用户名: 密码: 验证码:
油品扬沸火灾重构与防治对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扬沸火灾过程复杂、危害严重,加上人们的重视程度不够,一旦发生将会造成巨大损失。目前人们对扬沸火灾的机理尚未完全理解,有效地阻止扬沸发生的对策措施亦不成熟。因此,研究油品扬沸火灾的特点和发生规律及机理,探索扬沸发生条件,分析其复杂的突变过程,特别是开展对扬沸火灾中各阶段的系统研究,科学、准确地判断、预测和防治扬沸的发生,对确保人员安全,维护社会安定,具有重要的社会和经济意义。为此本文从以下几个方面进行了研究:
     首先对易发生扬沸的油品特性进行了分析,提出了扬沸三角的概念。利用色质联用仪和热重分析仪对易扬沸油品进行了实验分析,论证了扬沸发生必须符合扬沸三角的条件。分析了油品含水率、沸程和粘度对扬沸的影响。
     建立了中小尺度油品扬沸火灾模拟实验台,对油品扬沸火灾过程中的特征参量进行实时测量,利用非接触式红外测温技术对油品扬沸火灾各阶段的火焰温度场进行测量分析。对油品扬沸火灾过程中的油水层热结构特性和影响油品扬沸火灾形成和强度的因素进行研究,得到油水界面温度位于110℃-130℃之间是扬沸发生的一个特征温度范围。利用自编程序对油品扬沸火灾各阶段的火焰高度、火焰变化幅度和脉动频率进行了分析。在实验数据的基础上,对中小尺度油品扬沸火灾中的热波传播速度和扬沸形成时间进行计算,并对油品沸溢半径进行了预测。在预测沸溢半径的基础上,对扬沸阶段火焰辐射进行计算。最后利用尺度模拟准则,确立中小尺度油品扬沸火灾与大尺度油品扬沸火灾之间的关系。
     利用基于场模拟的CFD软件FDS,对大尺度油品扬沸火灾进行了数值实验模拟,首先对FDS应用到油品扬沸火灾模拟的可行性进行研究,然后利用FDS对油品扬沸火灾中的准稳态燃烧阶段和扬沸阶段中油品沸溢火灾进行了模拟,包括火焰温度、流场结构和火焰辐射等。特别对油品扬沸火灾中主要危害-热辐射,进行了系统研究,分析得到火焰热辐射强度在水平方向和垂直方向的分布规律,利用热辐射伤害准则确定了两阶段的安全距离,对黄岛油库扬沸火灾的准稳态燃烧阶段进行了数值实验模拟
     利用高速摄影技术,对扬沸前兆阶段的油水界面的实验观察,观测油水界面的气泡的生成和运动对扬沸形成的作用,论证了油水界面水过热剧烈沸腾和蒸汽微爆是导致扬沸形成的直接原因。理论分析得到油水界面气泡的增多,导致油层中空隙率的增大是导致油品沸溢发生的原因。通过油水界面压力数据得到,扬沸阶段油水界面压力的升高与蒸汽微爆存在必然联系,且压力上升导致扬沸的最终发生。在对扬沸火灾的机理进行分析研究的基础上,提出了防治油品扬沸火灾的被动与主动防治对策。在被动防治对策方面:使用非接触式红外测温方法对罐壁温度进行测量,根据罐壁温度来预测扬沸的发生,从而达到提前预防的目的;使用沸石对油水层界面水过热剧烈沸腾及蒸汽微爆现象进行抑制或减弱,达到降低扬沸阶段的热辐射和沸溢危害程度的目的。在主动防治对策方面:运用盘管式水冷却系统对扬沸的抑制进行了研究,当使用双列盘管冷却系统时,能够有效阻止扬沸的形成。
Boilover is one of the most dangerous on oil tank fires. Boilover is a very complicate process, which has the character of great dangerous and difficult to control, but it is not been look as an important problem. The reason of boilover is unkown for our, the methods of prevent boilover formation is unsuccessful. So, study the mechanism and the formation condition of boilover is important. We analysis the complex process of heat and mass transfer, and especially study the parameters on the each stage of boilover fire, which can provide the correct methods of prevention the boilover and decrease the loss of boilover. In order to gain the main propose. We have done the below works:
     By the experimental study the character of oil which has boilover phoneme on the process of combustion. The concept of boilover triangle is established, and the oil with the condition of boilover triangle can has boilover phoneme on the process of combustion. The main analysis instruments are GC-MS and TGA. The influence of the water content of oil, boiling range and viscosity for boilover was analyzed.
     The small-scale boilover fire simulation experiment bench was built, which can real-time surveys the characteristic parameters of boilover. The characteristic parameters include burning velocity( linear burning rate and mass burning rate),heat release rate, flame temperature, radiation and flame height, which were investigated in the combustions of mixed crude oil, mixed oil(kerosene and lubrication oil) and diesel oil on quasi-steady combustion, pre-boilover and boilover stage. Mutations were found in those parameters, the values of burning velocity and heat release rate became times to several decuple of those mean values on boilover stage. Using the non-contact infrared thermometer analyzes the flame temperature field on each stage of boilover. The thermal structure of oil and water layer and factors which can influence the boilover formation and intensity were studied. The range of 110℃-130℃is the characteristic temperature range of boilover. We utilized our program calculated the change scope of flame height, and flame pulsation frequency. Based on the experimental data, the heat wave velocity, boilover formation time and the radius of boil-over were predicted. The solid flame model was used calculated the thermal radiation on quasi-steady burning phase. The calculation values and the experimental values were compared, and we found the calculation values are consistent with experimental values. The flame shape, flame temperature and fire area change when boilover fire forms. Those changes can lead to the mutation of thermal radiation. Based on the calculation of radius of boilover, point source flame model was used to calculate the thermal radiation on boilover stage. We calculated the thermal radiation on boilover stage. Lastly, we used the simulation principles of scale establish the relation between the small-scale and large-scale boilover.
