对Seed的孔压预测公式进行了修正,通过试验结果检验显示该公式能更精确地表示本次尾矿试样的动孔压变化特征,其误差明显小于Seed孔压预测模型;另外,为克服常规建模中主观经验判断模型结构带来的弊端,引入了神经网络智能建模理论,达到了较好的预测效果。
     4.将GIS技术与模糊优选方法相结合,将其应用于尾矿库和初期坝的规划选址工作中,提出了基于GIS和模糊数学的尾矿坝模糊综合可视化空间选址模型。该模型一方面充分利用了GIS强大的空间分析和可视化功能,可有效提高尾矿坝选址设计的科学性和自动化程度,使设计的效率和有效性大大提高;另一方面通过引入模糊综合优选模型,可有效解决模糊信息的量化处理需求,有效克服了对随机性模糊性信息处理时主观经验判断的“印象”决策问题,使得尾矿库和初期坝的选址工作更加科学合理。
     5.建立了基于混沌优化(CO)的最危险滑面搜索算法,并将其用于该尾矿库中线法极限堆坝高度的计算。结果表明混沌优化(CO)最危险滑面搜索算法相对于传统算法在速度和精度上都有较大的提高,用于最危险滑面搜索是可行有效的。
     6.尾矿坝稳定性计算结果表明,尾矿的抗剪强度对尾矿坝的稳定性影响十分显著。因此,通过旋流分级等措施将粗粒尾矿用于堆坝,以增加高堆坝坝体稳定性效果是显著的。坝体浸润线埋深变化对坝体稳定性的影响亦十分显著,以该尾矿库为例,浸润线每下降0.1m,尾矿坝的稳定性系数将增加0.06。
     7.利用数值模拟方法对坝体动力反应特征进行了分析。结果表明:中线法极限堆高时,在洪水和地震作用下,坝体的最大位移中心主要位于坝坡的中下部;另外,在干滩面的洪水淹没区有一局部位移极值中心;而坝顶外坡的位移则在整个震动过程中始终保持为较小值,此点与上游法坝顶外坡部位通常有大的位移出现的现象区别较大。
     8.针对砂土液化影响因素的复杂性,本文根据BP算法和混沌优化算法优缺点的互补性特点,将二者结合构建了一种新的砂土液化优化预测模型(COBP)。经检验结果表明,利用COBP模型对尾矿地震液化预测分析是可行的。
In our country, there is a serious lack of theoretical study and engineering practice of centerline embankment method(CEM), but there are many mining factories need CEM to build high dam to dump the tailings now. In order to solve the enterprises’practical problems and innovate in techniques, this paper studied the theory and methods on CEM in the strong seismic zone on the background of a planned copper mine tailing dam in Yunnan province. The results could be summarized as follows:
     ①A lot of physical experiments have been undertaken to investigate the physical and mechanical characters of tailings included in the centerline embankment dam. The results show that the larger the grain size, the larger the internal friction angle and permeability. The sorted coarse tailing has larger permeability and is propitious to the tailing dam stability.
     ②The dynamic triaxial test have been undertaken to investigate the dynamic characters of tailings included different coarse grain sand. The results show that the effect of coarse grain content on the vibration strain and dynamic pore pressure is quite clear; there is a positive correlation between the coarse grain content and the dynamic intensity. The dynamic strain improves with the dynamic stress under the same vibration times; the dynamic intensity improves with the consolidation pressure and there is a positive correlation between the consolidation pressure and the dynamic intensity, but the effect of the consolidation ratio K c on the dynamic intensity is not immovable. The result shows the effect of compress is distinctive at the beginning stage too, and the proposed best vibrating times is about 2 to 5 cycle times, when using vibirating compress method to improve the safety of the tailing dam.
     ③Because there is a very different development pattern for different tailing,the pore pressure model shouldn’t use the uniform and fixed function format. According to the test, the Seed's formula is modified using a power function model so that the new formula can forecast the dynamic pore-water pressure of saturated tailings material more precisely. In addition, the neural networks model was proposed to solve the dynamic pore pressure prediction in order to overcome the shortage of the normal modeling methods.
