用户名: 密码: 验证码:
钨合金材料宏微观性能分析及动态性能测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高比重钨合金材料是由钨颗粒和粘结相在高温下烧结而成的两相合金组织。钨颗粒在组成合金的两相金属中是强度较高的相,体心立方的钨颗粒分布于面心立方结构、较软的粘结相当中,它的相对数量、形态及分布是影响合金性能的重要因素,这些细观要素与钨合金材料的力学性能密切相关。
     本文的内容包括:
     1.采用纳米压痕实验对不同含量钨合金进行了原位性能测试,根据纳米压痕实验得到的载荷-位移关系,利用有限元计算给出了基体相的原位细观屈服强度和硬化模量。从实验及计算结果可以看出,宏观的材料特征是大量微观量的统计平均效应,而压痕实验由于实验数据点较少,得到的材料力学特性值只是少量微观量的平均效应,当我们所取的实验值增加时,则两种实验结果将趋于一致。同时,也可以看到,材料的细观特性不同于它的宏观效应,因此,在计算细观量时,建议使用材料的细观力学特性值。
     2.根据纳米压痕实验中的载荷-位移关系,利用自编的二维、三维有限元程序和反向法进行了均质材料铝的宏观性能实验和计算,给出钨合金材料基体相的原位细观屈服强度和细观硬化模量,即给出钨合金材料中基体相的原位弹、塑性性质。并且为了验证反向法确定钨合金材料基体相的局部弹塑性力学行为的有效性,进行了均质材料铝的宏观性能实验和计算,由宏观实验说明,由此预报的材料弹塑性性能与测试结果一致。这样可以利用二维弹塑性计算程序快捷、方便地进行钨合金材料的宏细观性能的数值分析。
     3.进行了不同状态钨合金(真空态和锻造态)的动态压缩实验和动态拉伸实验,利用实验得到的拟合应力应变关系进行了有限元分析计算。动态压缩荷载下钨合金材料发生应变硬化现象,而在动态拉伸荷载下发生应变软化现象。不同的加载条件下钨合金材料的性能不能用相同的本构方程来描述,导致在研究其动态性能时采用不同规律的方程分别表述。从实验结果以及对两种钨合金材料进行断口扫描,从扫描图片可以得到,钨合金材料动态压缩和动态拉伸性能具有不对称性。
     4.利用人工智能BP神经网络算法预测了不同含量钨合金的抗拉强度;对钨合金材料进行了有限元的单胞模拟计算。分析表明,人工智能方法可以用来分析宏观因素例如钨含量,变形量等对合金性能的影响趋势,但是无法获得形成这些影响的微观机理:有限元方法通过对合金微观结构的单胞模型进行弹塑性模拟计算可以得到,变形量较小的钨合金,首先在基体相中达到抗拉临界值,此时钨合金材料的抗拉强度决定于基体相的抗拉强度:而对于变形量较大的钨合金,首先在钨颗粒相中达到抗拉临界值,此时钨合金材料的抗拉强度决定于钨颗粒相的抗拉强度。
The Tungsten Alloy is a two-phase material made of W-particle and matrix. W-particle is a highly strength phase, and Bcc W-particle distributes uniformly in the soft Fcc matrix. Under the external applied load, W-particle exhibits extremely high strength, and under the high stress of 2000MPa, its fracture will be a cleavage, also a brittle failure. Ni-Fe, the main component of matrix, has a low melting point. So, it can change into liquid when sintered, thus it can bond the W-particle. This paper is mainly concerned with the following studies:
     The volumn fraction, configuration and micro distribution of the W particles are the important factors to the tungsten alloy properties. The micro-hardness and micro-elastic-modulus of matrix in tungsten alloy were respectively measured. Using the finite element method with load-displacement relationships obtained from nano-indentation experiments, the parameters of the macro-yield strength and hardening modulus of matrix in the tungsten ally were given. Using the inverse method the micro elastic-plastic properties of the matrix in tungsten alloy were obtained, i.e. through three-dimensional finite element computations with load-displacement relationships obtained from nano indentation experiments, the parameters of the micro-yield strength and micro-hardening modulus of matrix in the tungsten alloy were given. In order to verify the validity of this method the macro experiments were performed and the results of the experiments illustrated that it was valid to determine the micro properties by using the inverse method. Therefore the elastic-plastic properties of the matrix in tungsten alloy were obtained. From the results of the nano indention test the macro material characteristics are the average statistic value of the micro properties. The number of the data points is finite not to express this average affect till the data points are enough and the macro and micro results will be consistent. It provided the basis for studying the relationships of macro-mechanical behaves with micro- structures of tungsten alloy.