     The software of FDS was used to simulate the large-scale boilover. Firstly, we proved the feasibility of FDS on the simulation of quasi-steady combustion stage. We used the software of FDS simulate the flame temperature, velocity field and flame thermal radiation. Especially for the main dangerous of flame thermal radiation, the distribution of flame radiation intensity on horizontal and vertical orientation was gained. The principal of thermal radiation destroy was used to determine the safety distance when boilover happens.
     Experimental study the oil-water interface with high-speed photography and experimental study the formation of bubble and the accumulation of bubble were carried out. The formation of bubble is proved is the reason of flame height change and the accumulation of bubble is the reason of boilover formation. The accumulation of bubbles can cause the micro-explosion of steam, which can make the pressure of oil-water interface increase. The increase of pressure can cause the boilover formation. Boilover fire is a mutation harmfulness phenomenon. The prevention of boilover is a difficult problem. Based on experimental study of boilover mechanism, the small-scale tank boilover fire prevention experiment platform was built to resolve the problem. We study the prevention methods of boilover. The prevention methods can divided into initiative and passive prevention methods. The passive prevention method is measure the tank wall temperature with the IR thermal field diagnosis method. According to temperature of tank wall and the heat zone temperature, predict the boilover formation. The second method of passive prevention method is using the zeolite to prevent the super-heat water acute boil. The initiative prevention method is using serpentinepipe cooling system apply on boilover prevention. The temperature of oil layer,oil-water interface, water layer and radiation proved the serpentinepipe cooling system can reduce and prevent the harmfulness of boilover. The small-scale tank boilover fire prevention methods can provide theoretical foundation for the prevention of large-scale tank boilover fire.
引文
[1]陈久行.石油安全与石油储备[J].中国石油和化工经济分析,2007(14):45-51.
    [2]蒋涛.黄岛油库“8.12”特大火灾事故(十年回眸)[J].化工劳动保护,1999,20(6):204-207.
    [3]H.Hall.Oil tank fire boilover[J].Mech.Eng.1925(47):540-544.
    [4]Burgoyne H,Katan L.Fires in open tanks of petroleum products:some fundamental aspects[J]J Inst.Petroleum,1947(33):158-191.
    [5]Jamie Robertson.Explosive phenomena boilover[N/OL].Yhe University of Edinburgh,http://www.chemeng.ed.ac.uk/jskillin/teaching/safety4/jroberts/index.htm.
    [6]Blinov V,Khudiakov G.Diffusion burning of liquids[J].T-1490ASTIA AD,1961(118):296-762.
    [7]M Arai,K Saito,R Altenkirch.A study of boilover in liquid pool fires supported on water.Part Ⅰ-Effects of a water sublayer on pool fires[J].Combust.Sci.Yechnol,1990(71):25-40.
    [8]Hasegawa K.Experimental study on mechanism of hot zone formation in open-tank fire[J].Fire Safety Science,1987(2):221-230.
    [9]Koseki H,Nastume Y,Iwata Y et al.A study on large-scale boilover using crude oil containing emulsified water[J].Fire Safety Journal,2003(38):665-667.
    [10]Bernd Broeckmann,Hans-Georg Schecker.Heat transfer mechanisms and boilover in burning oil-water systems[J].J.Loss.Pross.Ind,1995,8(3):137-147.
    [11]Ara M,Saito K,Altenkirch A.A study of boilover in liquid pool fires supported on water(Ⅰ)[J].Combust.Sci.and Tech.,1990(71):25-40.
    [12]D Evans,W Walton,H Baum et al.Measurement of large scale oil spill burn[J].Environment Canada.Arctic and Marine Oil Spill Program Technical Seminaer,13~(th),1990,1-38.
    [13]Fabio Ferrero,Miguel Munoz,Bulent Kozanoglu et al.Experimental study of thin-layer boilover in large-scale pool fires[J]. Journal of Hazardous Materials, 2006, 137(3): 1293-1302.
    