     ④A integrated spatial visualization site selection model is proposed based on the GIS and fuzzy optimization method. On the one hand ,it could enhance the scientificity, automaticity ,efficiency and validity of the tailing dam locating using the GIS’spatial analysis and visualization function, on the other hand, by introducing the fuzzy optimization method, it could overcome the subjective experience judgment problem effectively, meet the quantification demand of random fuzzy information processing, and make the judgment more scientific.
     ⑤A computing model of most dangerous sliding surface based on the chaos optimization search, and the result shows this search method could improve both speed and security clearly compared to the normal method, and it is fitful to search the most dangerous sliding surface.
     ⑥The stability analysis result shows the shear strength has a significant influence on the stability, and it has a remarkable effect to improve the stability by using classified coarse tailing to construct the dam. The height of phreatic line has a significant influence on the stability too, the safety coefficient could improve about 0.06 if the height of phreatic line decreases 0.1 meter.
     ⑦According to the dynamic response analysis of the dam under special working condition, there is a global maximum displacement at the middle and lower part of the dam slope, and there is a local maximum displacement at lower part of the deposited beach, but the displacement of the dam crest outer slope is very small all the time, and it is bigger difference between this result of centerline dam and other research results of upstream dam.
     ⑧To overcome the difficulty of the tailing sand liquefaction prediction, a new hybrid optimization model is presented based on the complementary of BP neural network and chaos optimization algorithm. This model not only has a BP algorithm's quick local search capability, but also can converge strongly to the global optimal result by use the chaos optimization's global search character. The results show that it is an effective and feasible method to predict tailing sand liquefaction.
引文
[1]徐宏达.我国尾矿库病害事故统计分析[J].工业建筑.2001.1(31):69-71.
    [2]《中国有色金属尾矿库概论》编辑委员会.中国有色金属尾矿库概论[R].中国有色金属工业总公司,1992.
    [3]彭承英.尾矿库事故及预防措施[J].有色矿山.1996.5:38-40.
    [4]国家环境保护总局办公厅文件,环办(2007)69号,关于落实尾矿库专项整治行动工作方案的通知.2007.6.19.
    [5]魏作安.细粒尾矿及其堆坝稳定性研究[D].重庆大学博士学位论文.2004.5.
    [6]阮懋昭,涂全兴,朱文俊.山坡尾矿库水力旋流器下游式筑坝[J].化工矿物与加工.1983.02:17-19.
    [7]杨春福.中下游式尾矿坝设计概要[J].有色矿山,1999.3:33-36.
    [8]高艳平,王余庆,辛鸿博.尾矿坝地震液化简化判别方法[J].岩土工程学报1995(5):72-79.
    [9]阎金安,王武林.尾矿砂的动力特性研究[J].岩土力学.1990(4):69-74.
    [10]张建隆.尾矿砂力学特性的试验研究[J].武汉水利电力大学学报,1995,28(6):685-689.
    [11]阮元成,郭新.饱和尾矿料动力变形特性的试验研究[J].水利学报.2003.4:24-29.
    [12]张培安.栗西尾矿库挖潜改造延长服务期探讨研究[J].有色金属(选矿部分).2003.5:3-44.
    [13]戴晓红.旋流分级中线法堆坝的实践[J].江西铜业工程.1995.1:16-21.
    [14]黄培华.尾矿中线法筑高坝的问题与改善[J].矿山机械.2005.33(10):106-108.
    [15]郭瑞.中线法筑造尾矿库的探讨与实施[J].冶金丛刊.2006.1:45-47.
    [16]王柏纯,郑争广,李运成等.中线法筑坝加高改造技术[J].中国矿业.1994.3(4):39-42.
    [17]王柏纯,曲忠德.采用中线法筑坝工艺实现尾矿库大幅扩容[J].矿业快报.2002.9(17):18-20.
    [18]中华人民共和国建设部,《选矿厂尾矿库设施设计规范》(ZBJ1-90) [S],1990.
