用户名: 密码: 验证码:
水处理过程中典型雌激素活性物质的变化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有雌激素活性的内分泌干扰物(e-EDCs)因其对野生动物和人类健康具有较大的危害而受到国内外的广泛关注。我国对于这类物质在污水和自来水常规处理工艺中的存在状况、处理工艺对它们的去除效果以及出水中残留物质对水生动物和人类健康的危害等方面的研究还比较薄弱。本文以北京市典型污水和自来水处理过程为对象,研究雌激素活性物质的存在状况与变化特征。
     采用固相萃取前处理、硅胶氧化铝柱-有机溶剂淋洗分级以及气相色谱-质谱联用仪(GC/MS)分析雌激素活性物质的种类和浓度,利用重组基因酵母检测雌激素活性,建立了分析污水和自来水中典型雌激素活性物质的方法(BDCA)。
     采用BDCA方法从识别我国典型污水和自来水中的雌激素活性贡献物着手,了解其存在状况及在污水和自来水处理过程中的物质浓度变化和雌激素活性变化,发现双酚A、壬基酚和辛基酚是某污水进水的雌激素活性贡献物,其它雌激素活性物质是出水的雌激素活性贡献物;壬基酚和酞酸酯是某自来水源水中雌激素活性贡献物,混凝沉淀单元中雌激素活性有所增加,一部分来自于混凝剂中的烷基酚类,另一部分可能来自于混凝过程中甾醇类的释放,加氯消毒也导致雌激素活性增强,可能是酚类和天然有机物的氯化过程所致。
     研究了臭氧氧化对污水和自来水中的雌激素活性物质的去除效果,发现臭氧能快速、有效地去除污水和自来水的雌激素活性;虽然臭氧能完全去除水中壬基酚的雌激素活性,但同时会生成壬基苯二酚、壬基苯醌等具有不同雌激素活性的中间产物,增加臭氧投加量、降低pH、减少悬浮物含量、降低羟基自由基抑制剂浓度以及控制适量的腐殖酸浓度等措施有利于4-NP雌激素活性的去除。
     提出以雌激素活性作为水中雌激素活性物质的综合指标,依据生态风险评价初步探讨了污水出水、地表水和自来水出厂水的雌激素活性安全阈值,使用设置的安全阈值对目前的污水和自来水处理工艺中e-EDCs进行了风险评估,并对相关处理工艺提出了改进措施。
Estrogenic endocrine disrupting chemicals (e-EDCs) are of major concerns for humans and widelife for their adverse effects. There are few studies on e-EDCs in the conventional wastewater treatment (WWTP) and waterworks in China, such as their occurrence, removal rate in the treatment processes and their harm to aquatic widelife and humans because of their residual in the effluent. This dissertation focused on a case study of occurrence and variation of e-EDCs from the typical WWTP and wa-terworks in Beijing, China.
     Bioassay-directed chemical analysis (BDCA) was conducted to identify the dominant contributors to estrogenic activity of wastewater and drinking water by us-ing solid phase extraction (SPE) and silica gel-alumina column chromatography combined with a recombinant yeast bioassay for detecting estrogenic activity and gas chromato graphy-mass spectrometry (GC/MS) for quantifying estrogenic substances.
     By using BDCA, the dominant contributors to estrogenic activity of wastewater and drinking water were identified to make clear the occurrence of e-EDCs and varia-tion of their concentrations and estrogenic activity. In theWWTP, bisphenol A (BPA), nonylphenol (NP) and octylphenol (OP) were mainly contributors to estrogenic activ-ity in the influent. Some unknown estrogenic components were contributors to estro-genic activity in the effluent. In the waterworks, NP and phthalate esters were mainly contributed to the estrogenic activity of raw water; the increased estrogenic activity in coagulation-sedimentation process was partly from the alkylphenol in the coagulants, and the else was from the releasing of the sterols; the increased residual estrogenic activity in the finished water was probably due to the chlorination of natural organic matters (NOM) and the formation of chlorophenols.
     Ozone was chosen as a potential method to oxidize the e-EDCs in wastewater and drinking water. Ozone was shown to be rapid and effective to remove the estro-genic acticity of wastewater and drinking water. Although ozone could completely decomposed the estrogenic activity of 4-NP, ozonation by-products, the mixtures of 4-nonylcatechol homologues and the mixtures of 4-nonylbenzoquinone homologues have different estrogenic activity. Higher ozone concentration, lower pH, lower sus-pended solid concentration, lower ?OH inhibitor concentration, appropriate humic acid concentration and so on were favorable for the decrease of estrogenic activity of 4-NP.
     Estrogenic activity was recommended as a comprehensive index to evaluate the effect of e-EDCs for water quality. According to the ecological risk assessment, the safe guideline values were set for the effluent of wastewater, surface water and fin-ished water from a waterworks, respectively. The risk assessment was made for the conventional water treatment processes and improving measures were given to the concerned processes.
引文
[1] United States Environmental Protection Agency (USEPA). Special report on envi-ronmental endocrine disruption: an effects assessment and analysis. Washington, DC: Office of Research and Development.EPA/630/R-96/012, 1997.
    [2] European Commission Joint Research Centre. Technical Guidance Documents on Risk Assessment, 2003.
    [3] Pawlowski S, Ternes T A, Bonerz M, et al. Estrogenicity of solid phase-extracted water samples from two municipal sewage treatment plant effluents and river Rhine water using the yeast estrogen screen. Toxicol in Vitro, 2004, 18(1):129-138.
    [4] Kuch H M, Ballschmiter K. Determination of endocrine-disrupting phenolic com-pounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the pi-cogram per liter range. Environmental Science and Technology, 2001, 35(15):3201-3206.
    [5] Rodriguez-Mozaz S, de Alda M J L,Barcelo D. Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. Journal of Chromatography A, 2004, 1045(1-2):85-92.
    [6] Shao B, Hu J Y, Yang M, et al. Nonylphenol and nonylphenol ethoxylates in river water, drinking water, and fish tissues in the area of Chongqing, China. Archives of Environmental Contamination and Toxicology, 2005, 48(4):467-473.