     The tension experimental data of tungsten alloy were processed by back-propagation (BP) Neural Network method, including the influences of the W content and deformation magnitude on the tensile strength. Thus two relation curves were drawn, which illustrated the relation between deformation magnitude and material tensile strength whenW contentswere changed, and the relation betweenW contents and material tensile strength in the case of different deformation magnitude. It is shown that BP Neural Network may be used to predict the trend of tensile strength of WHA with the changes of shapes and volume fractions of w-phase. Also, the dynamic compression and tension properties of the tungsten alloy were tested by the splited Hopkinson pressure bar and the pneumatic tension bar. Bodner-Partom model and the Zerilli—Armstrongmodel were used to simulated the tension and compression test and it was shown that the tension and compression properties of the tungsten alloy is non-symmetric.
引文
[1]Yih S W H.Wang C T.Tungsten-Sources.Metallurgy.properties and Application.New York:Plenum Press.1979:340
    [2]难熔金属文集编辑组.难熔金属文集第三分册.上海.上海科学技术情报研究所,1976:23
    [3]宋桂明等.钨与钨合金研究.航天工艺.1997,No.6:43-47
    [4]张宝生,康志君.高密度钨合金的穿甲特性及其应用.中国钨业.1999,Vol.14.No.5-6:178-182
    [5]焦彤等.90W和93W钨合金动加载下微(细)观响应分析.中国有色金属学报.200l,Vol.Ⅱ,S2:92-97
    [6]唐新文,罗述东,易健宏.近十年高密度钨合金的研究进展。粉末冶金工业。2003,13(4):27-30
    [7]冯庆芬,丁华东.La,Ce对93W-Ni-Fe合金动态拉伸性能的影响.四川稀土.2006,1:27-31
    [8]Preston B.Kemp,Randall M.German,et al.MechanicalProperties of Molybdenum Alloyed Liquid Phase Sintered Tungsten2Based Composities。 Metallurgical Materials Transaction(A),1995,26(8):2187-2189
    [9]付洁,李中奎,郑欣等.钨及钨合金的研发和应用现状.稀有金属快报,2005,7:1-5
    [10]Edelman D.G,Palatka B.J.,Sub Hash G.,Mechanical Alloying of W2Hf2Ti Alloys,Tungsten Refact.Met.-1994,Proc.Int.Conf.,2nd.NewJersy:Metal Powderlnternational Federation.Bode A and Dowding R L eds,1995:227-233.
    [11]范景莲.W2Ni2Fe高比重合金纳米晶预合金粉的制备.粉末冶金技术,1999,17(2):89-93.
    [12]Ho J.Ryu.Soon H.Hong and Woon H.Back.Mechanical Alloying Process of 93W-5.6Ni-1.4Fe Tungsten Heavy Alloy.Journal of Materials Processing Technology.1997,Vol.63:292-297
    [13]黄伯云,范景莲.纳米钨合金材料的研究与应用.中国钨业,2001,16(5-6):38-44
    [14]Srikanth Raghunathan,David L.Bourell.Synthesis and evaluation of advanced nanocrystalline Tungsten Based Materials.P/ M Science and Technology Briefs 1999,1(1):9-14.