    [19]吴飞.德兴铜矿4号尾矿库中线法堆坝生产及技术管理实践[J].有色金属(选矿部分).1998,1:37-42.
    [20]黄荣.尾矿坝的构筑与环境保护[J].矿冶研究与开发.1998.18(3):43-45.
    [21] Steven G Vick, planning, design, and analysis of tailings dams[M], John Wiley & Sons, New York,1983,369P.
    [22] Properties of Tailings Dams.http://www.wise-uranium.org/mdap.html.
    [23]卜训政.上游式尾矿坝安全隐患分析[J].化工矿物与加工,2001,6:22-24.
    [24] USCOLD, Committee on Dam Safety, 1988, Lessons from Dam Incidents, USA-II, ASCE.
    [25] USCOLD, Committee on Failures and Accidents to Large Dams, 1976, Lessons from dam Incidents USA, ASCEI USCOLD.
    [26] USCOLD, Committee on Tailings Dams, 1994, Tailings Dam Incidents, USCOLD.
    [27] UNEP,1996,Enviromental and safety incidents concerning tailings dams at mines, based on survey conducted by Mining Journal Research Services for UNEP.
    [28]张超.尾矿动力特性及坝体稳定性分析[D].中国科学院研究生院博士学位论文2005.
    [29] Finn, W.D.L, Byrne, P.M. Liquefaction Potential of Mine Tailing Dams[A]. 12th ICOLD Vo1.1,1976.
    [30] Finn, W.D.L. Seismic Stability of Tailings Dams[A].General Reporter Department of Civil Engineering University of British Columbia Vancouver, B.C. Canada, Proc. International Symposium on Safety and Rehabilitation of Tailings Dams ICOLD, Sydney, Australia, May ,1990.
    [31]陈述彭,鲁学军,周成虎.地理信息系统导论[M],北京:科学出版社, 2000.
    [32]陈俊,宫鹏.实用地理信息系统[M],科学出版社, 1998.
    [33] Jill McCoy and Kevin Johnston, Using ArcGIS spatial analysis Copyright ? 2001 ESRI, Printed in the United States of America.
    [34]吴立新,刘纯波,牛本宣等.试论发展我国矿业地理信息系统的若干问题[J].矿山测量, 1998(4):48-51.
    [35]吴立新,殷作如.数字矿山构想与关键技术.中国矿业联合会年会暨首届国际矿业博览会论文集[A].中国矿业(专刊).2001:77-85.
    [36]吴立新,殷作如,邓智毅等.论21世纪的矿山--数字矿山[J].煤炭学报,2000,25(4):337-342.
    [37]祝玉学,戚国庆等.尾矿库工程分析与管理[M]北京:冶金工业出版社,1999.
    [38]夏既胜,秦德先,杨树华等,基于GIS的矿山尾矿库选址方法研究-以个旧锡矿某矿山为例[J],金属矿山.2006.8(362):51-54.
    [39]王山东,赵景程,王昌明等,数字尾矿库研究[J].金属矿山,2004,10(10):46-49.
    [40]代永新,王运敏,李如忠等.尾矿库工程管理系统[J].金属矿山.2005.7(349):21-23.
    [41]刘德钦;应用地理信息系统选择水库坝址[J];测绘科技动态; 1994.02:12-17.
    [42]李作章,徐日升等.尾矿库安全技术[M].北京:航空工业出版社,1996.
    [43]金钟集,石明.现代尾矿设施设计与管理维护技术及尾矿资源综合利用实用手册[M].当代中国音像出版社.2005.
    [44]李晓翠,张跃鹏,金澄.GIS在空间选址中的应用现状分析[J].测绘科学与工程.2006.26(4):29-32.
    [45]郭仁中.空间分析[M],武汉:武汉测绘大学出版社, 2000.
    [46]邬伦,刘瑜,张晶等,地理信息系统-原理,方法及应用[M],北京:科学出版社,2001.
    [47]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M],北京:科学出版社.2005.8:4-6,234-240.
    [48]朱长青,史文中.空间分析建模与原理[M],北京:科学出版社,2006.5:172-174.183-185.