    [14]Fabio Ferrero, Miguel Munoz, Josep Arnaldos. Thin-layer boilover in diesel-oil fires: Determining the increase of thermal hazards and safety distances[J]. Journal of Hazardous Materials, 2007(140):361-368.
    
    [15]Fabio Ferrero, Miguel Munoz, Josep Arnaldos.Effects of thin-layer boilover on flame geometry and dynamics in large hydrocarbon pool fires[J]. Fuel Processing Technology, 2007, 88(3):227-235.
    
    [16]Koseki H.Experimental study of boilover in crude oil fires[C]. Proceedings of the third International Symposium on Fire Safety Science, 1991,865-875.
    
    [17]Koseki H, Natsume Y, Iwata Y et al. A study on large-scale boilover using crude oil containing emulsified water[J]. Fire Safety Journal, 2004,39(2): 143-155.
    
    [18]Koseki H, Natsume Y, Iwata Y et al. A large-scale boilover experiments using crude oil[J]. Fire Safety Journal, 2006,41(7):529-535.
    
    [19]Koseki H. 1996.Research on combustion characteristics of oil tank fires[D]:[Dissertation of Doctor of Engineering].Tokyo:The University of Tokyo,3-16.
    
    [20]Koseki H, G Mulholland.The effect of the diameter on the burning of crude oil fires[J].Fire Technol, 1991,27 (1):54-65.
    
    [21]Koseki H.Boilover and crude oil fire[J].J. Appl. Fire Sci,1993,3 (3):243-271.
    
    [22]Koseki H, Yumoto T. Air entrainment and thermal radiation from heptane pool fires[J]. Fire Technology, 1988,24(1):33.
    
    [23]Koseki H, Yumoto T. Burning characteristics of heptane in 2.7m square dike fires[J].Fire Safety Science, 1988(2):33
    
    [24]Koseki H.Scale Dependency of radiation and smoke emission from large pool fires[C]. Proceedings of the 2nd symposium on Scale Modeling (Inter), 1997,87.
    
    [25]Hayasaka H, Koseki H, Tashiro T. Radiation measurements in large-scale kerosene pool flames using high-speed thermography[J]. Fire Technology, 1992,28(2): 110.
    
    [26]J Garo, J Vantelon, A Fernandez-Pello. Boilover burning of oil spilled on water[J]. Symposium (International) on Combustion, 1994, 25(1):1481-1488.
    
    [27]J Garo, J Vantelon, S Gandhi et al. Determination of the thermal efficiency of pre-boilover burning of a slick of oil on water[J]Spill Sci.Technol. Bull. 1999,8 (4) :221-227.
    
    [28]J Garo, P Gillard, J Vantelon et al. Combustion of liquid fuels spilled on water. Prediction of time to start of boilover[J].Combust. Sci. Technol. 1999(147): 39-59.
    
