用户名: 密码: 验证码:
Nb+Ti-IF钢成形工艺及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
IF钢又称为无间隙原子钢,属于第三代深冲钢,在汽车、机械等领域得到了广泛的应用。本文为探索其在铁素体区热变形工艺与组织性能关系,用Gleeble-1500热模拟试验机,针对Nb+Ti-IF钢在铁素体区进行了拉伸变形,在试验数据的基础上拟合了该钢在铁素体高温区流变应力峰值σ的解析表达式,建立了铁素体高温区压缩变形的功率耗散图和加工失稳图,并形成了铁素体高温区间的热加工图。
     为探索IF钢冷轧工艺与组织性能关系,论文采用一次冷轧制度和增加了中间退火工艺的二次冷轧制度进行了Nb+Ti-IF钢冷轧工艺试验,完成了酸洗、一次冷轧、中间退火、精整、二次冷轧、再结晶退火等工序,制备出尺寸规格为200×1000×(0.325~2.16)mm的IF钢板带。通过拉伸实验对板料的基本深冲力学性能进行了测试和计算。结果表明:二次冷轧工艺能获得相对一次冷轧工艺更优的力学性能,在同等变形程度下,二次冷轧退火后获得的塑性应变比值最高达到3.08,比一次冷轧提高了18%,在此基础上综合基本深冲力学性能参数对模拟深冲力学性能之一的极限拉深系数进行了预测。非线性参数拟合了三种硬化曲线数学模型,并得到了本试验用Nb+Ti-IF钢最优的加工硬化模型。
     用该模型揭示了不同冷轧工艺下板材的硬化能力:本试验中硬化能力相对较好的是首次冷轧60%,二次冷轧30%工艺对应的板料。通过金相和透射电子显微镜对IF钢的冷变形和退火组织进行了观察,随变形量的增加,变形愈趋均匀,再结晶后晶粒愈来愈细,二次冷轧工艺对应的退火组织总体更加均匀。在变形量大而且层错能较高的IF钢冷变形组织中,以刃位错为主的混合位错呈曲线分布在滑移带周围,并由于局域剪应力的存在,形成大量的排列很密的长条状的“剪切带”。
     通过X-射线衍射方法,测定了不同轧制工艺下板材主要织构分布。二次冷轧的形变织构的显著特征是<111>//ND织构相对中间退火得到了明显增强,增长最多的是{111} < 110>组分;α织构和γ织构的演变与第二次冷轧压下率之间没有简单的线性关系,但{001}织构几乎随着二次压下率的增加而增加。与一次冷轧后退火织构相比,二次冷轧退火织构有强度相对较低的{001}织构和较高的<111>//ND织构;在退火状态下,首次冷轧70%、二次冷轧20%的工艺对应的{111}与{001}面织构含量的比值最高,说明该工艺下退火态薄板测得的最高r值是准确的。
     本文研究获得的IF钢铁素体区热加工图、本构关系和二次冷轧优化工艺及该钢种在冷轧过程中的织构演变分析,丰富了超深冲钢理论,对生产具有指导意义。
Interstitial free (IF) steel is one of the third generation deep-drawing steels. It is widely used in automobile and machinery and so on. In this paper, in order to obtain the relationship between the hot working process in ferrite state and the microstructure and properties, the compressive deformation data of Nb+Ti-IF steel at high temperature of ferrite area have been fit into an express of peak stressσ. Through the power dissipation map and the instability map, the process map for hot working was eventually obtained.
     In order to obtain the relationship between the cold working process and the microstructure and properties of Nb+Ti-IF steel, single cold rolling and double cold rolling with an intermediate annealing were performed. IF steel sheets with the dimension of 200mm×1000mm×(0.325 ~ 2.16 mm) were attained via the following manufacturing procedure: acid pickling, primary cold rolling, intermediate annealing, finishing, secondary cold rolling and recrystallization annealing,.