    [7]饶凯锋,马梅,王子健.南方某水厂处理工艺过程中内分泌干扰物的变化规律.环境科学, 2004, 25(6):123-126.
    [8] Hutchinson T H, Pickford D B. Ecological risk assessment and testing for endocrine disruption in the aquatic environment. Toxicology, 2002, 181:383-387.
    [9] Purdom CE, Hardiman PA, Bye VJ, et al. Estrogenic effects of effluent from sew-age treatment works. Chemistry and Ecology, 1994, 8(4):275-285.
    [10]赵炳顺,邹继超,储少岗,等.小鼠子宫增重法检测国产三氯杀螨醇的雌激素生物活性.环境科学学报, 2000, 20(2):244-247.
    [11] Loos R, Hanke G, Umlauf G, et al. LC-MS-MS analysis and occurrence of octyl- and nonylphenol, their ethoxylates and their carboxylates in Belgian and Italian textile industry, waste water treatment plant effluents and surface waters. Chemosphere, 2007, 66(4):690-699.
    [12] Daston G P, Cook J C,Kavlock R J. Uncertainties for endocrine disrupters: Our view on progress. Toxicological Sciences, 2003, 74(2):245-252.
    [13]夏世均,吴中亮.分子毒理学基础.武汉:湖北科学技术出版社. 2001
    [14] Kim H S, Han S Y, Kim T S, et al. No androgenic/anti-androgenic effects of bisphenol-A in Hershberger assay using immature castrated rats. Toxicology Letters, 2002, 135(1-2):111-123.
    [15] Andersen H R, Bonefeld-Jorgensen E C, Nielsen F, et al. Estrogenic effects in vitro and in vivo of the fungicide fenarimol. Toxicology Letters, 2006, 163(2):142-152.
    [16] Ma M, Rao K F,Wang Z J. Occurrence of estrogenic effects in sewage and indus-trial wastewater in Beijing, China. Environmental Pollution, 2007, 147 (2):331-336
    [17] Pugazhendhi D, Pope G S, Darbre P D. Oestrogenic activity of p-hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. Journal of Applied Toxicology, 2005, 25(4):301-309.
    [18] Routledge E J, Sumpter J P. Structural features of alkylphenolic chemicals associ-ated with estrogenic activity. Journal of Biological and Chemistry, 1997, 272(6):3280-3288.
    [19] Campbell C G, Borglin S E, Green F B, et al. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere, 2006, 65(8):1265-1280.
    [20] Zacharewski T. In vitro bioassays for assessing estrogenic substances. Environ-mental Science and Technology, 1997, 31(3):613-623.
    [21] Fisher J S. Are all EDC effects mediated via steroid hormone receptors? Toxicol-ogy, 2004, 205(1-2):33-41.
    [22] Yamamoto H, Liljestrand H M, Shimizu Y, et al. Effects of physical-chemical characteristics on the sorption of selected endocrine disrnptors by dissolved organic matter surrogates. Environmental Science and Technology, 2003, 37(12):2646-2657.
    [23] Bokern M, Harms H H. Toxicity and metabolism of 4-n-nonylphenol in cell sus-pension cultures of different plant species. Environmental Science and Technology, 1997, 31(7):1849-1854.
    [24] Li M-H,Wang Z-R. Effect of nonylphenol on plasma vitellogenin of male adult guppies (Poecilia reticulata). Environmental Toxicology, 2005, 20(1):53-59.
    [25] Ishibashi H, Hirano M, Matsumura N, et al. Reproductive effects and bioconcentra-tion of 4-nonylphenol in medaka fish (Oryzias latipes). Chemosphere, 2006, 65(6):1019-1026.
    [26] Seki M, Yokota H, Maeda M, et al. Effects of 4-nonylphenol and 4-tert-octylphenol on sex differentiation and vitellogenin induction in medaka (Oryzias latipes). En-vironmental Toxicology and Chemistry, 2003, 22(7):1507-1516.
    [27] Atienzar F A, Billinghurst Z, Depledge M H. 4-n-Nonylphenol and 17βestradiol may induce common DNA effects in developing barnacle larvae. Environmental Pollution, 2002, 120(3):735-738.
    [28] Thorpe K L, Hutchinson T H, Hetheridge M J, et al. Development of an in vivo screening assay for estrogenic chemicals using juvenile rainbow trout (Oncorhyn-chus mykiss). Environmental Toxicology and Chemistry, 2000, 19(11):2812-2820.
    [29] Giesy J P, Pierens S L, Snyder E M, et al. Effects of 4-nonylphenol on fecundity and biomarkers of estrogenicity in fathead minnows (Pimephales promelas). Envi-ronmental Toxicology and Chemistry, 2000, 19(5):1368-1377.
    [30] Odum J, Pyrah I T G, Foster J R, et al. Comparative activities of p-nonylphenol and diethylstilbestrol in noble rat mammary gland and uterotrophic assays. Regulatory Toxicology and Pharmacology, 1999, 29(2):184-195.
    [31] Pachura-Bouchet S, Blaise C,Vasseur P. Toxicity of nonylphenol on the cnidarian Hydra attenuata and environmental risk assessment. Environmental Toxicology, 2006, 21(4):388-394.
    [32] Lee S-B, Choi J. Multilevel evaluation of nonylphenol toxicity in fourth-instar larvae of Chironomus riparius (diptera, chironomidae). Environmental Toxicology and Chemistry, 2006, 25(11):3006-3014.
    [33] Routledge E J, Sumpter J P. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry, 1996, 15(3):241-248.
    [34] Preuss T G, Gehrhardt J, Schirmer K, et al. Nonylphenol isomers differ in estro-genic activity. Environmental Science and Technology, 2006, 40(16):5147-5153.
    [35] Kim Y-S, Katase T, Sekine S, et al. Variation in estrogenic activity among frac-tions of a commercial nonylphenol by high performance liquid chromatography. Chemosphere, 2004, 54(8):1127-1134.