    [15]于洋,王尔德,胡连喜.纳米晶钨粉对液相烧结93W合金组织性能影响.材料科学与工艺,2006,14(4):385-388
    [16]盛贵仙,沈惠珠.W-7Ni-3Fe合金断口特征与微区弹针分析.稀有金属,1982,1:48-52
    [17]Z.LIN.G.BAO.Damage in a Tungsten Composite Due to Debonding at W-W Grain-Brondies.Acta metall,mater.1995,Vol.43,No.5:1765-1774
    [18]史洪刚等.锻造变形量对钨合金材料性能的影响.兵器材料科学与工程.1998,Vol.21,No.4:3-7
    [19]Zhang Zhaohui.Wang Fuchi.Research on the Deformation Dtrengthening Mechanism of a Tungsten Heavy Alloy by Hydrostatic Extrusion.International Journal of Refractory Metals & Hard Materials.2001,Vol 19:177-182
    [20]范景莲,曲选辉等.注射成形高比重合金的致密化与变形控制.粉末冶金材料科学与工程,2000,5(3):167-171
    [21]华劲松等.93W合金有关力学参量的综合选评.高压物理学报.2002,Vol.16,No.1:17-21
    [22]马红磊等.高比重钨合金力学性能影响因素分析.材料科学与工程学报.2003,Vol.21,No.5:668-670
    [23]姜春兰等.93钨合金材料的模量、比热及热膨胀系数的温度效应.兵器材料科学与工程.2000,Vol.23,No.3:3-6
    [24]Soon H.Hong,Ho J.Ryu.Combination of Mechanical Alloying and Two-Stage Sintering of a 93W-5.6Ni-1.4Fe Tungsten Heavy Alloy.MATERIALS SCIENCE AND ENGINEERING A344(2003):253-260
    [25]R.Gero,L,Borukhin,I.Pikus.Some Structural Effects of Plastic Deformation on Tungsten Heavy Metal Alloys.Materials Science and Engineering.A302(2001):162-167
    [26]刘小苹等,爆炸加载下钨合金的断裂特性,金属学报,1994,Vol30,No.4:181-186
    [27]杨卓越等.静拉伸载荷下93W合金缺口效应和断裂特征研究.兵器材料科学与工程.1998,Vol.21,No.5:24-28
    [28]齐志望等.大变形锻造钨合金显微组织特征研究.兵器材料科学与工 程.1999,Vol.22,No.4:18-23
    [29]尚福军.变形强化钨合金组织与准静态、动态性能的关系.中国兵器科学研究院(五二所)研究生硕士论文.2001
    [30]史洪刚等.钨合金微观组织断裂分析计算.兵器材料科学与工程.1999,Vol.22,No.6:3-7
    [31]黄继华等.钨合金变形微观力学行为的计算机数值模拟.北京科技大学学报.1997,Vol.19,No.6:546-549
    [32]黄继华等.高密度钨合金性能的计算机数值模拟研究-钨含量对合金性能的影响.稀有金属材料与工程.1998,Vol.27,No.6:344-347
    [33]Zhang Zhaohui.Wang Fuchi.Research on the Deformation Dtrengthening Mechanism of a Tungsten Heavy Alloy by Hydrostatic Extrusion.International Journal of Refractory Metals & Hard Materials.2001,Vol 19:177-182
    [34]黄继华等.钨合金力学行为的计算机数值模拟-宏观力学性能.北京科技大学学报.1997,Vol.19,No.6:550-553
    [35]Yadav S,Ramesh K T.Mater.Science and Engineering,1995,A203:140
    [36]Yadav S,Ramesh K T.In:Bose A eds.Tungsten and Refractory Metals-1994.N J:MPIF,1994:411
    [37]Hogwood M C,Bentley A R.In:Bose A,Dowding R J eds.Tungsten and Tungsten Alloys -1992[C].N J:MPIF,1992:325
    [38]Woodward RL,Baldwin NJ,Baxter BJ.Effect of strain rate on the flow stress of three liquid phase sintered tungsten alloys.Metallurgical Transactions A,1985,16A:2031-2037
    [39]O'Donnel RG,Woodward RL.The composition and temperature dependence of the mechanical properties of tungsten alloys.Metallurgical Transactions A,1990,21A:912-918
    [40]Zhou M,Clifton RJ.Dynamic constitutive and failure behavior of a two-phase tungsten composite.Journal of Applied Mechanics,1997,64:487-497
    [41]马红磊,胡更开,李树奎.97 钨合金力学性能研究,兵器材料科学与工程,2003,26(6):39-41