     The basic mechanical properties of deep-drawing sheet have been evaluated by tensile test and computation. The results indicated that double cold rolling process resulted in better mechanical properties than the single cold rolling process with the same total reduction did. After annealing, the plastic strain ratio resulting from double cold rolling techniques was 3.08, seeing an increment of 18% in comparison to that resulting from single cold rolling. The ultimate stretch coefficient, a simulated mechanical property for deep stamping, was predicted using the basic mechanical properties data. Three kinds of hardened curves were ploted via the non-linear simulation, in which the optimum work hardening model applicable to the Nb+Ti-IF steel was also obtained.
     The work hardening properties of sheets under different cold rolling processes were studied using this model. The result indicated that the sheet with the cold reduction of 60% in the first time and 30% in the second time had the best work hardening properties. The microstructures after cold rolling and annealing were observed using a transmission electron microscope (TEM) and an opticle metallographic microscope. As the cold reduction increased, the deformed microstructures became more uniform, and the recrystallized grains became more symmetrical. Moreover, the microstructure resulting from the double cold rolling was more homogeneous than that resulting from the single cold rolling. In the IF steel sample heavily cold deformed, a lot of mixing dislocations, most of which were edge-dislocations, distributed around the slip-bands. As a result of the shearing stress concentration, a lot of very dense“shear bands”with the shape of parallel sliver were formed in some areas.
     The textures resulting from different cold rolling processes were measured using XRD. The deformation textures resulting from double cold rolling were remarkably charactered by the enhenced <111>//ND texture after intermediate annealing, among which the {111} < 110> component was the most enhanced. The evolution ofαandγtextures were not linearly related to the second cold reduction, whereas the {001} texture incerased with the increase of the reduction. After double cold rolling and annealing, the recrystallization textures included lower intensity of {001} texture and higher intensity of <111> //ND texture in comparison to the textures resulting from the single cold rolling; The highest recrystallization texture content of {111} and {001} was measured after double cold rolling when the reduction assignment was 70% in the first time and 20% in the second time, suggesting that the highest r value of the sheet after this cold rolling condition was correct.
     The process map for hot working in ferrite region, stress-strain relationship and double cold rolling process were established for IF steel. The evolution of the textures during cold rolling was systemically analyzed. These results not only added new ideals to the theoretic system of deep stamping steels, but provided guideance to the production of such steels also.
引文
[1]张鹏,汪凌云,任正德.微合金化超深冲-无间隙原子(IF)钢生产技术的进展[J].特殊钢, 2005, 26(2): 1~5.
    [2] Hiroshi Takechi.日本IF钢的发展趋势[J].武钢技术, 1 995, 6: 50~55.
    [3]中信微合金化技术中心编译,铌科学与技术[M].北京:冶金工业出版社, 2003.
    [4]李文彬,官军.深冲钢(IF钢)的研究与发展概况[J].冶金设备, 2005, 151(6): 29~34.
    [5]刘正东,杨钢.铁素体区热轧的研究与应用[J].轧钢, 2002, 9(02): 37~38.
    [6] W C莱斯利著.余宗森,谢善饶译.钢的物理冶金学[M].北京:冶金工业出版社, 1988.
    [7] M P Butron-Guillen, J J Jonas. Effect of finishing temperature on hot band texture in an IF steel[J]. ISIJ Intl, 1996, 36(1): 68~73.
    [8]宁宇,王昭东. Nb Ti-IF钢铁素体区热轧工艺试验研究[J].轧钢, 2004, 21(2): 7~9.
    [9] A Oudin, M R Barnett, P D Hodgson. Grain size effect on the warm deformation behaviour of a Ti-IF steel[J]. Materials Science and Engineering A, 2004, 367: 282~294.
    [10] C Huang, E B Hawbolt, X Chen, etal. Flow stress modeling and warm rolling simulation behavior of two Ti–Nb interstitial-free steels in the ferrite region[J]. Acta Mater. 2001 (49): 1445~1452.
    [11]徐洲,酒井拓.高温变形对含Ti无间隙原子钢铁素体晶粒直径的影响[J].机械工程材料, 1997, 21(2): 35~39.
    [12]高燕,刘战英. IF钢铁素体区轧制工艺参数对深冲性能影响的研究[J].河北冶金, 2006, 52(2): 10~12.
    [13]关小军,周家娟.终轧温度对Ti+Nb处理的高强IF钢板织构的影响[J].钢铁研究, 2001, 118(1): 18~19.