    [36] Lorenzen A, Burnison K, Servos M, et al. Persistence of endocrinemdisrupting chemicals in agricultural soils. Journal of Environmental Engineering and Science, 2006, 5(3):211-219.
    [37] Xie Z Y, Lakaschus S, Ebinghaus R, et al. Atmospheric concentrations and air-sea exchanges of nonylphenol, tertiary octylphenol and nonylphenol monoethoxylate in the North Sea. Environmental Pollution, 2006, 142(1):170-180.
    [38] Fries E, Puttmann W. Occurrence of 4-nonylphenol in rain and snow. Atmospheric Environment, 2004, 38(13):2013-2016.
    [39] Johnson A C, Sumpter J P. Removal of endocrine-disrupting chemicals in activated sludge treatment works. Environmental Science and Technology, 2001,35(24):4697-4703.
    [40] Ahel M, McEvoy, J., and Giger, W. Bioaccumulation of the lipophilic metabolites on nonionic surfactants in freshwater organisms. Environmental Pollution, 1993, 79:243-248.
    [41] Yuan S Y, Yu C H,Chang B V. Biodegradation of nonylphenol in river sediment. Environmental Pollution, 2004, 127(3):425-430.
    [42] Ahel M, Scully F E, Hoigne J, et al. Photochemical Degradation of Nonylphenol and Nonylphenol Polyethoxylates in Natural Waters. Chemosphere, 1994, 28(7):1361- 1368.
    [43]沈钢.城市污水处理厂中烷基酚和双酚A的存在状况与去除机制[博士学位论文].北京:清华大学环境科学与工程系, 2006.
    [44] Johnson A C, Aerni H R, Gerritsen A, et al. Comparing steroid estrogen, and non-ylphenol content across a range of European sewage plants with different treatment and management practices. Water Research, 2005, 39(1):47-58.
    [45] Korner W, Bolz U, Sussmuth W, et al. Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere, 2000, 40(9-11):1131-1142.
    [46] Pryor S W, Hay A G, Walker L P. Nonylphenol in anaerobically digested sewage sludge from New York state. Environmental Science and Technology, 2002, 36(17):3678-3682.
    [47] Bursch W, Fuerhacker M, Gemeiner M, et al. Endocrine disrupters in the aquatic environment: the Austrian approach - ARCEM. Water Science and Technology, 2004, 50(5):293-300.
    [48] Fu M, Li Z,Gao H. Distribution characteristics of nonylphenol in Jiaozhou Bay of Qingdao and its adjacent rivers. Chemosphere, 2007, 69(7):1009-1016.
    [49] Li D, Dong M, Shim W J, et al. Seasonal and spatial distribution of nonylphenol and IBP in Saemangeum Bay, Korea. Marine Pollution Bulletin, 2005, 51(8-12):966-974.
    [50] Xu J, Wang P, Guo W, et al. Seasonal and spatial distribution of nonylphenol in Lanzhou Reach of Yellow River in China. Chemosphere, 2006, 65(9):1445-1451.
    [51] Mibu K, Wada J, Okayasu Y, et al. Distribution of estrogen, nonylphenol and its derivatives in the sediments of a shallow lake. Water Science and Technology, 2004, 50(5):173-179.
    [52] Shen G, Zhang Z, Yu G, et al. Dissolved neutral nonylphenol ethoxylates metabo-lites in the Haihe River and Bohai Bay, People's Republic of China. Bulletin of Environmental Contamination and Toxicology, 2005, 75(4):827-834.
    [53] Gatidou G, Thomaidis N S, Stasinakis A S, et al. Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography-mass spectrometry. Journal of Chromatography A, 2007, 1138(1-2):32-41.
    [54] Mouatassim-Souali A, Tamisier-Karolak S L, Perdiz D, et al. Validation of a quan-titative assay using GC/MS for trace determination of free and conjugated estrogens in environmental water samples. Journal of Separation Science, 2003, 26(1-2):105-111.
    [55] Chen C-Y, Wen T-Y, Wang G-S, et al. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase ex-traction and liquid chromatography/tandem mass spectrometry. Science of The To-tal Environment, 2007, 378(3):352-365.
    [56] Petrovic M, Gehringer P, Eschweller H, et al. LC-MS-(MS) determination of oxi-dative degradation products of nonylphenol ethoxylates, carboxylates and nonyl-phenols in water. Water Science and Technology, 2004, 50(5):227-234.
    [57] Zuehlke S, Duennbier U, Heberer T. Determination of estrogenic steroids in sur-face water and wastewater by liquid chromatography-electrospray tandem mass spectrometry. Journal of Separation Science, 2005, 28(1):52-58.
    [58] Moeder M, Martin C, Harynuk J, et al. Identification of isomeric 4-nonylphenol structures by gas chromatography-tandem mass spectrometry combined with cluster analysis. Journal of Chromatography A, 2006, 1102(1-2):245-255.
    [59] Leandro C C, Hancock P, Fussell R J, et al. Ultra-performance liquid chromatog-raphy for the determination of pesticide residues in foods by tandem quadrupole mass spectrometry with polarity switching. Journal of Chromatography A, 2007, 1144(2):161-169.
    [60] Shelby M D, Newbold R R, Tully D B, et al. Assessing environmental chemicals for estrogenicity using a combination of in vitro and in vivo assays. Environmental Health Perspectives, 1996, 104(12):1296-1300.
    [61] Legler J, Zeinstra L M, Schuitemaker F, et al. Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environmental Science and Technology, 2002, 36(20):4410-4415.
    [62] Legler J, Broekhof J L M, Brouwer A, et al. Novel in vivo bioassay for (xeno-)estrogens using transgenic zebrafish. Environmental Science and Technology, 2000, 34(20):4439-4444.
    [63] Jones P D, De Coen W M, Tremblay L, et al. Vitellogenin as a biomarker for en-vironmental estrogens. Water Science and Technology, 2000, 42(7-8):1-14.
    [64] Esposito M S. Yeast molecular biology--recombinant DNA: recent advances. ParkRidge, N.J., U.S.A.: Noyes Publications, 1984.