    [29]J Garo, J Vantelon, C Fernandez-Pello. Experimental study of the burning of a liquid fuel spilled on water[C].Twenty five Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh,1994,1481-1488.
    [30]J Garo,J Vantelon,C Fernandez-Pello.Effect of the fuel boiling point on the boilover burning of liquid fuel spilled on water[C].Twenty-sixth Symp.(Int.)on Combustion,The Combustion Institute,Pittsburgh,1996,1461-1467.
    [31]J Garo,J Vantelon,J Souil et al.Burning oil spill-effect of the weathering and water content[C].AIAA/ASME Joint Thermophysics and Heat Transfer Conf.,Vol.1,ASME,1998,179-190.
    [32]J Garo,J Vantelon.Thin layer boilover of pure or multicomponet fuels[J].Prev.Hazard.Fires Explos.1999,167-182.
    [33]J Garo,J Vantelon,H Koseki.Thin-layer boilver:prediction of is onset and intensity[J].Combustion Science and Technology,2006(178):1217-1235.
    [34]Inamura K,Saito K,Tagaci K.A study of boilover in liquid pool fires supported on water(Ⅱ)[J].Combustion Science and Technology,1992(86):105-119.
    [35]J.S.Hua,W.C.Fan,G.X.Liao.Study and prediction of boilover in liquid pool fires with a water sublayer using micro-explosion noise phenomena[J].Fire Safety Journal,1998(30):269-291.
    [36]花锦松.1995.扬沸火灾机理及预测的研究[D]:[博士].合肥:中国科学技术大学,10-30.
    [37]花锦松,廖光煊,范维澄.油品扬沸火灾前兆噪音特性的研究[J].中国科学技术大学学报,1994,24(1):38-41.
    [38]廖光煊,姚斌,范维澄等.油罐扬沸火灾预测方法的研究及安全预警系统的建立[J].中国安全科学学报,1997,Supp(7):8-12.
    [39]姚斌,廖光煊,范维澄.扬沸过程燃烧噪声的谱分析(Ⅰ)-改进的最大熵谱法[J].火灾科学,1995,4(1):39-43.
    [40]姚斌,廖光煊,范维澄.扬沸过程燃烧噪声的谱分析(Ⅱ)-扬沸前兆噪声的工程:识别模型[J].火灾科学,1996,5(2):17-22.
    [41]花锦松,廖光煊,范维澄.扬沸火灾监测预报方法研究(Ⅱ).实验分析[J].火灾科学,1996,5(1):28-34.
    [42]廖光煊,花锦松等.油品火灾扬沸前兆现象的实验研究[J].火灾科学,1992(1):1.
    [43]廖光煊,花锦松等.油罐扬沸火灾及其消防对策[R].课题研究报告,1992.
    [44]李自力.原油罐火灾中热波速度的计算模型[J].石油大学学报,1996(20):40-43.
    [45]李自力.原油罐火灾沸溢问题实验研究[J].石油规划设计,2001,12(1):22-24,
    [46]贾羲.2004.油罐火灾及其特殊火行为的小尺度模型实验研究[D]:[硕士].南京:南京工业大学,4-15.
    [47]蔡丽辉.2006.池火灾沸溢早期特性数值模拟实验[D]:[硕士].南京:南京工业大学,20-25.
    [48]李建华,黄郑华,黄汉京.重质油罐火灾热波传播及影响因素研究[J].消防科学与技 术,2003,22(6):463-467.
    [49]李建华,黄郑华.油罐火灾沸溢喷溅的控制措施[J].油气储运,2006,25(12):46-48.
    [50]黄郑华,李建华,李元福.燃烧油品的沸溢喷溅特性分析研究[J].火灾科学,2005,46-50.
    [51]张源雪.原油储罐火灾热波速度的探究[J].消防科学与技术,2005,24(5):546-549.
    [52]Icove D J,Dehann J D.2003.Forensic Fire Scene Reconstruction[M].New Jersey:Prentice Hall,3.
    [53]蔡波.2005.基于场模拟的火灾重构方法研究p]:[硕士].合肥:中国科学技术大学,4-6.
    [54]Madrzykowski D,Walton W D.Cook county administration building fire.69 West Washington,Chicago,Illinois,October 17,2003:Heat Release Rate Experiments and FDS Simulations[R].NIST Special Publication 1021,2004,489.
    [55]Bryner N P,Kerber S.Simulation of the dynamics of a fire in the basement of a hardware store[R].New York,June 17,2001,NISTIR 7137;May 2004.57.
    [56]Madrzykowski D,Vettori,Robert L.Simulation oft he dynamics of the fire at 3146 Cherry Road NE[R],Washington D C,May 30,1999,NISTIR 6510,2000.
    [57]NIST NCSTAR 1,Final Reports of the Federal Building and Fire Investigation of the World Trade Center Disaster[R].http://wtc.nist.gov/reports_october05.htm.