    [14] M P Butron-Guillen, J J Jonas. Effect of Finishing Temperature on Hot Band Textures in an IF Steel[J] . ISIJ Intl, 2002, 34(2): 123~126.
    [15]王涛,刘相华,王国栋. IF钢铁素体区热轧工艺参数对深冲性能的影响[J].河北理工大学学报, 2005, 27(3): 27~29.
    [16]殷宝言. IF钢的开发[J].炼钢, 1997, 1: 48~49.
    [17]张锦刚,蒋奇武. Ti-IF和Ti+Nb-IF钢铁素体区热轧组织和织构特征[J].东北大学学报(自然科学版), 2005, 26(10): 968~971.
    [18]商建辉,王先进,蒋冬梅等.卷取温度对Ti-IF钢第二相粒子及晶粒尺寸的影响[J].钢铁, 2002, 37(3): 43~47.
    [19]鹿岛康弘.铁素体区轧制时的润滑条件对超低碳钢加Ti冷轧钢板r值及织构的影响[J].武钢技术, 1992, (8): 59~66.
    [20] M Z Quadir, B J Duggan. Deformation banding and recrystallization of a bre components in heavily rolled IF steel[J]. Acta Materialia, 2004 (52): 4011~4021.
    [21] B L Li, W Q Cao, Q Liu, W Liu. Flow stress and microstructure of the cold-rolled IF steel[J].Materials Science and Engineering A, 2003 (356): 37~42.
    [22] A Samet-Meziou, A L Etter, T Baudin, etal. TEM study of recovery and recrystallization mechanisms after 40% cold rolling in an IF-Ti steel[J]. Scripta Materialia, 2005 (53): 1001~1006.
    [23]张竑. IF钢对连续退火工艺的影响[J].武钢技术, 1999, 37(5): 35~36.
    [24]叶卫平,陈铁群. IF钢罩式退火与连续退火再结晶模拟试验[J].特殊钢, 2000, 21(5):11~13.
    [25]关小军,周家娟,姜寿文. Ti Nb对高强IF钢板连续退火再结晶的影响[J].特殊钢, 2000, 21(4): 56.
    [26]马衍伟,王先进,李慧琴等.退火工艺对超深冲Ti +Nb-IF钢性能的影响[J].金属热处理学报, 1998, 19(1): 16~19.
    [27]沈凯, B.J.Duggan.冷轧体心立方IF钢中剪切带的形成[J].南京航空航天大学学报, 2005, 37(4): 573~575.
    [28] R K Ray, J J Jonas, R K Hook. Cold rolling and annealing textures in low carbon and extra low carbon steels [J], Int. Mater. Rev., 1994, 39(4): 129~172.
    [29] Rudolf Kern, Hsiao Ping Lee, Hans-Joachim Bunge. The rolling texture of iron of diferent purities[J]. Steel Research, 1986, 57(11): 563~571.
    [30]石京,王先进,陈家光. IF钢罩式退火过程中织构变化的研究[J].钢铁, 1999, 34(11):44~47.
    [31]崔德理,康永林,金山同等. IF钢织构控制[J].北京科技大学学报, 1993, 15(增): 24~29.
    [32] M Y Hu, J P An, Y B Park. Development of microstructure and texture in cross roed and recryctallized low carbon proceedings[J]. ICOTOM. 1996, 11(1): 461~465.
    [33] B Hutchinson, D Artymowicz. Mechanisms and modeling of microstructure texture evolution in interstitial-free steel sheets[J]. ISIJ Inter, 2001, 41(6): 533~541.
    [34]王刚,孙建伦,王福等. IF钢退火过程中织构变化的模拟研究[J].东北大学学报(自然科学版), 1998, 19(4): 381~383.
    [35] B Orlans-Joliet, B Backoix, F Montheillet, etal. Yield surfaceson B.C.C crystals for slip on the {110}〈111〉and{112}〈111〉systems[J]. Acta Metal, 1988, 36: 1365~1380.
    [36] F Emren, S Von, K Luck. Investigation of the development of the recrystallization textures in deep drawing steels by ODF analysis[J], Acta Metall, 1986, 34: 2105-2117.
    [37]毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社, 1993.
