用户名: 密码: 验证码:
卡鲁塞尔氧化沟液固两相湍流与生物反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废水生物处理工程涉及复杂水力学和生物化学过程,其设计优化和运行控制是当前国际水科学技术研究的前沿领域。由于至今关于对废水生物处理复杂生物反应器内流体动力学规律及其对反应器效能的影响认识不清,致使在反应动力学与流体动力学耦合方面的研究尚未取得实质性进展。论文以卡鲁塞尔氧化沟为研究对象,发展了多相流区域流速场原位非接触式测试新技术,进行了实验室模型试验和现场测试,研究氧化沟反应器内液-固两相湍流与生物反应动力学,以及多相湍流反应动力学数值模拟方法。论文取得的主要研究成果如下:
     ①研制出一套新的多相流数字粒子图像测速系统,并应用于复杂流体反应器多相流二维及三维区域流速场的测试,克服了传统接触式点测量方法无法获取区域流动同步信息的缺陷。
     ②所研制的PIV测速系统改进了传统PIV系统的信息提取算法,通过采用标准化相关系数作为测度和优化搜索区域的方法,提高了系统的图象处理运算速率;利用数学形态学原理,采用灰度加权标定法和粒径匹配法,实现了多相流的识别、划分和标定。
     ③采用数字粒子图像测速技术对卡鲁塞尔氧化沟模型三维单相和二维两相全场流速进行测量。结果表明,固相流速总体小于液相;纵、垂两向的流动分布是决定沟内水力特性的主要因素;横、垂两向的流动是决定污泥沉积位置的主要因数,污泥沉积是横、垂两向流速与该处水体动能共同作用下的结果。
     ④变曝条件下氧化沟流场的实测结果表明,开启两台曝气机条件下,外沟易成为发生淤积的危险地带;内沟段较高的水动能利于组分混合,防止污泥的沉积;开启三台曝气机可使外沟流速增长10%以上,对内沟段流动结构改变不大;在启/停曝初始阶段,流速变化快慢随其与曝气机距离的增加而减少;整个外沟启/停曝气达到工况稳定所需时间约占运行时间的40%。
     ⑤氧化沟内水质实测结果表明,溶解氧与流速呈正相关、污泥浓度(MLSS)与流速呈负相关;流速是影响溶解性组分混合的重要因素,提高进水口附近局部流速有利于缩短进水组分均布的距离与时间。
     ⑥应用所研制的PIV测速系统对不同粒径污泥在水力湍动条件下的沉降特性进行研究,得到了污泥静沉降速率与污泥粒径的关系,建立了水力湍动条件下的污泥湍动沉降速率模型。
     ⑦将污泥湍动沉降速率模型与两相湍流混合物模型耦合,建立了氧化沟液固两相湍流混合物模型,实现了垂向上液固两相运动的分离;利用计算流体软件Fluent对工业规模污水厂氧化沟的污水-污泥两相流进行模拟,结果表明两相流混合物模型较好的揭示了氧化沟内混合液流场和污泥的分布情况。
     ⑧将卡鲁塞尔氧化沟液-固两相湍流混合物模型与活性污泥2号模型(ASM2)相耦合,建立了卡鲁塞尔氧化沟液-固两相湍流反应动力学模型,编辑开发了求解程序,实现了对反应器内部液固两相三维流场及水质浓度场的同时模拟。
     ⑨应用卡鲁塞尔氧化沟液-固两相湍流反应动力学模型对污水处理厂氧化沟运行进行优化,结果表明在现有氧化沟主沟开启进水处水下推进器,有利于改善弯道处流场分布,降低进水波动对沟内运行的冲击,防止该区域污泥淤积所造成的负面影响。
The optimal design and operation control, involving complicated hydraulics and biochemical process, of wastewater biologic treatment project is the frontier research field of current international water science and technology, but, because of ambiguity realization to hydrokinetics and efficiency of complex reactor of wastewater biological treatment, the research in the term of coupling reaction kinetics with hydrokinetics has not get substantial progress. This paper focused on Carrousel oxidation ditch, developed a new local un-contact measuring method of multiphase district flow field, carried out model experiment in laboratory and measuring in field, studied solid-liquid turbulence and biologic reaction kinetics in the oxidation ditch, and did research on the numerical stimulation of multiphase turbulence reaction kinetics, with the main research results as follows:
     ①A new velocity measurement system of multiphase flow digital particle image was developed, used in velocity field measurement of 2-dimention and 3-dimention multiphase flow in the reactor of complicate fluid, overcoming weakness of traditional contact point measuring method which can not get the synchronous flow information in the whole field.