    [49]张拥军.基于GIS的砂土液化可视化评价信息系统研究[D].合肥工业大学硕士论文,2004.
    [50]韩雁,马云东.基于GIS矿山环境信息系统的研究[J].辽宁工程技术大学学报(自然科学版),2003,21(增刊):40-42.
    [51] Burrough, P.A. Principles of Geographical Information Systems for Land Resources Assessment. Oxford University Press, New York .1986:50.
    [52] Shanholtz,V.O, C.J.Desao.N.Zhang,J.W, Kleene and C.D,Metz .Hydrological/Water Quality Modeling in a GIS Environment, ASAE Paper 90-3033,St Joseph,MI:ASAE,1990.
    [53]赵晖.尾矿工程[M].长春:冶金部长春黄金研究院.1986.
    [54]尾矿设施设计参考资料编写组.尾矿设施设计参考资料[M].北京:冶金工业出版社,1987.
    [55]黄杏元,汤勤.地理信息系统概论[M],北京:高等教育出版社. 1990.
    [56]陈俊,宫鹏.实用地理信息系统[M],科学出版社, 1998.
    [57]王劲峰等,地理信息空间分析的理论体系探讨[J],地理学报1999.55(1):33-37.
    [58]王桥,毋河海,地图信息的分形描述与自动综合研究,[M]武汉:武汉测绘大学出版社. 1998.
    [59]党安荣等,ArcGIS 8 Desktop地理信息系统应用指南[M].北京:清华大学出版社,2003.
    [60] ArcView Spatial Analysis. Environment Systems Research Institute,Inc.1996.
    [61]邱方,邵全琴,姚逸秋等,ARC/INFO地理信息系统应用教程(GRID和TIN) [M],ARC/INFO中国技术咨询与培训中心,1995.3:175-180.
    [62]李志林,朱庆.数字高程模型(第二版)[M].武汉:武汉大学出版社,2000.
    [63]周启鸣,刘学军.数字地形分析[M],北京:科学出版社,2006:249-250.
    [64]吴立新等.三维地学模拟与虚拟矿山系统[J].测绘学报,2002,31(1):28-33.
    [65]程峰,王杰光,靳丽辉.模糊数学理论在金属矿山安全评估中的应用[J].金属矿山.2007.3:77-80.
    [66]陈庆,谢振华,金龙哲.基于模糊数学理论的尾矿库环境质量综合评价[J].工业安全与环保. 2006.32(1):39-41.
    [67]廖国礼,吴超.模糊数学方法在矿山环境综合评价中的应用[J].环境科学动态.2004.3:15-17.
    [68]陈守煜.工程模糊集理论与应用[M].北京:国防工业出版社.1998.
    [69]戴英姿,马啸来.配送中心选址方案的综合评价方法[J],石家庄铁道学院学报.2004.17(1):93-96.
    [70]杨丽徙,王家耀,贾德峰等.GIS与模糊模式识别理论在变电站选址中的应用[J].电力系统自动化.2003,27(18):87-90.
    [71]李发斌,涂建军,胡凯衡,基于GIS的泥石流拦砂坝优化设计模型[J],中国科学E辑,2003,33(增刊):146-156.
    [72]冯国栋.土力学[M].北京:水利电力出版社,1989.
    [73]南京水利科学研究院.土工试验规程SL237-1999[S].北京:中国水利水电出版社1999.
    [74]中华人民共和国建设部.岩土工程勘察规范(GB5001-2001) [S].北京:中国建筑工业出版社. 2002.
    [75]余君,王崇淦.尾矿的物理力学性质[J].企业技术开发,2005,24(4):3-4.
    [76]汤馥郁,李旺林.峡山水库主坝物理力学参数的试验研究[J].山东建筑工程学院学报, 2000. 15(4):34-38.
    [77]钱家欢,殷宗泽.土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [78]张建隆.尾矿砂力学特性的试验研究[J]武汉水利水电大学学报,1995,(28)6:685-689.
    [79]郑颖人,龚晓南.岩土塑性力学基础[M].北京:中国建筑工业出版社,1989.8.