    [58]Usmani A S,Chung Y C,Torero J L.How did the WTC towers collapse:a new theory[J].Fire Safety Journal,2003(38):501-533.
    [59]Quintiere J G,M.di Marzo,Becker R.A suggested cause of the fire-induced collapse of the World Trade Towers[J].Fire Safety Journal,2002(37):707-716.
    [60]NIST NCSTAR 1-5.Reconstruction of the fires in the World Trade Center Towers[R].http://wtc.nist.gov/reports_october05.htm.
    [61]Madrzykowski D,Forney G P,Walton W D.Simulation of the dynamics of a fire in a Two-Story Duplex.Iowa,December 22,1999[R].Fire Safety and Engineering Division Building and Fire Research Laboratory,National Institute of Standards and Technology Gaithersburg,Md.
    [62]姜蓬,邱榕,蒋勇.基于数值模拟的某大厦特大火灾过程调查[J].燃烧科学与技术,2007,13(1):76-80.
    [63]W.K.Chow.Application of the software fire dynamics simulator in simulating retail shop fire[J].Fire Safety Science,2004,13(1):18-26
    [64]Tzu-Sheng Shen,Yu-Hsiang Huang,Shen-Wen Chien.Using fire dynamic simulation(FDS)to reconstruct an arson fire scene[J].Building and Environment,2008(43):1036-1045.
    [65]Zhou Xinquan,Wu Bing.Computer simulation of ventilation pressure balancing for the prevention of spontaneous combustion in mines[J].Journal of China University of Mining and Technology,1995,5(2):1-10.
    [66]吕军,周丽红,常心坦.VR技术在煤矿安全中的应用[J].西安科技学院报,2003,23(1):6-9.
    [1]黄郑华,李建华,李元福.燃烧油品的沸溢喷溅待性分析研究[J].火灾科学,2005(3):46-50.
    [2]国家经济贸易委员会.2003.SY/T6556-2003大型地面常压储罐防火和灭火[S].北京:石油工业出版社.
    [3]孙云霞,吴士兰.气相色谱仪与色-质联用仪分析条件的研究[J].天津化工,1995(4):25-27.
    [4]孙垂华,徐效华.2003.有机物的分离和结构鉴定[M].北京:化学工业出版社,89.
    [5]傅若农.近两年国内气相色谱的应用进展(Ⅰ)[J].分析试验室,2005,24(4):75-92.
    [6]张小芹.2006.典型干杂类可燃物热解与燃烧特性研究[D]:[博士],合肥:中国科学技术大学,4-10.
    [7]胡浩斌,郑尚珍,郑旭东.东紫苏挥发油化学成分的研究[J].甘肃纵横科技,2006,35(5):30.
    [8]胡浩斌,郑尚珍,宋志军,等.石油醚萃取法与水蒸气蒸馏法提取白花茵陈挥发油的比较[C].西北地区第三届色谱学术报告会暨甘肃省第八届色谱年会论文集,2004.
    [9]苏凤仙.气相色谱技术的新进展及应用[J].合成技术及应用,2006,21(03):30-34.
    [10]白正伟,白炯,常晓军.STA449C综合热分析仪测定.水酒石酸熔点方法的改进[J].分析仪器,2006(01):25-27.
    [11]廖泽文,耿安松.沥青质热解动力学研究及其应用初探[J].自然科学进展,2000,10(02):183-189.
    [12]董喜贵,雷群芳,俞庆森.石油沥青质的热解动力学研究[J].浙江大学学报,2004,31(6):652-656.
    [13]M Chang,T T Charalampopoulos.Determination of the wavelength dependence of refractive indices of flame soot[J].Mathematical and Physical Sciences,1990,430(1880):577-591.
    [14]苏尔皇.1986.液体的粘度计算和测量[M].北京:电子工业出版社,218-225.
    [15]唐秀家.不等温长管道泄露定位理论[J].北京大学学报:自然科学版,1997,33(5):574-580.
    [16]李自力.原油罐火灾沸溢问题实验研究[J].石油规划设计,2004,12(1):22-24.
    [17]冯叔初等.1998.油气集输[M].东营:山东石油大学出版社.
    [18]张鸿仁.1990.油田原油脱水(M].北京:北京石油工业出版社.
    [19]J P Garo,J P Vantelon.Effect of the fuel boilover point on the boilover burning of liquid fuels spilled on water[C].Twenty-Sixth Symposium(International)on Combustion/The Combustion Institute,1996,1461-1467.
    [20]J P Garo,J P Vantelon,J M Souil et al.Burning of weathering and emulsified oil spills[J].Experimental Thermal and Fluid Science,2004(28):753-761.
    [1]花锦松.1995.扬沸火灾机理及预测的研究[D]:[博士].合肥:中国科学技术大学,8-121.
    [2]魏东,赵大林,薛岗等.油罐火灾燃烧速度的动态变化特性[J].消防技术与产品信息,2005(1):33-37.
    [3]魏东,赵大林,杜玉龙,等.油罐火灾燃烧速度的实验研究[J].燃烧科学与技术,2005,11(3):286-291.