     ②The PIV velocity measurement system improved on the acquire information arithmetic of traditional PIV system, increasing the calculation velocity of image manipulation of system by using standardized correlation coefficient as measuring degree and by optimizing search region; multiphase flow was identified, demarcated and calibrated by math-morphology theory, gray scale weighted calibrating method and particle diameter matching method.
     ③The PIV technique was applied to measure the 1-phase or 2-phase flow in 2-dimention or 3-dimention whole-flow-field velocity of Carrousel oxidation ditch reactor. The result show that: the flow rate of solid was generally smaller than the liquid; longitudinal and vertical flow distribution were the mainly determinative factors of hydraulic characteristic in the reactor; the position of sludge sediment were primarily depended on lateral and vertical velocity; the sludge sediment was the results of lateral and vertical velocity together with liquid energy.
     ④The flow field of oxidation ditch under alternate aeration condition was actually measured, the results show: opening two aerators, the outside ditch was the dangerous areas to easily deposit; the comparatively high kinetic energy of inner ditch contributed to components mixture, preventing sludge deposition; three aerators operated increased the outside ditch velocity by more than 10%, yet, not much changing flow structures of inner ditch; at the beginning of open-stop stage, the velocity changing speed was reduced with the distance to the aerators increased; the time needed to shift from open-stop aeration to stable operation condition for the whole outside ditch accounted for 40%
     ⑤Water quality in the oxidation ditch was measured in the field, the results show: velocity was positive correlated to dissolved oxygen, negative correlated to MLSS; velocity was an essential factor which influenced mixing of dissolved components, so increasing local velocity near the inlet would be helpful to reduce the distance and time for uniform distribution of inflow components.
     ⑥Sediment characteristics of sludge of different particle diameters under water turbulence condition was studied by PIV velocity measurement system, getting the relation between under static state condition sludge sedimentation velocity and particle diameter of sludge, and setting up the under turbulence state condition sludge sedimentation velocity model.
     ⑦The under turbulence state condition sludge sedimentation model was coupled with 2-phase turbulence mixture model, separating movements of 2 phases in vertical direction; computational fluent software“Fluent”was utilized to stimulate sewage-sludge 2 phases velocities in oxidation ditch of industrial-scale sewage plant, demonstrating that 2-phase flow mixture model to some extent was able to display mixture flow field and sludge distribution
     ⑧Liquid-solid 2-phase turbulence mixture model of Carrousel oxidation ditch was coupled with Activated Sludge Model NO.2 (ASM2), building liquid-solid 2-phase turbulence reaction kinetics model of Carrousel oxidation ditch, compiling corresponding solving program, simultaneously stimulating and studying the space-time distribution of liquid-solid 2-phase 3-demention velocity field and water quality concentration.
     ⑨Using liquid-solid 2-phase turbulence reaction dynamics model of Carrousel oxidation ditch to optimize the operation of oxidation ditch in wastewater treatment plant, the results show that opening underwater propellers at the existing main channels of oxidation ditch would improve the velocity field distribution on the curve, reducing impacts of inflow fluctuate to the operation of the ditch, preventing negative effects brought by sludge deposition at this area.
引文
[1] Benedetti L, Bixio D, Vanrolleghem P A. Benchmarking of WWTP design by assessing costs,effluent quality and process variability[J]. Wat Sci Tech, 2006, 54(10): 95-102
    [2] Vrecko D, Gernaey K V, Rosen C, et al. Benchmark Simulation Model No 2 in Matlab-Simulink:towards plant-wide WWTP control strategy evaluation[J]. Wat Sci Tech, 2006, 54(8): 65-72
    [3] Mino T, San Pedro D C, Yamamoto S, et al. Application of the IAWQ activated sludge model to nutrient removal process[J]. Wat Sci Tech, 1997, 35(8): 111–118
    [4]张代钧,卢培利,陈丹琴等.传统活性污泥法COD去除及脱氮改造的模拟[J].环境科学学报,2002,22(4) :448-453
    [5]张代钧,卢培利,严晨敏等.活性污泥2号模型用于城市污水处理厂脱氮除磷的改造研究[J].环境科学学报, 2003, 23(3): 332 -337
    [6] Stamou I. Modeling oxidation ditches using the IAWPRC activated sludge model with hydrodynamic effects[J]. Wat.Sci.Tech, 1994, 30(2): 185-192
    [7] Stamou I. Modeling of oxidation ditches using an open channel flow 1-D advection-dispersion equation and ASM1 process description[J]. Wat.Sci.Tech, 1997, 36(5): 269-276
    [8]魏辉.氧化沟数学模型初步研究[D].长沙:湖南大学硕士毕业论文,2002
    [9]张自杰主编.排水工程[M].北京:中国建筑工业出版社,2000
    [10] Simon S, Roustan M, Audic J, et al. Prediction of mean circulation velocity in oxidation ditch[J].Environmental te chnology,2001,22 (2):195-204.