    [42]张志云.动能穿甲弹弹芯用钨合金的研究,现代兵器,1984,12:1-6
    [43]Woei-Shyan Lee,Guo-Liang Xiea,Chi-Feng Lin.The strain rate and temperature dependence of the dynamic impact response of tungsten composite.Materials Science and Engineering,1998,A257:256-267
    [44]徐英鸽,康进兴,朱金华,陈文涛.温度对93WNiFe 合金抗拉强度及断口形貌的影响.纺织高校基础科学学报,19(2):174-177
    [45]Pink E,Kumar S.Mater Science and Engineering,1997,A234-236:102
    [46]Kumar S,Pink E.Script Material,1996,35(9):1047
    [47]李英雷,胡时胜,魏志刚等.大变形锻造钨合金动态力学性能研究.兵工学报,2003,24(3):378-380
    [48]李志.高比重钨合金的旋锻形变强化.兵器材料科学与工程,1998,21(2):56-59
    [49]周国安,张守全,黄继华.旋锻对钴、锰微合金化93W合金性能和组织的影响.粉末冶金技术,1997,15(3):178-181
    [50]史洪刚,齐志望,郭志俊等.锻造变形量对钨合金材料性能的影响.兵器材料科学与工程,1998,21(4):3-7
    [51]Hogwood M C,Bentley A R.The Development of High Strength and Fibrous Microstructure in Tungsten-nickel-iron Alloys for Kinetic Energy Penetrator Applications.Proceedings of Tungsten Refractory Metal,1994(3):37-45
    [52]Goren-Muginstein G R,Rosen A.The effect of cold deformation on grain refinement of heavy metals.Materials Science and Engineering A,1997,238:351-356;
    [53]王世钧,关长友,姜喜群等.高比重钨合金径向锻造工艺分析,哈尔滨工业大学学报,2000,32(5):57-59;
    [54]郑良永.钨丝工艺学.上海,上海科学技术出版社,1996:
    [55]Couque H,Lankford J.In:Bose A,Dowding R J eds.Tungsten and Tungsten Alloys-1992[C].N J:MPIF,1992:365
    [56]王换玉,才鸿年,李刚等.液力挤压法制备新型钨合金穿甲弹芯材料技术.金属成型工艺,2003,21(3):35-36
    [57]范爱国.穿甲弹用高性能钨合金的发展趋势.先进制造与材料应用技术,1998(1):18-21
    [58]Leonard W.Improving Mechanical Properties of Tungsten Heavy Alloy Composition Through Thermo-mechanical Processing.In:Proceedings of International Symposium on Tungsten and Tungsten Alloys,1992
    [59]许沐华,张刚明,王肖均等.预扭转钨合金弹侵彻能力的细观研究.爆炸与冲击,2000,20(2):143-148
    [60]许沐华,胡时胜,王肖均.预扭转钨合金弹侵彻能力的实验研究.弹道学报,1999,11(3):24-29
    [61]Wei Z G,YU J Z,Li J R et al.Influence of Stress Condition on Adiabatic Shear Localization of Tungsten Heavy Alloys.International Journal of Impact Engineering,2001,26:843-852
    [62]Wei Z G,Yu J L,Hu S Set al.Microstrcture Influence on Deformation and Failure Mechanism of Pre2twisted Tungsten Heavy Alloy.International Journal of Impact Engineering,2000,24:747-749
    [63]Kim D K,Lee S,Noh J W.Mater Science and Engineering[J],1998,A247:285
    [64]Baek W H et al.In:Bose A ed.Tungsten and Refractory Metals-1994[C].N J:MPIF,1994:467
    [65]Weerasooriya T et al.In:Bose A ed.Tungsten and Refractory Metals-1994[C].N J:MPIF,1994:401
    [66]Bentley AR,Hogwood MC.The effect of mechanical deformation and heat treatment on the microstructure characteristics of two tungsten heavy alloys.In:Bose A,Dowing RJ,eds.Proceedings of the first international conference on tungsten and tungsten alloys,Virginia,USA,1992:419-430
    [67]黄晨光,董永香,段祝平,李思忠,黄西成.钨合金的冲击动力学性质及细微观结构的影响,力学进展,2003,33(4):433-445