    [65] Rehmann K, Schramm K-W, Kettrup A A. Applicability of a yeast oestrogen screen for the detection of oestrogen-like activities in environmental samples. Chemos-phere, 1999, 38(14):3303-3312.
    [66] Murk A J, Legler J, Van Lipzig M M H, et al. Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays. Environmental Toxi-cology and Chemistry, 2002, 21(1):16-23.
    [67] Itoh S, Ueda H, Naasaka T, et al. Evaluating variation of estrogenic effect by drinking water chlorination with the MVLN assay. Water Science and Technology, 2000, 42(7-8):61-69.
    [68] Van den Belt K, Berckmans P, Vangenechten C, et al. Comparative study on the in vitro in vivo estrogenic potencies of 17β-estradiol, estrone, 17α-ethynylestradiol and nonylphenol. Aquatic Toxicology, 2004, 66(2):183-195.
    [69] Hu J, Cheng S, Aizawa T, et al. Products of Aqueous Chlorination of 17β-Estradiol and Their Estrogenic Activities. Environmental Science and Technology, 2003, 37(24):5665-5670.
    [70] Nishikawa J, Saito K, Goto J, et al. New screening methods for chemicals with hormonal activities using interaction of nuclear hormone receptor with coactivator. Toxicology and Applied Pharmacology, 1999, 154(1):76-83.
    [71] Odum J, Lefevre P A, Tittensor S, et al. The rodent uterotrophic assay: Critical protocol features, studies with nonyl phenols, and comparison with a yeast estro-genicity assay. Regulatory Toxicology and Pharmacology, 1997, 25(2):176-188.
    [72] Zeravik J, Skryjova K, Nevorankova Z, et al. Development of Direct ELISA for the Determination of 4-Nonylphenol and Octylphenol. Analytical Chemistry, 2004, 76(4):1021-1027.
    [73] Koda T, Soya Y, Negishi H, et al. Improvement of a sensitive enzyme-linked im-munosorbent assay for screening estrogen receptor binding activity. Environmental Toxicology and Chemistry, 2002, 21(12):2536-2541.
    [74] Petrovic M, Eljarrat E, Lopez De Alda M J, et al. Endocrine disrupting compounds and other emerging contaminants in the environment: A survey on new monitoring strategies and occurrence data. Analytical and Bioanalytical Chemistry, 2004, 378(3):549-562.
    [75] Nakada N, Nyunoya H, Nakamura M, et al. Identification of estrogenic compounds in wastewater effluent. Environmental Toxicology and Chemistry, 2004, 23(12):2807- 2815.
    [76] Thomas K V, Hurst M R, Matthiessen P, et al. Characterization of estrogeniccompounds in water samples collected from United Kingdom estuaries. Environ-mental Toxicology and Chemistry, 2001, 20(10):2165-2170.
    [77] Sheahan D A, Brighty G C, Daniel M, et al. Estrogenic activity measured in a sewage treatment works treating industrial inputs containing high concentrations of alkylphenolic compounds - A case study. Environmental Toxicology and Chemistry, 2002, 21(3):507-514.
    [78] Heisterkamp I, Gandrass J, Ruck W. Bioassay-directed chemical analysis utilizing LC-MS: A tool for identifying estrogenic compounds in water samples? Analytical and Bioanalytical Chemistry, 2004, 378(3):709-715.
    [79] Reineke N, Bester K, Huhnerfuss H, et al. Bioassay-directed chemical analysis of River Elbe surface water including large volume extractions and high performance fractionation. Chemosphere, 2002, 47(7):717-723.
    [80] Hartnik T, Norli H R, Eggen T, et al. Bioassay-directed identification of toxic or-ganic compounds in creosote-contaminated groundwater. Chemosphere, 2007, 66(3):435-443.
    [81] Desbrow C, Routledge E J, Brighty G C, et al. Identification of estrogenic chemi-cals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science and Technology, 1998, 32(11):1549-1558.
    [82] Kirk L A, Tyler C R, Lye C M, et al. Changes in estrogenic and androgenic activ-ties at different stages of treatment in wastewater treatment works. Environmental Toxicology and Chemistry, 2002, 21(5):972-979.
    [83] Svenson A, Allard A S, Ek M. Removal of estrogenicity in Swedish municipal sewage treatment plants. Water Research, 2003, 37(18):4433-4443.
    [84] Leusch F D L, Chapman H F, van der Heuvel M R, et al. Bioassay-derived andro-genic and estrogenic activity in municipal sewage in Australia and New Zealand. Ectotoxicology and Environmental Safety, 2006, 65(3):403-411.
    [85] Coors A, Jones P D, Glesy J P, et al. Assessing the elimination of estrogenic activ-ity in advanced wastewater treatment with a reporter gene-based bioassay. Water Science and Technology, 2004, 50(5):181-188.
    [86] Onda K, Nakamura Y, Takatoh C, et al. The behavior of estrogenic substances in the biological treatment process of sewage. Water Science and Technology, 2003, 47(9):109-116.
    [87] Hernandez-Raquet G, Soef A, Delgenes N, et al. Removal of the endocrine disrupter nonylphenol and its estrogenic activity in sludge treatment processes. Water Re-search, 2007, 41(12):2643-2651.
    [88] Westerhoff P, Yoon Y, Snyder S, et al. Fate of endocrine-disruptor, pharmaceutical,and personal care product chemicals during simulated drinking water treatment processes. Environmental Science and Technology, 2005, 39(17):6649-6663.
    [89]张海峰,胡建英,常红,等. SPE-LC-MS法检测杭州地区饮用水水源及自来水中的双酚A.环境化学, 2004, 23(5):584-586.
    [90] Petrovic M, Diaz A, Ventura F, et al. Occurrence and removal of estrogenic short-chain ethoxy nonylphenolic compounds and their halogenated derivatives during drinking water production. Environmental Science and Technology, 2003, 37(19):4442-4448.
    [91]饶凯锋,马梅,王子健,等.北方某水厂的类雌激素物质变化规律.中国给水排水, 2005, 21(4):13-16.