    [11] Cook S.Parameter estimation in oxidation ditch modeling[J]. Journal of Chemical Technology and Biotechnology,1984,6(3):131-141.
    [12] Argaman Y,Spivak E. Engineering aspects of wastewater treatment in aerated ring-shaped channels[J].Wat Res,1997 (4)8: 317-322.
    [13]张景波.新型一体化氧化沟污水处理技术研究[D].重庆大学硕士毕业论文,2002.
    [14]俞天明.合建式一体化氧化沟水力性能和节能特点研究[D].重庆大学硕士毕业论文,2001.
    [15]李伟民,邓荣森,王涛,等.水下推动器对氧化沟混合液的循环作用[J].中国给水排水,2003,19(9):45-47
    [16]李伟民,邓荣森,王涛,等.水下推动器单独运行时一体化氧化沟流态研究[J].给水排水, 2001,27(12):19-22
    [17] Gillot.S,Capela.S,Heduit.M. Effect on horizontal flow on oxygen transfer in clean water with surfactants[J].Wat Res, 2000, 34(2): 678-683.
    [18]Gillot.S,Heduit.M. Effect of air flow rate on oxygen transfer in an oxidation ditch equipped with fine bubble diffusers and slow speed mixers[J]. Wat Res, 2000, 34(5): 1756-1762.
    [19]Karine L,Vincent C,Gilles H,et al.Bubble formation at a flexible orifice with liquid cross-flow[J]. Chemical Engineering and Processing, 2004, 43: 717-725.
    [20]Dudley.J Process testing of aerators in oxidation ditches[J].Wat Res, 1995,29(9):2217-2219.
    [21]王涛,邓荣森,廖日红,等.氧化沟曝气转刷提升水头与水头损失的关系及应用[J].给水排水,1999,25 (1):5- 7.
    [22]赵星明.氧化沟的水力学计算[J].环境工程,2000,18(2):14-17.
    [23]严煦世.水和废水技术研究..北京:中国建筑工业出版,1992.
    [24]陆少鸣,杨立,闻占成.关于转刷曝气氧化沟中挡流板设置位置的讨论[J].给水排水, 2002,28(9):61~63.
    [25]傅中见.氧化沟水力性能试验研究[D].上海:同济大学硕士论文,2000.
    [26]曹瑞钰,傅中见.改善氧化沟流速分布的措施[J].中国给水排水[J], 2001,27(12):19~22.
    [27]赵星明,徐志伟.氧化沟水头损失计算与导流板偏置的作用[J].中国给水排水[J],2000,16(7):35-37
    [28]孙伟民.一体化氧化沟的生产性试验研究[D].西安建筑科技大学硕士学位论文,2004,14-20
    [29]汤利华,洪天求等.氧化沟动力配置的讨论[J].合肥工业大学学报,2005,28(5):494-496
    [30]范茏,王志强,王颖哲,等.污水厂Carrousel氧化沟溶解氧和速度分布的研究[J].环境工程学报, 2007,1(1):19~23.
    [31]范茏,陈大方,王志强,等. Carrousel氧化沟的流动特性研究[J].环境污染治理技术与设备,2006,7(12):36-41
    [32]Dale CJ. Submerged biotower technology for tertiary nitrification of poultry abattoir wastewater[J]. Journal of the chartered institution of water and environmental management,2000,14 (1):35 -38.
    [33]Argaman Y. Single sludge nitrogen removal in an oxidation ditch[J]. Water Research, 1984,18(12): 1493-1500.
    [34]Ushikubo A, Yoshimura M, Kato M. Livestock waste treatment in a double channel oxidation ditch agriculture ecosystems and environment[J].1991,36 (1/2):59 -74.
    [35]高守有.Orbal氧化沟强化生物脱氮的中试研究[D],哈尔滨工业大学博士论文,2006
    [36]Charles SA, Boyd W, James RD. Total nitrogen removal in a multi-channel oxidation system[J].Journal WPCF,1980, 52(3):568-577
    [37]Klangduen P,Jurg K. Study of factors affecting simultaneous nitrification and denitrification (SND) [J].Wat Sci Tech,1999, 39(6):61-68
    [38]Bruce E,Wayne E.Simultaneous denitrification with nitrification in single-channel oxidationditches[J].Journal WPCF, 1985,57(4):300-308
    [39]Bliss P, Barnes D. Modelling nitrification in plant scale activated sludge [J].Wat Sci Tech,1986,18(6):139-148
    [40]Klangduen P,Jurg K. Model development for simultaneous nitrification and denitrification[J].Wat Sci Tech,1999, 39(1):235-243
    [41]Sen D,Randall C W,Grizzard T J,et al. Process design and operational modifications of oxidation ditches for biological nutrient removal[J].Wat Sci Tech,1992,25 (5) :249-256.