    [80]龚晓南.土塑性力学(第二版)[M].杭州:浙江大学出版社,1999.9.
    [81] Volpe R Physical and engineering practices of copper tailings. Current Geotechnical Practice in Mine Waste Disposal, ASCE, 1979.
    [82]高江平,李芳.黄土邓肯张模型有限元计算参数的试验[J].长安大学学报(自然科学版).2006,26(2):10-13.
    [83]张超,杨春和,白世伟.尾矿料的动力特性试验研究[J].岩土力学.2006.27(1):35-40.
    [84]柳厚祥.高尾矿坝-地基相互作用的地震反应分析研究[J].冶金矿山设计与建设,1998,30(6):7-13.
    [85]张克绪,谢君斐.土的动力学[M].北京:地震出版社.1989.
    [86]陈敬松,张家生,孙希望.饱和尾矿砂动强度特性试验研究[J].山西建筑,2005,19(31):75-76.
    [87]曾春华.关于土在重复荷载下动态特性的综述[A].见:全国黄土学术会议论文集.新疆科技卫生出版社,1994.
    [88]李永乐,陈宇,李敏芝等.粉煤灰的动力特性试验及地震动液化研究[J].华北水利水电学院,2002,23(4):64-67.
    [89]谢定义.土动力学[M],西安交通大学出版社.1988.
    [90]刘菀茹.尾矿动力特性及其堆坝稳定性分析[D].四川大学硕士学位论文.2006.
    [91] Davies.M, Martin.T, and Lighthall.P, "Mine tailings dams: When things go wrong" Proceedings, Tailings dams 2000, Association of State Dam Safety Officials, Las Vegas, NV, March 28-30,pp.261-273.
    [92] Vick S. G. Risk Based Approach to Seismic Stability and Inundation Hazard for Upstream Tailings Dams [A]. Proc. International Symposium on Safety and Rehabilitation of Tailings Dams[C]. ICOLD, Sydney, Australia, May 23, 1990.
    [93] Vick,S.G., 2000, "Tailings dam safety-Implications for the dam safety community" Tailings dams 2000, Association of State Dam Safety Officials, Las Vegas, NV, March 28-30,pp. 1-20.
    [94]张立明.人工神经网络在模型及其应用[M].上海:复旦大学出版社,1993:13-15.
    [95]张高峰,梁宾桥,谌会芹.用BP神经网络预测土抗剪强度指标c、φ[J].岩土工程技术.2006.20(1):26-30.
    [96]吴超,陈勉,金衍.基于地震属性分析的地层孔隙压力钻前预测模型[J].石油天然气学报(江汉石油学院学报) 2006 ..28 (5):66-70.
    [97]周春桂,张涛,吴国东.神经网络用于非线性动力学系统建模研究[J].弹箭与制导学报.2007.4:343-346.
    [98]王皆伟.四川地区砂卵石土动力特性试验研究[D].四川:西南科技大学硕士论文,2006.
    [99]骆亚生,田堪良.非饱和黄土的动剪切模量与阻力比[J].水利学报,2007,36(7):830-834.
    [100]何昌荣.动模量和阻尼的动三轴试验研究[J].岩土工程学报.1997.2(19):39-48.
    [101]沈楼燕,魏作安,矿山尾矿库闭库设计的分析探讨[J],有色金属(矿山部分),2002,54(1):42-43.
    [102]魏作安,尹光志,沈楼燕等.探讨尾矿库设计领域中存在的问题[J].有色金属(矿山部分),2002,4:44-45.
    [103]陈祖煜.土质边坡稳定分析-原理?方法?程序[M].北京:中国水利水电出版社,2002.
    [104]刘明维,郑颖人.基于有限元强度折减法确定滑坡多滑动面方法[J].岩石力学与工程学报,2006,25(8):1544–1549.
    [105]马忠政,祈红卫,侯学渊.边坡稳定验算中全面搜索的一种新方法[J].岩土力学,2000,21(3):256-259.
    [106]弥宏亮,陈祖煜.遗传算法在确定边坡稳定最小安全系数中的应用[J].岩土工程学报,2003,25(6):671-675.