    [38]张信钰.金属和合金的织构[M].北京:科学出版社, 1976.
    [39] H J Bunge. Darstellung allgemeiner texture[J]. Mwtallkunde, 1965, 56(3): 872~881.
    [40] R J Roe.Description of crystallite orientation in polycrystalline materials[J]. Journal of Applied Physics, 1965, 36(6): 2024~2031.
    [41]梁志德.织构材料的三维取向技术[M].沈阳:东北工学院出版社, 1986.
    [42] H J Bunge. Texture Anlysis in Materials Science[M]. London: Butterwarth, 1965.
    [43]马柏生,李友荣,魏元春.形变参数对中碳镍钼钒钢奥氏体晶粒的影响[J].南京理工大学学报, 1998, 22(4): 309~312.
    [44] B L Li, A Godfrey, Q C. Meng. Microstructural evolution of IF-steel during cold rolling[J], Acta Materialia, 52 (2004) 3: 1069~1081.
    [45] J Zrink, T Kvackaj, D Sripinproach, etal. Influence of plastic deformation conditions on structure evolution in Nb-Ti microalloyed steel[J], Journal of Material Processing Technilogy, 2003, 133:236~242
    [46]宋仁国,张宝金等.7175超硬铝合金时效行为和拉伸性能的研究[J].辽宁冶金,1995,6:36~37.
    [47] V B Ginzburg. Effect of hot rolled microstructure on cold rolling texture[J]. Steel-Rolling Technology, 1989, 36(4): 63.
    [48]汪凌云,范永革,黄光杰等.镁合金AZ31B的高温塑性变形及加工图[J].中国有色金属学报, 2004, 14(7): 1068~1072.
    [49] Y V R K Prasad, S Sasidhara. Hot Working Guide—A Compendium of Processing Maps [M]. Materials Park, OH: ASM International, 1997.
    [50] B Bozzini, E Cerri. Numerical reliability of hot working processing maps[J]. Materials Science and Engineering A, 2002, 328: 344~347.
    [51] T Seshacharyulu, S C Medeiros, W G Frazier, et al. Hot working of commercial Ti26Al24V with an equiaxedα-βmicrostructure: materials modeling considerations[J]. Materials Science and Engineering A, 2000, 284: 184~194.
    [52] S V S N Murty, B N Rao. On the flow localization concepts in the processing maps of IN718[J]. Materials Science and Engineering A, 1999, 267: 159-161.
    [53] S V S N.Murty, B N Rao. On the development of instability criteria during hotworking with reference to IN718[J]. Materials Science and Engineering A, 1998, 254: 76~82.
    [54] Y V R K.Prasad, H L Gegel, S M Doraivelu, etal. Modeling of dynamic material behavior in hot deformation forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15 (10): 1883~1892.
    [55] P Cavaliere. Hot and warm forming of 2618 aluminium alloy[J]. Journal of Light Metals, 2003(2): 247~252.
    [56] Z Gronostajski. The deformation processing map for control of microstructure in CuAl9.2Fe3 aluminium bronze[J]. Journal of Materials Processing Technology, 2002, 126: 119~124.
    [57] Wolfgang Lehnert著,吴忠译.多步冷轧带钢中的不均匀变形和组织形成[J].现代冶金, 2005 (2): 59~62.
    [58] H O Asbeck, H Mecking. Influence of friction and geometry of deformation on tecture[J]. Met. Sci. Eng., 1978, 34: 111~119.
    [59]西村惠次.冲压成形性极好的超高r值冷轧钢板[J].钢铁译文集. 2000(1):58~61.
    [60]国家标准局. GB/T228-2002金属材料室温拉伸试验方法[M].北京:中国标准出版社, 2002.
    [61]国家标准局. GB 5027-99金属薄板塑性应变比(r值)试验方法[M].北京:中国标准出版社, 1999.
    [62]国家标准局,GB 5028-99,金属薄板拉伸应变硬化指数(n值)试验方法[M].北京:中国标准出版社, 1999.
    [63]马璟,关小军,刘清津等. IF板与08Al板的成形性能研究[J].山东冶金, 2003, 25 (6): 49~51.