    [42]Liu J X, Van Groenestijn J W, Doddema H J,et al .Influence of the aeration brush on nitrogen removal in the oxidation ditch[J]. Journal of European Water Pollution Control,1996,6( 4):25-30
    [43]Mulready C R,Payne D C,Watkins D W.Comparison of the carousell and pasveer ditch activated sludge plant[J].JWPC,1982,81(3):297-307
    [44]彭永臻,高守有.分子生物学技术在污水处理微生物检测中的应用[J].环境科学学报,2005,25(9):1143-1147
    [45]高守有,彭永臻,胡天红等.氧化沟工艺及生物脱氮原理[J].哈尔滨商业大学学报,2005,21(4):435-439
    [46]马迎霞,张全森,许爱红.改良型Carrousel氧化沟的运行与改造[J].中国给水排水,2007,23(4):28-31
    [47]彭永臻,侯红勋,乔海兵等.改良型Carrousel氧化沟工艺生物脱氮除磷效果研究[J].环境污染治理技术与设备,2007,7(12):42-45
    [48]乔海兵,王淑莹,李桂荣等.连续流间歇曝气氧化沟处理生活污水脱氮除磷研究[J].环境污染治理技术与设备,2007,7(7):11-14
    [49]Hao.X,Doddema H J,Van Groenestijin J W. Use of cantact tank to enhance denitrification in oxidation ditchs[J].Wat Sci Tech, 1996, 34(2):195–202.
    [50]Hao xiaodi,Doddema H,Groenestijn J.Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch[J]. Wat Sci Tech,1997,37(12): 63-68.
    [51]Hartley K Controlling sludge settleability in the oxidation ditch process[J]. Wat Res, 2007,29(9):2217-2219.
    [52]Furukawa S,Tokimori K,Hirotsuji Jet al. New operational support system for high nitrogen removal in oxidation ditch process[J]. Wat Sci Tech, 1998, 37(12): 63-68.
    [53]陈慧.低负荷氧化沟工艺丝状菌膨胀的成因与控制[J].合肥工业大学学报,1999,22(6):124-128
    [54]周律,钱易.三沟式氧化沟污水处理工艺的性能分析[J].中国环境科学,1999,18(3):210-212
    [55]刘俊新,王宝贞.采用氧化沟从城市污水中去除氮和磷的研究[J].哈尔滨建筑工业工业大学学报,1997,30(5):36-40
    [56]邓荣森,谭显春,焦斌权.一体化氧化沟的生物除磷试验研究[J].给水排水,2000,26(11):14-17
    [57]周少奇,范家明,吴宋标等.氧化沟同时硝化反硝化的生物脱氮机理[J].环境科学与技术,2002,25(6):3-6.
    [58]高守有,彭永臻,王淑莹等.Orbal氧化沟生物脱氮的中试研究[J].中国给水排水,2005,21(8):5-9
    [59]夏世斌,刘俊新.立体循环一体化氧化沟处理城市污水研究[J].中国给水排水,2002,18(6):1-4
    [60]夏世斌.立体循环一体化氧化沟污水处理新技术研究[D].中国科学院研究生院博士论文,2003
    [61]Shibin Xia, Junxin Liu An innovative integrated oxidation ditch with vertical circle for domestic wastewater treatment[J].Process Biochemistry, 2004 (39) :1111–1117.
    [62]张瑞武,单立志.氧化沟智能模糊控制器的实现[J].机械工业自动化,1998,20(5):28-35
    [63]梁保强.氧化沟法污水处理过程计算机控制系统的设计与开发[D].东北大学硕士学位论文,2002
    [64]吴斌.氧化沟法城市污水处理系统的模糊控制[J].控制工程,2005,12(5):43-45
    [65]邓荣森,李尚月,王涛等.变频器在曝气转刷自动控制中的应用[J].重庆建筑大学学报,2004.26(5):86-90
    [66]郭迎庆,陈毅忠.关于氧化沟均衡设计方法的探讨[J].江苏石油化工学报,1999,11(4):61-64
    [67]胡大锵. Carrousel氧化沟脱氮除磷设计探讨[J].中国给水排水,2001,18(9): 61-64
    [68]周律,钱易.浅议三沟式氧化沟的设计[J].给水排水,1998,24(1):6-9
    [69]李正明.导管式氧化沟设计介绍[J].化工给排水设计,1997,2:16-18
    [70]王凯军.氧化沟的设计方法讨论[J].中国给水排水,1995,15(1):26-29
    [71]王凯军贾宝玉编著.城市污水生物处理新技术开发与应用[M].化学工业出版社,2001
    [72]Billmeier E. Dimensioning of final settling tanks of large activated sludge plants for high quality effluent [J]. Wat Sci Tech, 1992, 29(4/5): 23-33
    [73]Matko T, Fawcett N, Sharp A, et al. A numerical model of flow in circular sedimentation tanks[J]. Process Safety and Environmental Protection,1996, 74 (B3): 197-204
    [74]Zhou S P, McCorquodale J A. Modeling of rectangular settling tanks[J]. Journal of Hydraulic Engineering, 1992, 118(10): 1391-1405.