    [92] Garcia-Reyero N, Requena V, Petrovic M, et al. Estrogenic potential of halo-genated derivatives of nonylphenol ethoxylates and carboxylates. Environmental Toxicology and Chemistry, 2004, 23(3):705-711.
    [93] Moriyama K, Matsufuji H, Chino M, et al. Identification and behavior of reaction products formed by chlorination of ethynylestradiol. Chemosphere, 2004, 55(6):839-847.
    [94] Hu J-Y, Aizawa T, Ookubo S. Products of aqueous chlorination of bisphenol A and their estrogenic activity. Environmental Science and Technology, 2002, 36(9):1980-1987.
    [95] Lenz K, Beck V, Fuerhacker M. Behaviour of bisphenol A (BPA), 4-nonylphenol (4-NP) and 4-nonylphenol ethoxylates (4-NP1EO, 4-NP2EO) in oxidative water treatment processes. Water Science and Technology, 2004, 50(5):141-147.
    [96] Johnson A C, Williams R J. A model to estimate influent and effluent concentra-tions of estradiol, estrone, and ethinylestradiol at sewage treatment works. Envi-ronmental Science & Technology, 2004, 38(13):3649-3658.
    [97] Panter G H, Thompson R S, Beresford N, et al. Transformation of a non-oestrogenic steroid metabolite to an oestrogenically active substance by mini-mal bacterial activity. Chemosphere, 1999, 38(15):3579-3596.
    [98] Wintgens T, Gallenkemper M,Melin T. Endocrine disrupter removal from waste-water using membrane bioreactor and nanofiltration technology. Desalination, 2002, 146(1-3):387-391.
    [99] Diano N, Grano V, Fraconte L, et al. Non-isothermal bioreactors in enzymatic remediation of waters polluted by endocrine disruptors: BPA as a model of pollut-ant. Applied Catalysis B-Environmental, 2007, 69(3-4):252-261.
    [100] Tsutsumi Y, Haneda T,Nishida T. Removal of estrogenic activities of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes.Chemosphere, 2000, 42(3):271-276.
    [101] Ren H Y, Ji S L, Ahmad N U D, et al. Degradation characteristics and metabolic pathway of 17 alpha-ethynylestradiol by Sphingobacterium sp JCR5. Chemosphere, 2007, 66(2):340-346.
    [102] Lee B-C, Kamata M, Akatsuka Y, et al. Effects of chlorine on the decrease of es-trogenic chemicals. Water Research, 2004, 38(3):733-739.
    [103] Snyder S A, Wert E C, Rexing D J, et al. Ozone oxidation of endocrine disruptors and pharmaceuticals in surface water and wastewater. Ozone-Science and Engi-neering, 2006, 28(6):445-460.
    [104] Deborde M, Rabouan S, Duguet J-P, et al. Kinetics of aqueous ozone-induced oxi-dation of some endocrine disrupters. Environmental Science and Technology, 2005, 39(16):6086.
    [105] Zhang H Q, Yamada H, Kim S E, et al. Removal of endocrine-disrupting chemicals by ozonation in sewage treatment. Water Science and Technology, 2006, 54(10):123-132.
    [106] Westerhoff P, Yoon Y, Snyder S, et al. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science and Technology, 2005, 39(17):6649-6663.
    [107] Huber M M, Ternes T A, Von Gunten U. Removal of estrogenic activity and forma-tion of oxidation products during ozonation of 17-α-ethinylestradiol. Environmental Science and Technology, 2004, 38(19):5177-5186.
    [108] Kim S-E, Yamada H, Tsuno H. Evaluation of estrogenicity for 17β-estradiol de-composition during ozonation. Ozone Science and Engineering, 2004, 26(6):563-571.
    [109] Alum A, Yoon Y, Westerhoff P, et al. Oxidation of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol and byproduct estrogenicity. Environmental Toxicology, 2004, 19(3):257-264.
    [110]徐斌,高乃云,王虹,等.饮用水中内分泌干扰物双酚A的臭氧氧化降解研究.环境科学, 2006, 27:294-299.
    [111] Ormad P, Cortes S, Puig A, et al. Degradation of organochloride compounds by O3 and O3/H2O2. Water Research, 1997, 31(9):2387-2391.
    [112]李海燕.催化臭氧化降解饮用水中内分泌干扰物的研究[博士学位论文].北京:中国科学院研究生院, 2004.
    [113] Rosenfeldt E J, Linden K G. Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science and Technology, 2004,38(20):5476-5483.
    [114] Neamtu M, Frimmel F H. Photodegradation of endocrine disrupting chemical non-ylphenol by simulated solar UV-irradiation. Science of the Total Environment, 2006, 369(1-3):295-306.
    [115] Liu B, Liu X L. Direct photolysis of estrogens in aqueous solutions. Science of the Total Environment, 2004, 320(2-3):269-274.
    [116] Coleman H M, Routledge E J, Sumpter J P, et al. Rapid loss of estrogenicity of steroid estrogens by UVA photolysis and photocatalysis over an immobilised tita-nium dioxide catalyst. Water Research, 2004, 38(14-15):3233-3240.
    [117] Ohko Y, Iuchi K-I, Niwa C, et al. 17β-estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity. Environmental Science and Technology, 2002, 36(19):4175.
    [118] Ohko Y, Ando I, Niwa C, et al. Degradation of bisphenol A in water by TiO2 photocatalyst. Environmental Science and Technology, 2001, 35(11):2365-2368.
    [119] Mazellier P, Leverd J. Transformation of 4-tert-octylphenol by UV irradiation and by an H2O2/UV process in aqueous solution. Photochemical and Photobiological Sciences, 2003, 2(9):946-953.
    [120] Kimura A, Taguchi M, Ohtani Y, et al. Decomposition of p-nonylphenols in water and elimination of their estrogen activities by 60Coγ-ray irradiation. Radiation Physics and Chemistry, 2006, 75(1):61-69.