    [4]Frank P Incropera,David P Dewitt.Introduction to Heat Transfer[M].3rd Ed.
    [5]杜志辉.热像仪定标函数的研究[J].红外技术,1994,16(1):15-18.
    [6]廖光煊,王喜世,秦俊.2003.热灾害实验诊断方法[M].合肥:中国科学技术大学出版社,85-90
    [7]J L Torero,M O Stephen,J P Garo et al.Determination of the burning characteristics of a slick of oil on water[J].Spill Science & Technology Bulletin,2003,8(4):379-390.
    [8]SFPE Handbook of Fire Protection Engineering,3~(rd)Edition,2002,3-25.
    [9]秦俊,廖光煊,王喜世等.红外热成像方法测量火旋风温度的实验研究[J].激光与红外,2002,32(1):33-36.
    [10]张明,曾令可.火焰温度场的红外热成像动态测试[J].激光与红外,1997,27(5):288-291.
    [11]Hayasaka H.Radiative characteristics and flame structure of small-pool flames[J].Fire Technology,1996,32(4):308-322.
    [12]Cheng Qian,Kozo Saito.Measurements of pool-fire temperature using IR technology[C].Joint Technical Meeting.Proceedings.April 23-26,1995,San Antonio,TX,Gore,J.R,Editor(s),81-86.
    [13]Eulalia Planas-Cuchi,Carlos L'opez,Josep Amaldos et al.Determination of flame emissivity in hydrocarbon pool fires using infrared thermograph[J].Fire Technology,2003(39):261-273.
    [14]Ara M,Saito K,and Altenkirch A.A study of boilover in liquid pool fires supported on water(Ⅰ)[J].Combust.Sci.and Tech.,1990(71):25-40.
    [15]J.S.Hua,W.C.Fan & G.X.Liao.Study and prediction ofboilover in liquid pool fires with a water sublayer using micro-explosion noise phenomena[J].Fire Safety Journal,1998(30):269-291.
    [16]Inamura K.,Saito K.,and Tagaci K.A.A study of boilover in liquid pool fires supported on water(Ⅱ)[J].Combust.Sci.and Tech.,1992(86):105-119.
    [17]Bernd Broeckmann,Hans-Georg Schecker.Heat transfer mechanisms and boilover in burning oil-water systems[J].J.Loss.Pross.Ind 1995,8(3):137-147.
    [18]Nobuhide Takahashi,Masataro Suzuki,Ritsu Dobashi etal.Behavior of luminous zones appearing on plumes of large-scale pool fires of kerosene[J].Fire Safety Journal,1999,33(1):1-10.
    [19]杨君涛,魏东,张学魁等.着火油罐燃烧特性的理论分析[J].工程热物理学报,2006,27(1):151-154.
    [1]Bernd Broeckmann,Hans-Georg Schecker.Heat transfer mechanisms and boilover in burning oil-water systems[J].J.Loss Prev.Process Ind,1995,8(3):137-147.
    [2]李建华,黄郑华,黄汉京.重质油罐火灾热波传播速度及影响因素研究[J].消防科学与技术,2003,22(6):463-467.
    [3]B Kozanoglu,F Ferrero,M Munoz et al.Heat transfer analysis of boilover[C].10th Mediterranean Congress of Chemical Engineering,Barcelona,2005,392.
    [4]B Kozanoglu,F Ferrero,M Munoz et al.Velocity of the convective currents in boilover[J].Chem.Eng.Sci.,2006,61(8):2550-2556.
    [5]J Hristov.An inverse stefan problem relevant to boilover:heat balance integral solutions and analysis[J].Thermal Science,2007,11(2):141-160.
    [6]Garo J,Vantelon J,Gandhi S et al.Determination of the thermal efficiency ofpre-Boilover burning of a slick ofoil on water[J].Spill Sci.& Technol.Bulletin,1999,8(4):221-227.
    [7]Garo J,Gillard P,Vantelon J et al.Combustion of liquid fuels spilled on water.Prediction of time to start of boilover[J].Comb.Sci.,Technol.,1999(147):39-59.