    [75]Zhou S P, McCorquodale J A.Modeling of rectangular settling tanks-closure [J]. Journal of Hydraulic Engineering, 1994, 120(2): 279-281
    [76]Mazzolani G, Pirozzi F, d’Antonoi G. A generalized settling approach in the numerical modeling of sedimentation tanks[J]. Wat Sci Tech, 1998, 38(3): 95–102
    [77]McCorquodale J A, Zhou S P. Effects of hydraulic and solids loading on clarifier performance [J]. Journal of Hydraulic Research,1993, 31(4):461-478
    [78]Spence S. Performance prediction of screens through flow modeling[J].Wat Serv, 2001, 104(2): 14-15
    [79]Weiss G J,Gehard J,Michelbach S. Vortex separator:dimensionless properties and calculation of annual separation eficieneies[J]. Wat Sci Tech, 1996, 33(9): 277-284
    [80]屈强,马鲁铭,王红武等.折流式沉淀池流态模拟[J].中国给水排水, 2005, 21(4): 58-61
    [81]屈强,马鲁铭,朱伟.周边式二沉池流态数值模拟[J].水处理技术, 2006, 32(2): 23-25
    [82]詹咏.水流对混凝沉淀影响研究[D].河海大学, 2001
    [83]曾光明,葛卫华,秦肖生等.污水厂二维沉淀池水流和悬浮物运动数值模拟[J].中国环境科学, 2002, 22(4): 338-341
    [84]张庄.沉沙池水力特性与悬浮物去除率[J].水动力学研究与进展:A辑, 1997, 12(2): 217-225
    [85]何国建,汪德爟.矩形沉淀池内悬浮物沉降模拟[J].清华大学学报, 2005, 45(12): 1617-1620
    [86]蔡金榜,段祥宝,朱亮.沉淀池水流数值模拟[J].重庆建筑大学学报, 2003, 25(4): 64-69
    [87]方芳,张永东,张晓卫等.某型旋流池分离效果的数值模拟研究[J].给水排水, 2005, 31(11): 103-107 [88]
    [88]Wang H, Falconer R A. Simulating disinfection processes in chlorine contact tanks using various turbulence models and High order accurate difference schemes [J]. Wat Res, 1998, 32(5): 1529-1543
    [89]Reddy S. Computer simulation:Reducing cost of chlorine in wastewater plant[J]. Chem Eng World, 2003, 38(4): 66-67
    [90]王虹,邵学军, Falconer R.氯接触池中溶质输移与消毒过程的数值模拟[J].清华大学学报, 2004, 44(6): 797-800
    [91]Janex M L, Savoye P, Do-quang Z, et al. Impact of water quality and reactor hydrodynamics oil wastewater disinfection by UV,use of CFD modeling for performance optimization[J]. Wat Sci Tech, 1998, 38(6): 71-78
    [92]刘文君,崔磊.应用计算流体力学优化清水池水力效率[J].中国给水排水, 2005, 21(5): 1-5
    [93]Do-quang Z, Cockx A, Laine J M, et al. Applying CFD modelling in order to enhance water treatment reactors eficiency:Example of the ozonation process[J]. Wat Sci Tech, Water Supply, 2001, 1(4): 125-130
    [94]Evans H,Bauer M,Goodman N, et al. The role of ozone in improving drinking water quality in London and Oxford[J]. Ozone:Science and Engineering, 2003, 25(5): 409-416
    [95]Wood M G,Greenfield P F,Howes T,et a1.Computational fluid dynamic modeling of wastewater ponds to improve design[J]. Wat Sci Tech, 1995, 31(12): 111-118
    [96]Salter H E,Tac T,Ouki S K, et al.Three-dimensional computational fluid dynamic modelling of afacultative lagoon[J]. Wat.Sci.Tech, 2000, 42(10-11): 335-342
    [97]Vega G P, Pena M R, Ramirez C, et al. Application of CFD modeling to study the hydrodynamics of various anaerobic pond configurations[J]. Wat Sci Tech, 2003, 48(2): 163-171
    [98]Karama A B,Onyejekwe O O,Brouckaert C.J et al. The use of computational fluid dynamics(CFD) technique for evaluating the efficiency of an activated sludge reactor[J]. Wat Sci Tech, 1999, 39(10): 329-332
    [99]Cockx A, Do-quang Z, Audic J M, et al. Global and local mass transfer coefficients in waste water treatment process by computational fluid dynamics[J]. Chem Eng and Pro, 2001, 40(2): 187-194
    [100]Oda T,Yano T,Niboshi Y. Development and exploitation of a multipurpose CFD tool for optimisation of microbial reaction and sludge flow[J]. Wat Sci Tech, 2006, 53(3): 101-110
    [101]罗玮,周玮,程文等.曝气池中气液两相流数值模拟[J].水资源与水工程学报,2007,18(2):69-71.