    [121] Kim J, Korshin G V,Velichenko A B. Comparative study of electrochemical degra-dation and ozonation of nonylphenol. Water Research, 2005, 39(12):2527-2534.
    [122] USEPA. Removal of endocrine disruptor chemicals using drinking water treatment processes. 2001.
    [123] Le Noir M, Lepeuple A-S, Guieysse B, et al. Selective removal of 17β-estradiol at trace concentration using a molecularly imprinted polymer. Water Research, 2007, 41(12):2825-2831.
    [124] Nghiem L D, Manis A, Soldenhoff K, et al. Estrogenic hormone removal from wastewater using NF/RO membranes. Journal of Membrane Science, 2004, 242(1-2):37-45.
    [125] Yoon Y, Westerhoff P, Snyder S A, et al. Nanofiltration and ultrafiltration of en-docrine disrupting compounds, pharmaceuticals and personal care products. Journal of Membrane Science, 2006, 270(1-2):88-100.
    [126] Cartinella J L, Cath T Y, Flynn M T, et al. Removal of natural steroid hormones from wastewater using membrane contactor processes. Environmental Science and Technology, 2006, 40(23):7381-7386.
    [127] Gaido K W, Leonard L S, Lovell S, et al. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicology and Applied Pharmacology, 1997, 143(1):205-212.
    [128] Wang J, Xie P, Xu Y, et al. Differing estrogen activities in the organic phase of air particulate matter collected during sunny and foggy weather in a Chinese city de-tected by a recombinant yeast bioassay. Atmospheric Environment, 2004, 38(36):6157-6166.
    [129]吴文忠,王敬贤,徐盈,等.重组基因酵母检测环境类雌激素污染物.中国环境科学, 2002, 22(1):60-63.
    [130] Zhang Z L, Hibberd A, Zhou J L. Optimisation of derivatisation for the analysis of estrogenic compounds in water by solid-phase extraction gas chromatography-mass spectrometry. Analytica Chimica Acta, 2006, 577(1):52-61.
    [131]张祖麟.典型持久性有机污染物环境分布及其光解规律的研究.清华大学, 2003.
    [132]王泰,张祖麟,黄俊,等.海河与渤海湾水体中溶解态多氯联苯和有机氯农药污染状况调查.环境科学, 2007, 28(4):730-735.
    [133]张庆华, K.-W.Schramm,徐盈.利用96孔板和重组基因酵母筛选环境内分泌干扰物.环境科学学报, 2003, 23:702-704.
    [134]冯仁丰.分析灵敏度(检测限).上海医学检验杂志, 2002, 17(3):133-136.
    [135] Rutishauser B V, Pesonen M, Escher B I, et al. Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids. Environmental Toxicology and Chemistry, 2004, 23(4):857-864.
    [136] Hoekstra P F, Burnison B K, Neheli T, et al. Enantiomer-specific activity of o,p '-DDT with the human estrogen receptor. Toxicology Letters, 2001, 125(1-3):75-81.
    [137]国家环境保护总局.水和废水监测分析方法. 2002,北京:中国环境科学出版社.
    [138] Sheahan D A, Brighty G C, Daniel M, et al. Reduction in the estrogenic activity of a treated sewage effluent discharge to an English river as a result of a decrease in the concentration of industrially derived surfactants. Environmental Toxicology and Chemistry, 2002, 21(3):515-519.
    [139] Yi T, Harper W F. The link between nitrification and biotransformation of 17α-ethinylestradiol. Environmental Science and Technology, 2007, 41(12):4311-4316.
    [140] Aguayo S, Munoz M J, de la Torre A, et al. Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Science ofthe Total Environment, 2004, 328(1-3):69-81.
    [141] Kramer V J, Miles-Richardson S, Pierens S L, et al. Reproductive impairment and induction of alkaline-labile phosphate, a biomarker of estrogen exposure, in fathead minnows (Pimephales promelas) exposed to waterborne 17β-estradiol. Aquatic Toxicology, 1998, 40(4):335-360.
    [142] Ma T, Wan X, Huang Q, et al. Biomarker responses and reproductive toxicity of the effluent from a Chinese large sewage treatment plant in Japanese medaka (Oryzias latipes). Chemosphere, 2005, 59(2):281.
    [143] Fernandez M P, Ikonomou M G, Buchanan I. An assessment of estrogenic organic contaminants in Canadian wastewaters. Science of the Total Environment, 2007, 373(1):250-269.
    [144]杜兵,张彭义,张祖麟,等.北京市某典型污水处理厂中内分泌干扰物的初步调查. 2004, 25(1):114-116.
    [145] Matthews J B, Twomey K, Zacharewski T R. In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptorsαandβ. Chemical Research in Toxicology 2001, 14(2):149-157.
    [146]马兴杰,邵兵,胡建英,等.壬基酚聚氧乙烯醚在污水处理过程中的迁移转化行为环境科学, 2002, 23(5):80-83.
    [147]郝瑞霞,梁鹏,周玉文.壬基酚在活性污泥曝气池中的迁移转化行为研究.给水排水, 2006, 32:92-96.
    [148] Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnais-sance. Environmental Science and Technology, 2002, 36(6):1202-1211.
    [149] Harris C A, Henttu P, Parker M G, et al. The estrogenic activity of phthalate esters in vitro. Environmental Health Perspectives, 1997, 105(8):802-811.
    [150] Eljarrat E, Caixach J, Rivera J. A comparison of TEQ contributions from PCDDs, PCDFs and dioxin-like PCBs in sewage sludges from Catalonia, Spain. Chemos-phere, 2003, 51(7):595-601.
    [151] Stevens J, Green N J L, Jones K C. Survey of PCDD/Fs and non-ortho PCBs in UK sewage sludges. Chemosphere, 2001, 44(6):1455-1462.
    [152] Carballa M, Omil F, Lema J M, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res, 2004, 38(12):2918-2926.
    [153]骆坚平,马梅,王子健,等.用成组生物毒性测试方法评价北方某市饮用水安全性.给水排水, 2006, 32(8):17-21.