    [107]王凌,郑大钟,李清生.混沌优化方法的研究进展[J].计算技术与自动化.2001.20(1):1-5.
    [108]李守巨,刘迎曦,何翔,等.基于模拟退火算法的边坡最小安全系数全局搜索方法[J].岩石力学与工程学报.2003.22 (2):236-240.
    [109]李兵,蒋慰孙.混沌优化方法及其应用[J ].控制理论与应用,1997 (4) :613-615.
    [110]王东升,曹磊.混沌?分形及其应用[M].合肥:中国科学技术大学出版社,1995.
    [111] Choi C, Lee J. Chaotic local search algorithm[J].Artificial Life&Robotics,1998,2(1):41-47.
    [112]张超,杨春和,孔令伟.某种铜矿尾矿砂力学特性研究和稳定性分析[J].岩土力学,2003,24 (5): 858-862.
    [113]魏作安,万玲.细粒尾矿堆积坝的地震稳定性分析[J].有色金属.2006.58(1):79-81.
    [114] (美)Yang H. Huang,包承纲等译.土坡稳定分析[M].北京:清华大学出版社,1988.
    [115] Huang, Y. H. Stability charts for earth embankment, Transportation Research Board, Washington, D C, 1975.
    [116]祝方才,彭振斌,隆威等.土钉支护危险滑动面搜索的混沌优化方法[J],中南工业大学学报(自然科学版),2003,34(6):699-703.
    [117]刘勇健,张伯友.基于混沌优化-神经网络的水泥搅拌桩复合地基承载力预测方法[J],路基工程,2006,1 (124):61-64.
    [118]雷英杰等.Matlab遗传算法工具箱及应用[M].西安电子科技大学出版社,2005.
    [119]江德飞,何光春.传递系数法与FLAC强度折减法比较分析[J].重庆交通学院学报,2005(1):94-99.
    [120] Itasca Consulting Group Inc. FLAC, Version 5.00, Users Manual [R]. USA:Itasca Consulting Group Inc,2005.
    [121] Iasca Consulting Group Inc. FLAC-3D,Version 2.0,Users Manual(Volume V)[R]. USA:tasca Consulting Group Inc,1997.
    [122]刘耀儒,刘元高,周维垣.应用FLAC方法进行动力分析[J].岩石力学与工程学报,2001,20(2):1518-1522.
    [123] Frank L. Blackett. Liquefaction and Residual Strength of a Silty Sand Gold Mine Tailings From Drained Triaxial Tests[D].University of Nevada, Reno, 1997.
    [124] Martin, G.R.W.D.L.Finn, H.B. Seed: Fundamentals for Liquefaction under Cyclic Loading, ASCE,J. of Geotechnical Engineering Division No GTS, 1975
    [125] Byrne, P. A Cyclic Shear-Volume Coupling and Pore-Pressure Model for Sand, in Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (St. Louis, Missouri, March, 1991), Paper No.1.24, 47-55.
    [126] Martin, G. R.,W. D. L. Finn and H. B. Seed. Fundamentals of Liquefaction under Cyclic Loading, J. Geotech. Eng. Div., ASCE, 101(GT5), 423-438 (May, 1975).
    [127]李方明,陈国兴.基于神经网络的饱和砂土液化判别方法[J].自然灾害学报.2005.14(2):108-114.
    [128]任文杰.人工神经网络在地基土液化判别中的应用[D].天津:河北工业大学,2002.
    [129]刘红军,薛新华.砂土地震液化预测的人工神经网络模型[J].岩土力学.2004.25(12):1942-1947.
    [130]董长虹. Matlab神经网络及其应用[M].北京:国防工业出版社.2005:90-91.
    [131]赵小梅.混沌预测与混沌优化理论与算法研究[D].浙江:浙江大学博士学位论文.2002.
    [132] William C Carpenter, Margerry E Hoffman. Guidelines for the selection of network architecture[J]. Artificial Intelligence for Engineering Design Analysis and Manufacturing, 1997, 11(5): 395-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700