    [8]Koseki H,Kokkala M,Mulholland G W.Experimental study ofboilover in crude oil fires[C]. Proceedings of 3rd International Symposium on Fire Safety Science,Elsevier,London and New York,1991,865-874.
    [9]Flammable and Combustible Liquid Spill/Burn Patterns NIJ Report 604-00 U.S.Department of Justice Office of Justice Programs[R].National Institute of Justice.
    [10]V.Babrauska.Estimating large pool fire burning rates[J].Fire Technology,1983,19(4):251-261.
    [11]Mudan K S.Thermal radiation hazards from hydrocarbon pool fires[J].Progress Energy Combustion Science,1984(10):59-80.
    [12]Beyler C L.Fire hazard calculations for large open hydrocarbon fires[M].The SFPE Handbook of Fire Protection Eng.3rd ed.Quincy:NFPA,2002:3-280.
    [13]H.Koseki,T.Yumoto.Air entrainment and thermal radiation from heptane pool fires[J].Fire Technology,1998,24(1):33-47.
    [14]N Takahashi,H Koseki,T Hirano.Temporal and spatial characteristics of radiation from large pool fires[J].Bulletin of Japanese Association of Fire Science and Engineering,1999,49(1):27-33.
    [15]E M Sparrow,R D Cess.Radiation heat transfer(augmented edition)[M].Hemisphere Publishing Co,1978.
    [16]Beyler C L.Engineering Guide:Assessing flame radiation to external targets from pool fires[R].The SFPE Task Group on Engineering Practices,June 1999(FRIS 80000329).
    [17]SFPE Handbook of Fire Protection Engineering[M],3~(rd)Edition,2002,3-25.
    [18]J G Quintiere.Scaling applications in fire research[J].Fire Safety.Journal,1989,15(1):1-12
    [19]P H Thomas.Dimensional analysis:a magic art in fire research[J].Fire Safety Journal,200034(2):111-141.
    [20]程曙霞.1992.工程实验理论[M].合肥:安徽科学技术出版社.
    [21]J Hristov,E Planas-Cuchi,J Arnaldos et al.Accidental burning of a fuel layer on a waterbed:a scale analysis of the models predicting the pre-boilover time and tests to published data[J].International Journal of Thermal Sciences,2004(43):221-239.
    [22]Fabio Ferrero,Miguel Munoz,Bulent Kozanoglu et al.Experimental study of thin-layer boilover in large-scale pool fires[J].Journal of Hazardous Materials,2006.
    [1]Fire Dynamics Simulator(Version 4)Technical Reference Guide[M].March 2006.
    [2]Baum H,K McGrattan,R G Rehm.Mathematical Modelling and Computer Simulation of Fire Phenmena[C].Fire Safety Science-Proceeding of the Fourth International Symposium,1994,185-193.
    [3]Baum H,R Rehm,G Mullholland.Prediction of heat and smoke movement in enclosure fires[J].Fire Safety Journal,1983(6):193-201.
    [4]Draoui A,F Atlard,C.Beghein.Numerical analysis of heat transfer by natural convection and radiation in participating fluids enclosed in square cavities[J].Numerical Heat Transfer,Part A,1991(20):253-261.
    [5]Fabio Ferrero,Miguel Munoz,Bulent Kozanoglu etal.Experimental study of thin-layer boilover in large-scale pool fires[J].Journal of Hazardous Materials,2006,137(3):1293-1302.
    [6]Hoseki H.Experimental study of boilover in crude oil fires[C].Proceedings of the third International Symposium on Fire Safety Science,1991,865-875.