    [154] Ma M, Wang Z J, Shang W, et al. Toxicological evaluation of drinking water in Beijing waterworks. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering, 2000, 35(10):1817-1832.
    [155]施玮,牛军峰,余刚.水中五氯酚钠对发光细菌毒性测定的影响因素.环境科学, 2004, 25(3):44-47.
    [156] Cargou?t M, Perdiz D, Levi Y. Evaluation of the estrogenic potential of river and treated waters in the Paris area (France) using in vivo and in vitro assays. Ecotoxi-cology and Environmental Safety, 2007, 67(1):149-156.
    [157] Bogers R, De Vries-Buitenweg S, Geuijen I, et al. An in vitro/in vivo screening assay as a sensitive tool to assess endocrine disruptive activity in surface water. Environment International, 2007, 33(3):292-301.
    [158] Fawell J K, Sheahan D, James H A, et al. Oestrogens and oestrogenic activity in raw and treated water in Severn Trent Water. Water Research, 2001, 35(5):1240-1244.
    [159] Nagel S C, vomSaal F S, Thayer K A, et al. Relative binding affinity serum modi-fied access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xeno-estrogens bisphenol A and octylphenol. Environmental Health Perspectives, 1997, 105(1):70-76.
    [160]周鸿.饮用水消毒副产物、内分泌干扰物及其前体物特性研究[博士学位论文].北京:清华大学环境科学与工程系, 2004.
    [161] Lopez-Roldan P, de Alda M J L,Barcelo D. Simultaneous determination of selected endocrine disrupters (pesticides, phenols and phthalates) in water by in-field solid-phase extraction (SPE) using the prototype PROFEXS followed by on-line SPE (PROSPEKT) and analysis by liquid chromatography-atmospheric pressure chemical ionisation-mass spectrometry. Analytical and Bioanalytical Chemistry, 2004, 378(3):599-609.
    [162] Loos R, Wollgast J, Huber T, et al. Polar herbicides, pharmaceutical products, per-fluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy. Analytical and Bioanalytical Chemistry, 2007, 387(4):1469-1478.
    [163] Sha Y J, Xia X H, Yang Z F, et al. Distribution of PAEs in the middle and lower reaches of the Yellow River, China. Environmental Monitoring and Assessment, 2007, 124(1-3):277-287.
    [164] Luks-Betlej K, Popp P, Janoszka B, et al. Solid-phase microextraction of phthalates from water. Journal of Chromatography A, 2001, 938(1-2):93-101.
    [165]阿部康弘,梅村知也,角田欣一.過マンガン酸カリウムによるフェノール系内分泌攪乱化学物質の分解.日本化学会誌, 2001, (4):239-242.
    [166] Ning B, Graham N, Zhang Y, et al. Degradation of endocrine disrupting chemicals by ozone/AOPs. Ozone: Science and Engineering, 2007, 29(3):153-176.
    [167] Choi K J, Kim S G, Kim C W, et al. Removal efficiencies of endocrine disrupting chemicals by coagulation/flocculation, ozonation, powdered/granular activated carbon adsorption, and chlorination. Korean Journal of Chemical Engineering, 2006, 23(3):399-408.
    [168] Mueller S O. Overview of in vitro tools to assess the estrogenic and antiestrogenic activity of phytoestrogens. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2002, 777(1-2):155-165.
    [169] Ike M, Asano M, Belkada F D, et al. Degradation of biotransformation products of nonylphenol ethoxylates by ozonation and UV/TiO2 treatment. Water Science and Technology, 2002, 46(11-12):127-132.
    [170] Ikehata K, El-Din M G. Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: A review (Part I). Ozone-Science & Engineering, 2005, 27(2):83-114.
    [171] Richard Y, Brener L. Removal of pesicides from drinking water with ozone. Hand-book of ozone technology and applications, 1984, 2:77-97.
    [172] Yao C C D,Haag W R. Rate constants for direct reactions of ozone with several drinking water contaminants Water Research, 1991, 25(7):761-773
    [173] Hashimoto T, Takahashi K, Murakami T. Characteristics of estrogen decomposition by ozonation. Water Science and Technology, 2006, 54(10):87-93.
    [174]孙庆峰,余刚,邓述波.重组基因酵母检测DDT及其臭氧氧化产物雌激素活性.持久性有机污染物论坛2006暨第一届持久性有机污染物全国学术研讨会论文集.北京, 5月17-18日, 2006.
    [175]邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染状况调查.环境科学学报, 2002, 22(2):12-16.
    [176]胡翔,李进,皮运正,等.臭氧氧化水中壬基酚的反应机理研究.环境科学, 2007, 28(3):584-587.
    [177] Gottschalk C. Ozonation of water and waste water. Germany: Willey-VCH, 2002
    [178] Bader H, Hoigne J. Determination of ozone in water by the indigo method. Water Research, 1981, 15(4):449-456.
    [179] Seki M, Yokota H, Maeda M, et al. Fish full life-cycle testing for 17 beta-estradiol on medaka (Oryzias latipes). Environmental Toxicology and Chemistry, 2005, 24(5):1259-1266.
    [180] Jobling S, Sheahan D, Osborne J A, et al. Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. En-vironmental Toxicology and Chemistry, 1996, 15(2):194-202.
    [181] Oh B S, Jung Y J, Oh Y J, et al. Application of ozone, UV and ozone/UV processesto reduce diethyl phthalate and its estrogenic activity. Science of the Total Envi-ronment, 2006, 367(2-3):681-693.
    [182]储金宇.臭氧技术及应用.北京:化学工业出版社, 2002.
    [183] McLachlan J A, Arnold S F. Environmental estrogens. American Scientist, 1996, 84(5):452-461.
    [184] Hu J-Y,Aizawa T. Quantitative structure-activity relationships for estrogen receptor binding affinity of phenolic chemicals. Water Research, 2003, 37(6):1213-1222.
    [185] Elovitz M S, Von Gunten U, Kaiser H P. Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM prop-erties. Ozone Science and Engineering, 2000, 22(2):123-150.