    [68]吴乐贤,赵子明,郭创立。W-Ni-Fe合金中的界面元素偏析和析出相。兵器材料科学与工程的现状和展望学术讨论会交流资料,1986。GF70216
    [69]Chum KS,German RM.Fracture behavior of W- Ni-Fe Heavy alloys.Metallurgical Transaction A,1984,15A:331-338
    [70]Krasko GL.Effect of impurities on the electronics structure of grain boundaries and inter granular cohesion.In:Bose A,Dowing RJ,eds.Proceedings of the first international conference on tungsten and tungsten alloys,Virginia,USA,1992:23-31
    [71]Luo A,Jacobson L.Solution softening and dispersion strengthening in tungsten.In:Bose A,Dowing RJ,eds.Proceedings of the first international conference on tungsten and tungsten alloys,Virginia,USA,1992:233-240
    [72]Asher A,Borukhin L,Gero R.effect of phosphorous impurities on the mechanics properties of tungsten- based heavy metal and analytical methods for its control.In:Bose A,Dowing RJ,eds.Proceedings of the first international conference on tungsten and tungsten alloys,Virginia,USA,1992:257-264
    [73]Yuan L,Chen H,Qin S,Gao Q.Study on impurity segregation in W-Ni-Fe alloys.In:Bose A,Dowing RJ,eds.Proceedings of the first international conference on tungsten and tungsten alloys,Virginia,USA,1992:265-272
    [74]Hong S H,Ryu H J,Baek W H.Mater Science and Engineering,2002,A333:187
    [75]刘海燕,李智芳,宁建国.91钨合金断裂行为研究.太原理工大学学报.2005,36(6):716-718
    [76]刘海燕,宋卫东,宁建国.不同晶粒度钨合金动态力学性能研究.材料工程,2007,6:3-6
    [77]Rabin B H,German R M.Microstructure effects on tensile properties of tungsten-nickle-iron conposites.Metallurgical Transaction A,1988,19A(6):1523-2532
    [78]Ramesh KT,Coates RS.Microstructure influences on the dynamic response of tungsten heavy alloys.Metallurgical Transaction A,1992.23A:2625-2630
    [79]R.M.German,J.E.Hanafee,S.L.Digiallonardo.Metall.Transaction A,1984,15A:123;
    [80]K.S.Churn,R.M.German.Metallurgical Transactions A,1984,15A:31
    [81]郑玉六,张宝平,洪兵,刘长林,姜春兰。真空退火态钨合金的动态力学性态及其本构关系,兵器材料科学与工程,1993,16(5):24-31
    [82]Anderson CE,Walker JD,An examination of long rod penetration.Int Journal of impact engng,1991,11:481-501
    [83]Zhou M,Clifton RJ,Needleman A.Shear band formation in a W-Ni-Fe alloy under plate impact.In:Bose A,Dowing RJ,eds.Proceedings of the first international conference on tungsten and tungsten alloys,Virginia,USA,1992:343-356
    [84]Chen SR,Gray Ⅲ GT.Constitutive behavior of tungsten and Tantalum:Experimental and modeling.In:Bose A,Dowing RJ,eds.Proceedings of the second international conference on tungsten and refractory metals,Mclean,VA,USA,1994:489-498
    [85]GR,Johnson,JM Heogfeldt,U.S.Lindholm,and A.Nagys,ASME J.Eng.Mater.Tech.,1983,105:42
    [86]Johnson,G.R.,Cook,W.H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures.In:Proceedings of 7th International Symposium on Ballistics,The Hague,Netherlands,1983:12-21.