    [102]李敏,王光谦,于洸等.内循环生物流化床反应器流体力学特性的数值模拟[J].环境科学学报,2004,24(3): 400-404.
    [103] Abusam.A, Keesman.K, Van Straten G. Forward and backward uncertainty propagation: an oxidation ditch modelling example[J]. Wat Res, 2003, 37: 429–435
    [104]刘广立,王玉珏等.活性污泥系统软件在氧化沟中的应用[J].中国环境科学,2001,21(4):359-361
    [105]Daigger,门晓欣. Orbal氧化沟同时硝化/反硝化及生物除磷的机理研究[J].中国给水排水,1999,15(3):1-7
    [106]周毅. A-A/O氧化沟水质数学模型的研究[D].武汉大学硕士毕业论文,2002
    [107]陈安,廖润华,罗亚田等. Carrousel氧化沟系统出水COD预报的神经网络模型[J].环境污染与防治,2004,26(5):351-354
    [108]Lesage1 N, Sperandio M, Lafforgue C et al.Calibration and application of a 1-D model for oxidation ditches[J].Trans IChemE, 2003,81(10):1259-1264.
    [109]罗麟,李伟民,邓荣森等.一体化氧化沟的三维流场模拟与分析[J].中国给水排水, 2003, 19(12): 15-18
    [110]张宗才,张新申,张铭让等.氧化沟水力学分析及流场计算[J].中国皮革,2004,33(11):22-25
    [111]尚应奇.深沟转刷型一体化氧化沟水力特性试验研究[D].西南交通大学硕士论文,2004
    [112]李媛. AIRE-O2充氧机性能浅析与Orbal氧化沟流态测试及三维模拟[D].重庆大学硕士毕业论文,2005.
    [113]刘广立,种云霄,樊青娟,等.氧化沟水力特性对处理效果和能耗的影响[J].环境科学,2006,27(11):2323~2326.
    [114]Werther J. Measurement techniques in fluidized beds[J].Powder Technology,1999,102:15-36.
    [115]魏捷,张赣道.反应器流场测试技术进展[J].化工时刊,2004,18(3):22-24.
    [116]盛森芝,徐月亭,袁辉靖.近十年来流动测量技术的新发展[J].力学与实践,2002,24(5):1-14.
    [117]黄雄飞,周徐昌,何建军.声学多普勒海流剖面仪误差源分析[J].声学与电子工程,2004,4:1-4
    [118]黄雄飞,苑秉成,陈喜.声学多普勒速度仪陆上仿真方法研究及其实现[J].系统仿真学报,2007,19(14):1-4
    [119]蔡红星,肖亚飞,田琳琳.利用激光多普勒效应测量流体速度[J].电子测试,2007,8(14):21-23
    [120]贺岩,王文奎,夏文兵.激光多普勒振动计用于水下声光通信[J].中国激光,2007,34(5):703-706
    [121]冯旺聪,郑士琴.数字图像测速(PIV)技术的发展[J].仪器仪表用户,2003,6(1):71-75.
    [122]许联锋.水气两相流动的数字图像测量方法及应用研究[D].西安理工大学博士论文,2004
    [123]申功忻.全场观测技术概念、进程与展望[J].北京航空航天大学学报,1997,23(3):332-340.
    [124]李英.电阻层析成像技术软场特性及图像重建算法研究[D].浙江大学硕士论文,2003
    [125]肖斌.电容层析成象的两相流仿真和算法研究[D].中国科学院研究生院硕士论文,2003
    [126]康琦,申功忻.全场测速技术进展[J].力学进展.1997,27 (1):106-120.
    [127]高潮,曹英,郭永彩.PIV血流场显示测速技术[J].光电工程,2004,31(8):37-41.
    [128]田晓东.DPIV技术和尾流区流场及污染物混合输移特性的研究[D].北京:清华大学博士论文,1998.
    [129]王勤辉,赵晓东,石惠娴,等.循环流化床内颗粒运动的PIV测试[J].热能动力工程,2003,18(4) :378-433.
    [130]郭福水,王汉封,柳朝晖,等.水平槽道内湍流变动的PTV实验研究[J].工程热物理学报,2004,25(4):622-624.