    [186]赵翔,曲久辉,李海燕,等.催化臭氧化饮用水中甲草胺的研究.中国环境科学, 2004, 24 (3):332-335.
    [187] Woitke P, Wellmitz J, Helm D, et al. Analysis and assessment of heavy metal pol-lution in suspended solids and sediments of the river Danube. Chemosphere, 2003, 51(8):633-642.
    [188]胡建英,杨敏.自来水及其水源中的内分泌干扰物质.净水技术, 2001, 20(3):3-6.
    [189] COUNCIL DIRECTIVE of 21 May 1991 concerning urban waste water treatment (91/271/EEC), 2003.
    [190] Falconer I R, Chapman H F, Moore M R, et al. Endocrine-disrupting compounds: A review of their challenge to sustainable and safe water supply and water reuse. En-vironmental Toxicology, 2006, 21(2):181-191.
    [191] USEPA. Aquatic Life Ambient Water Quality Criteria–Nonylphenol–Final.FACT SHEET. Office of Water.4304T.EPA-822-F-05-003, 2006.
    [192] Rajapakse N, Silva E,Kortenkamp A. Combining xenoestrogens at levels below in-dividual No-observed-effect concentrations dramatically enhances steroid hormone action. Environmental Health Perspectives, 2002, 110(9):917-921.
    [193]李福志,张晓健,王占生.健康饮水的水质指标体系探讨环境与健康杂志, 2002, 19(5):407-408.
    [194] Purchase I F H. Ethical review of regulatory toxicology guidelines involving ex-periments on animals: The example of endocrine disrupters. Toxicological Sciences, 1999, 52(2):141-147.
    [195] Renner R. European bans on surfactant trigger transatlantic debate. Environmental Science and Technology, 1997, 31(7):316-320.
    [196] Thorpe K L, Cummings R I, Hutchinson T H, et al. Relative potencies and combi-nation effects of steroidal estrogens in fish. Environmental Science and Technology,2003, 37(6):1142-1149.
    [197] Brion F, Tyler C R, Palazzi X, et al. Impacts of 17 beta-estradiol, including envi-ronmentally relevant concentrations, on reproduction after exposure during em-bryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio). Aquatic Toxicology, 2004, 68(3):193-217.
    [198] Thorpe K L, Hutchinson T H, Hetheridge M J, et al. Assessing the biological po-tency of binary mixtures of environmental estrogens using vitellogenin induction in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Science and Tech-nology, 2001, 35(12):2476-2481.
    [199] Folmar L C, Hemmer M, Hemmer R, et al. Comparative estrogenicity of estradiol, ethynyl estradiol and diethylstilbestrol in an in vivo, male sheepshead minnow (Cyprinodon variegatus), vitellogenin bioassay. Aquatic Toxicology, 2000, 49(1-2):77-88.
    [200] Segner H, Caroll K, Fenske M, et al. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicology and Environmental Safety, 2003, 54(3):302-314.
    [201] Zillioux E J, Johnson I C, Kiparissis Y, et al. The sheepshead minnow as an in vivo model for endocrine disruption in marine teleosts: A partial life-cycle test with 17 alpha-ethynylestradiol. Environmental Toxicology and Chemistry, 2001, 20(9):1968-1978.
    [202] Lange R, Hutchinson T H, Croudace C P, et al. Effects of the synthetic estrogen 17 alpha-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales prome-las). Environmental Toxicology and Chemistry, 2001, 20(6):1216-1227.
    [203] Fromme H, Kuchler T, Otto T, et al. Occurrence of phthalates and bisphenol A and F in the environment. Water Research, 2002, 36(6):1429-1438.
    [204] Staples A, Adams W J, Parkerton T F, et al. Aquatic toxicity of eighteen phthalate esters. Environmental Toxicology and Chemistry, 1997, 16(5):875-891.
    [205] Environment Canada and Health Canada e. Canadian Environmental Protection Act, Priority Substances List Assessment Report. Canada, 1994.
    [206] Ladics G S, Smith C, Nicastro S C, et al. Evaluation of the primary humoral im-mune response following exposure of male rats to 17β-estradiol or flutamide for 15 days. Toxicological Sciences, 1998, 46(1):75-82.
    [207] Kim H S, Kan T S, Kang I H, et al. Validation study of OECD rodent uterotrophic assay for the assessment of estrogenic activity in Sprague-Dawley immature female rats. Journal of Toxicology and Environmental Health-Part a-Current Issues, 2005, 68(23-24):2249-2262.
    [208] Steinmetz R, Mitchner N A, Grant A, et al. The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology, 1998, 139(6):2741-2747.
    [209] Routledge E J, Sheahan D, Desbrow C, et al. Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environ Science and Technology, 1998, 32(11):1559-1565.
    [210] Metcalfe C D, Metcalfe T L, Kiparissis Y, et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environ Toxicology and Chemistry, 2001, 20(2):297-308.
    [211] Houtman C J, Van Oostveen A M, Brouwer A, et al. Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environmental Sci-ence and Technology, 2004, 38(23):6415-6423.
    [212] Kanno J, Onyon L, Haseman J, et al. The OECD program to validate the rat utero-trophic bioassay to screen compounds for in vivo estrogenic responses: Phase 1. Environmental Health Perspectives, 2001, 109(8):785-794.
    [213] USEPA. Methods for derivation of inhalation reference concentrations and applica-tion of inhalation dosimetry, United States Environmental Protection Agency.EPA/ 600/ 8 - 90/ 066F, 1994.
    [214] Kuusisto S, Lindroos O, Rantio T, et al. PCB contaminated dust on indoor surfaces- Health risks and acceptable surface concentrations in residential and occupational settings. Chemosphere, 2007, 67(6):1194-1201.
    [215] Leusch F D L, Chapman H F, Korner W, et al. Efficacy of an advanced sewage treatment plant in southeast Queensland, Australia, to remove estrogenic chemicals. Environmental Science and Technology, 2005, 39(15):5781-5786.
    [216] Pugh J, M M. Endocrine disruption. Australia’s role in an international is-sue.Endocrine disruption. Australia’s role in an international issue, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700