    [87]Kocks,U.F.Laws for work-hardening and low temperature creep.ASME J.Eng.Mater.Technol,1976.98:76-85.
    [88]Mecking H.,Kocks U.F.Kinetics of flow and strain-hardening.Acta Metall.1981,29:1865-1875.
    [89]Estrin Y.,Mecking H.A unified phenomenological description of work hardening and creep based on one-parameter models.Acta.Metall.1984,32:57-70.
    [90]Follansbee,P.S.,Kocks,U.F.A constitutive description of the deformation of copper based on the use of the mechanical threshold as an internal state variable.Acta Metall.1988,36,81-93.
    [91]张宝平,丁淳彤,刘宝华,陈雪莲.钨合金的冲击拉伸行为及其本构和断裂判据的表述.中国工程科学,2003,Vol15,N013:44-51
    [92]史洪刚等.钨合金微观性能测试与研究。哈尔滨工业大学学报,2003,9(35增刊):54
    [93]N.X.Randall,C.Julia-Schmutz,J.M.Soro,J.von Stebut,G.Zacharie.Novel nanoindentation method for characterising multiphase materials.Thin Solid Films.308-309(1997) 297-303
    [94]J.A.Knapp,D.M.Follstaedt,S.M.Myers,J.Co Barbour,T.A.Friedmann,J.W.Ager Ⅲ,O.R.Monteiro,I.G.Brown.Finite-element modeling of nanoindentation for evaluating mechanical properties of MEMS materials.Surface and Coatings Technology,103-104(1998):268-275
    [95]Cheng YT,Cheng CM.J.Mater.Res.1998,13(4):1059
    [96]Lucas BN,Oliver WC,Swindenman.J E.Mat.Res.Soc.Symp.Proc.1998,522:3
    [97]H.M.Pollock,ASM Handbook,Vol.18,ASM International,Ohio,1992:419
    [98]H.Elghazal,G.Lormand,A.Hamel,D.Girodin,A.Vincent.Mircroplasticity characteristics obtained through nano-indentation measurements:application to surface hardened steels,Materials Science and Engineering A303(2001):110-119
    [99]Kato,M.,Fujj,T.and Ouaka,S.Effects of Shape and Volume Fraction of Second Phase on Stress States in Two-phase Materials.Mater.Sci.Eng.2000,A285(2),144-150.