    [131]Kiger KT,Pan C. Suspension and Turbulence modification effects of solid particulates on a horizontal turbulent channel flow[J]. Journal of Turbulence, 2002, 3(19):1-21.
    [132]屠海洋.数字图像处理技术在通航船模试验中的应用[J].中国航海,2004,58(1):31-33.
    [133]许联锋,陈刚,李建中,等.粒子图像测速技术研究进展[J].力学进展,2003,33(4):533-539.
    [134]Dimotakis P,Debussy F, Koochesfahani M. Particle streak velocity field measurements in a two-dimensional mixing layer[J].Physics of Fluids, 1981, 24:995-999.
    [135]Khalighi B. Study of the intake swirl process in an engine using flow visualization and particle tracking velocimetry[J].ASME-FED,1989, 85:37-47.
    [136]Simpkins P G,Dudderar T D. Laser speckle measurement of transient Benard convection.[J].Fluid Mech,1978, 89:665-671.
    [137]Gui L, Merzkirch W. A method of tracking ensembles of particle images[J]. Experiments inFluids,1996,21: 465-468.
    [138]Willert C E, Gharibm M. Digital particle image Velocimetry. Experiments in Fluids[J].1991,10: 181-193.
    [139]Yamamoto F, Wada A, Iguchi M,et al. Visualization and image processing of torque converter internal flow[J]. J of Flow Visualization and Image Processing,1996a,3:51-64
    [140]Yamamoto F, Wada A, Iguchi M et al. Discussion of the cross-correlation methods for PIV[J].J of Flow Visualization and Image Processing, 1996b, 3:65-78
    [141]Baek S,Lee S. A new two-frame particle tracking algorithm using match probability[J].Experiments in Fluids,1996,22:23-32.
    [142]Malik N, Dracos T,Papantoniou D. Particle tracking velocimetry in three-dimensional flows[J].Part II: Particle tracking[J]. Experiments in Fluids,1993,15: 279-294.
    [143]茅泽育,张磊,陈嘉范等.数字粒子图像处理技术及其在明渠交汇试验研究中流速测量的应用[J].水利学报,2003,6:65-71
    [144]石惠娴. PIV技术应用于循环流化床颗粒运动测试[J].化学反应工程与工艺,2005,20(4):294-299.
    [145]钱健,刘超,汤方平等.离心泵叶轮内部三维紊流数值模拟与验证[J].农业机械学报,2006,36(1):32-35.
    [146]金文,王道增. PIV直接测量泥沙沉速试验研究[J].水动力学研究与进展,2005,20(1):19-23
    [147]黄鑫,倪晋仁.新型结构内循环生物流化床的流体力学特性试验及数值模拟[J] .环境污染与防治,2006,28(2):90-92.
    [148]程文,宋策,周孝德.曝气池中气液两相流的数值模拟与实验研究[J].水利学报, 2001, 12: 32-35
    [149]詹咏,朱雪诞,蔡鸣.粒子图像测速技术在往复隔板絮凝池中的应用[J].环境科学与技术,2006,29(8):16-18
    [150]Matsuda Tadashi,Sakakibara Jun. On the vertical structure in round jet[J].Physics of Fluids,2005,17(2):025106.
    [151]De lange Hc,Houben M P, Van steenhovern A A. Stereo-PIV analypiv of the low-swirl flow above a partial oxidation burner[J].Combustion Science and Technplogy, 2006,78(9):1541-1557
    [152]Calcgin Guido, Di Felice F,Few M, et al. A Stereo-PIV investigation of a propellers wake behind a ship mode; in a large free-surface tunnel[J]. Marine Technology Society Journal, 2005,9(112):94-102
    [153]Kahler C J. Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV[J]. Experiments in Fluids,2004,6(1):114-130
    [154]陈钊.数字粒子图像测速方法研究及其在氧化沟模型中的应用[D],重庆大学博士论文,2007.
    [155]Tokuhiro A, Maekawa M, Iizuka K, et al.Turbulent flow past a bubble and an ellipsoid using shadow- image and PIV techniques[J]. Internationa1 Journal of Multi-phase Flow,1998, (24):1383-1406.
    [156]Kosiwczuk W,Cessou A,Trinite M, et al. Simultaneous velocity field measurements in two-phase flows for turbulent mixing of sprays by means of two-phase PIV[J]. Experiments in Fluids,2005,39(5): 895-908.
    [157]邵雪明,颜海霞,辅浩明.两相流PIV粒子图像处理方法的研究[J],实验力学,2003,18(3):445-451.
    [158]潘晓辉,罗锐,杨献勇等悬浮颗粒两相流图像处理方法[J],清华大学学报,2002,42(5):680-683.