    [64]贾连成,张家义,赵麦英等.关于综合成形指标F值的评价[J].金属成形工艺, 1993, 11(1): 11~13.
    [65]胡四光,陈鹤峥.板料冷压成形的工程解析[M].北京:北京航空航天大学出版社, 2004.
    [66]《板金冲压工艺手册》编委会.板金冲压工艺手册[M].北京:国防工业出版社, 2002.
    [67]汪凌云,刘静安.计算金属成形力学及应用[M].重庆:重庆大学出版社, 1991.
    [68]余宗森,田中卓.金属物理[M].北京:冶金工业出版社, 1982.
    [69]吴建军,周维贤.板料成形性基础[M].西安:西北工业大学出版社, 2004.
    [70]周维贤.描述钢板硬化曲线的一个新数模[J].材料科学进展, 1989, 4(3): 324~326.
    [71]李树堂.金属X射线衍射与电子显微分析技术[M].北京:冶金工业出版社, 1980.
    [72]李晋霞,刘占英,李艳娇.冷轧工艺对IF钢r值和n值的影响[J].钢铁研究学报, 2002, 14(1): 16~18.
    [73]石德珂.材料科学基础[M].北京:机械工业出版社, 2000.
    [74] I I Dillamore, J G.Roberts, A C Bush. Occurrence of shear bands in heavily rolled cubic metals[J]. Metal Science, 1979, 4: 73~77.
    [75]坂田敬.通过组织控制改善钢的延展性及加工性[J]. 21世纪的钢铁材料(译文专集).北京:首钢集团公司技术中心, 1999 .
    [76] F.布赖恩,皮克林著,刘嘉禾译.钢的组织与性能(材料科学与技术丛书第7卷)[M].北京:科学出版社, 1999.
    [77] J K Mackenize. The distribution of rotation axes in a random aggregate of cubic crystal[J]. Acta Metall., 1964, 12: 289~289.
    [78] Shen Kai, B J Duggan. Formation of shear band in cold rolled body-centered cubic metal[J]. Journal of Nanjing University of Aeronautics &Astronautics. 2005, 37(5): 573~575.
    [79]宛德福,罗世华.磁性物理[M].北京:电子工业出版社,1987.
    [80] M Hatherly, W B Hutchinson. An introduction to texture in metals[M]. London: Chameleon Press, 1979.
    [81] J Szpunar, M Ojanen. The ralationship between texture and magnetic properities in Fe-Si steel[J]. Metall. Trans., 1975, 6A: 561~567.
    [82]曹圣权,张津徐,吴建生等. IF钢织构与晶界特征分布的研究[J].金属学报, 2004, 40(10): 1045~1050.
    [83] M R Barnett, L Kestens. Formation of {111}<110> and{111}<112> textures in cold-rolled and annealed IF sheet steel[J]. ISIJ Int., 1999 (39): 923~929.
    [84] W B Hutchinson. Recrystallization textures in iron resulting from nucleation at grain boundaries[J], Acta Metall. 1989 (37): 1047~1056.
    [85] J J Jonas. Effects of shear band formation on texture development in warm-rolled IF steels[J]. Journa of Materials Processing Technology., 2001 (117): 293~299.
    [86] M R Barnett, M D Nave, C.J.Bettles. Deformation microstructures and textures of some cold rolled Mg alloys[J]. Materials Science and Engineering A, 2004, 38(1-2): 205~211.
    [87] Y B Park, D.N.Lee, G..Gottstein. The evolution of recrystallization textures in body centred cubic metals[J]. Acta Materialia, 1998, 46(10): 3371~3379.
    [88] P J Hurley, F J Humphreys. The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy[J]. Acta Materialia, 2003, 51(4): 1087~1102.
    [89] S L Semiatin, M.R.Staker, J J Jonas. Plastic instability and flow localization in shear at high rates of deformation[J]. Acta Metallurgica, 1984, 32(9): 1347~1354.
    [90] M Abe,Y Kababu,S Hayashi, Effect of cold rolling reduction on recrystallization organiza -tion and drawability of a cold rolled Ti-IF steel sheet previously hot rolled in ferrite region[J]. Trans.Japan Inst, Met. 1982 (23),718~721. .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700