    [100]Knapp JA,Follstonedt DM,Myers SM et al.Finite element modeling of nano-indentation for evaluating mechanical properties of MEMS.Materials surface and coating technology,103-104(2),1998:268-275
    [101]Swaddiwudhipong S,Poh LH,Hua J et al.Modeling nano-indentation tests of glassy polymers using finite elements with strain gradient plasticity.Materials Science Engineering A,404(1-2),2005:pp 179-187
    [102]Elghazal H,Lormand G,Hamel A,Girodin D et al.Mircroplasticity characteristics obtained through nano-indentation measurements:application to surface hardened steels.Materials Science and Engineering A,303(2),2001:110-119
    [103]Lee WS,Xiea GL,Lin CE Mater Science and Engineering,1998,A257:256
    [104]Weerasooriya T,Beaulieu PA,Bose A,Dowding RJ eds.Tungsten and Tungsten Alloy- 1992.NJ,MPIF,1992:317
    [105]Harding J,Wood ED,Campbell JD.J.mech Eng Sci,1960,2:88
    [106]Edington JW,Phil.Mag,1969,19:1189
    [107]马晓青.冲击动力学.北京理工大学出版社,北京,1992
    [108]Yadav S,Ramesh KT.Bose A eds.Tungsten and Refractory Metals.1994.NJ:MPIF,1994:411
    [109]Ramesh KT,Yadav S,Davis JA.Bose A,Dowding RJ eds.Tungsten and Tungsten alloys.1992,NJ:MPIF:299
    [110]范景莲,刘涛,成会朝,黄伯云.钨合金在高速加载条件下的动态力学性能和失效机理.稀有金属材料与工程.2006,Vol35,No6:841-844
    [111]Hopkinson B.A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets,Phil.Trans.Roy.Soc,1914,A213:437
    [112]王礼立.应力波基础,国防工业出版社,北京,2005
    [113]马晓青,韩峰.高速碰撞动力学,国防工业出版社,北京,1998
    [114]J.D.Campbell and W.G Ferguson,Phil.Mag.,21(1970),63
    [115]L.W.Meyer,in Shock-wave and High-Strain-Rate Phenomena in Materials,eds.M.A.Meyers,L.E.Murr,and K.P.Staudhammer,Dekker,New York,1992
    [116]RW Klopp,RJ Clifton and TG Shawki,Mech.Mater:,1985,4:375
    [117]T Vinh,M Afzali,and A.Rocke,in Mechanical Behavior of Materials,Proc.ICM,eds.AK Miller and RF Smith,Pergamon,New York,1979,633
    [118]JD Campell,A M Eleiche,and MCC Tsao,in Fundamental Aspects of Structural Alloy Design,Plenum,New York,1977:545
    [119]G.R.Johnson,J.M.Hoegfeldt,U.S.Lindholm,A.Nagy.Response of various Metals to large torsional strains over a large range of strain rates-part 1:Ductile Metals.Journal of Engineering Materials and Technology,Vol.105:42-47
    [120]G.R.Johnson,J.M.Hoegfeldt,U.S.Lindholm,.A.Nagy.Response of various Metals to large torsional strains over a large range of strain rates-part 2:Less Ductile Metals.Journal of Engineering Materials and Technology,Vol.105:48-53
    [121]Marc A Meyers,张庆明等译。Dynamic Behavior of Materials.材料的动力学行为。国防工业出版社,北京,2006
    [122]M.A.Meyers and K.K.Chawla,Mechanical Metallurgy:Principles and Applications,Prentice-hall,Englewood Cliffs,NJ,1984
    [123]U.F.Kocks,A.S.Argon,and M.F.Ashby,Progr.Mater.Sci,19(1975):1
    [124]Bodner S R,Partom Y,Constitutive equations for elastic viscoplastic strain hardening materials.J Appl.Mech,1975,42:385-389
    [125]BatraRC,Kim CH.Effect of viscoplastic flow rules on the initiation and growth of shear bands at high strain rates.J.Mech.Phys.Solids,1990,38:859-874
    [126]Amari S I.A theory of adaptive pattern classification.IEEE Trans.On Electronic Computers.1967.EC-16:299-307
    [127]Bryson A and Ho Y C.Applied Optimal Control.New York.1969
    [128]Werbos P..New tools for prediction and analysis in the behavioral science [D].Harvard University.1974
    [129]Braun H ENZO-M.A hybrid approach for optimizing neural networks by evolution and learning.In Davider Y et al.Parallel problem solving from nature[C].Berlin.Springer-Verlag.1994:440-451
    [130]张立明.人工神经网络的模型及其应用.上海:复旦大学出版社
    [131]阎平凡、张长水.人工神经网络与模拟进化计算.2000.北京.清华大学出版社
    [132]Bao F.tamesh K T.Plastic flow of a tungsten-based composite under quasi-static compression.Acta metal.1993,Vol.41,No.9:2711;
    [133]Rabin H,Geman R M.characteristics of liquid phase sintered tungsten heavy alloys.Metallurgical transactions.1988.19A.1523

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700