    [7]朱建华,褚家成.池火特性参数计算及其热辐射危害评价[J].中国安全科学学报,2003,13(6):25-28.
    [8]Hiroshi Koseki,Yusaku lwata.Tomakomai Experiments Large Scale Crude Oil Fire[J].Fire Technology,2000,36(1):24-38.
    [9]Fabio Ferrero,Bulent Kozanoglu,Josep Arnaldos.A correlation to estimate the velocity of convective currents in boilover[J].Journal of Hazardous Materials,2007(143):587-589.
    [10]谭希宙.石油储罐着火态势与火灾扑救[J].油气储运,1999,18(7):50-52.
    [11]Hiroshi Koseki,Yasutada Natsume,Yusaku Iwata et al.Large-scale boilover experiments using crude oil[J].Fire Safety Journal,2006,41(7):529-535.
    [1]Hasegawa Kazutoshi.Experimental study on mechanism of hot zone formation in open-tank fire[C].Fire Safety Science Proceeding of The Second International Symposium,1989,221-230.
    [2]Bernd Broeckmann,Hans-Georg Schecker.Heat transfer mechanisms and boilover in burning oil-water systems[J].J.Loss.Pross.Ind 1995,8(3):137-147.
    [3]Hoseki H.Experimental study of boilover in crude oil fires[C].Proceedings of the third International Symposium on Fire Safety Science.1991,865-875.
    [4]J.P.Garo,J.P.Vantelon,A.C.Fernandez-Pello.Boilover burning of oil spilled on water[J].Symposium(International)on Combustion,1994,25(1):1481-1488.
    [5]Plesset M.S.,Zwick S.A..The growth of vapor bubbles in superheated liquid[J].Journal of Applied Physics,1954,25(4):493-500.
    [6]Pleebles F,Garber H.J.Studies on the motions of gas bubbles in liquids[J].Chemical Engineering Progress,1953,49(2):88-97.
    [7]Miyahara T,Yakahashi T.Drag coefficient of a single bubble rising through a quiescent liquid[J].International Chemical Engineering,1985,25(1):146-148.
    [8]Gopalakrishna S.Analysis of bubble translation during transient flash evaporation[J].Int.J.Heat Mass Transfer,1992,35(7):1753-1761.
    [9]Sinai Y.L.On the pool height for transient pool boil-up[J].Chemical Engineering Science,1986,41(10):2507-2515.
    [10]Bader P.Thermal explosion under film boiling conditions[J].Int.J.Heat Mass Transfer,1992,35(9):2271-2276.
    [11]Katto,Y.Limit Conditions of steady-state countercurrent annular flow and the CHF of boiling in a bottom-closed vertical tube[J].Int.J.Multiphase Flow,1994,20(1):45-61.
    [12]花锦松.1995.扬沸火灾机理及预测的研究[D]:[博士].合肥:中国科学技术大学,40.
    [13]J.S.Hua,W.C.Fan,G.X.Liao.Study and prediction of boilover in liquid pool fires with a water sublayer using micro-explosion noise phenomena[J].Fire Safety Journal,1998(30):269-291.
    [14]花锦松,廖光煊,范维澄.油品扬沸火灾前兆噪音特性的研究[J].中国科学技术大学学报,1994,24(1):38-41.
    [15]廖光煊,姚斌,范维澄等.油罐扬沸火灾预测方法的研究及安全预警系统的建立[J].中国安全科学学报,1997,Supp(7):8-12.
    [16]姚斌,廖光煊,范维澄.扬沸过程燃烧噪声的谱分析(Ⅰ)-改进的最大熵谱法[J].火灾科学,1995,4(1):39-43.
    [17]姚斌,廖光煊,范维澄.扬沸过程燃烧噪声的谱分析(Ⅱ)-扬沸前兆噪声的工程:识别模型[J].火灾科学,1996,5(2):17-22.
    [18]花锦松,廖光煊,范维澄.扬沸火灾监测预报方法研究(Ⅱ)-实验分析[J].火灾科学,1996,5(1):28-34.
    [19]张源雪.原油储罐火灾热波速度的探究[J].消防科学与技术,2005,24(5):546-549.
    [20]李建华,黄郑华.油罐火灾沸溢喷溅的控制措施[J].油气储运,2006,25(12):46-48
    [21]蔡丽辉.2006.池火灾沸溢早期特性数值模拟实验[D]:[硕士].南京:南京工业大学,69-71.
    [22]余彪,廖光煊,张恒运.油品燃烧时油罐壁温的实验研究[J].火灾科学,1995,4(3):54-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700