    [159]Khalitov D A, Longmire E K. Simultaneous two-phase PIV by two-parameter phase discrimination[J], Experiments in Fluids,2002,32(2):252-268.
    [160]Delnoij E, Kuipers JAM, Van Swaaij WPM, Westerweel J. Measurement of gas-liquid two-phase flow in bubble columns using ensemble correlation PIV [J],Chemical Engineering Science,2000,55:3385-3395.
    [161]王希麟,张大力,常辙等.两相流场粒子成像测速技术(PTV-PIV)初探[J],力学学报,1998,3 (1):121-125.
    [162]阮晓东,吴锋,杨华勇,等.一种自动检测PIV数据中误矢量的算法[J].机械工程学报,2004.40(7):89-92
    [163]Nogueira.J,Lecuona A,Rodriguea P. Data validation false vectors correction and derived magnitudes calculation on PIV data[J],Meas Sci Technol,1997,8(12):1493-1501
    [164]唐洪武,肖洋,陈吉平. PIV测速中低功率激光器的应用[J].激光杂志,2002,23(1):45-47
    [165]Melfing A. Tracer particles and seeding for particle image velocimetry[J], Meas.Sci Technol,1997,8(12):1406-1416
    [166]李弼程,彭天强,彭波等.智能图像处理技术[M],电子工业出版社,2004
    [167]章毓晋.图象处理和分析[M],清华大学出版社,1999
    [168]王延頲,张永明数字粒子图像速度测量原理与实现方法[J].中国科学技术大学学报,2000,4(30):302-306
    [169]Huang H, Dabiri H,Gharib M. On errors of digital particle image velocimetry. Meas Sci Technol.1997,8(12):1427-1440
    [170]Willert C E.Assessment of camera models for use in planar velocimetrycalibration[J].Experiments in Fluids,2006,41(1):135-143.
    [171]Tsai’s R Y. Versatile camera calibration technique for high-accuracy 3d machine vision metrology using off the-shelf tv camera and lenses[J]. IEEE Journal of Robotics and Automatuon,1987,4:323-344
    [172]Zhang Z Y. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000,22(11):1330-1334.
    [173]严新华编著.水力学[M],北京:科学技术文献出版社,1997.
    [174]景思睿等编著流体力学[M],西安交通大学出版社,2001.7
    [175]邓荣森,张贤彬,潘江浚,等.一体化氧化沟混合液循环流动情况试验研究[J].给水排水, 1998,24(2):12-19
    [176]孙卫东.一体化氧化沟流动状况与固液分离效果研究[D] .哈尔滨工业大学硕士学位论文,2000,74-77
    [177]董耀华.弯道水流的基本特性及数值模拟[J].长江科学院院报,1996,13(1):25-29
    [178]孙东坡,朱岐武,张耀先,等.弯道环流流速与泥沙横向输移研究[J].水科学进展, 2006,17(1):61-66
    [179]张耀先,焦爱萍.弯曲型河道挟沙水流运动规律研究进展[J].泥沙研究,2002,2:53-58
    [180]李治勤,田淳,高恩恩.连续急流弯道的数值模拟[J].太原理工大学学报,1999,30(6):629-632
    [181]汪诚文,陈吕军,钱易.一体化氧化沟试验研究[J],环境污染与防治,1994,13(6):20-25.
    [182]是勋刚编著.湍流[M],天津大学出版社,1994.
    [183]Schuler.A.J,Jang Hong.Density effects on activated sluge zone settling velocities[J],Wat Res,2007, 38(1):20-26.
    [184]王福军编著.计算流体动力学分析—CFD软件原理与应用[M],清华大学出版社,2004
    [185]韩占忠,王敬,兰小平编著. Fluent-流体工程仿真计算实例与应用[M],北京理工大学出版社,2004
    [186]Fluent Inc.,Fluent User’s Defined Fuction Manuanl[M], Fluent Inc.,2003
    [187]王家文,李仰军编著Matlab7.0图形图像处理[M],国防工业出版社,2006
    [188]Ekama G A,Barnard J L,Gunthert F W,et al Secondary Settling Tanks Theory,Modelling,Design and Operation[M].London:IAWQ scientific and technical reports,1997,(6) .
    [189]卢培利.传统活性污泥过程及其生物脱氮除磷改造的动力学模拟研究[D].重庆大学硕士论文,2002.
    [190]卢培利.混合呼吸测量仪研制与活性污泥模型进水COD组分表征研究[D].重庆大学博士论文,2006
    [191]刘顺隆,郑群编著.计算流体力学[M],哈尔滨工程大学出版社,2000
    [192]张亚雷,李咏梅译.活性污泥数学模型[M],同济大学出版社,2001
    [193]Cinar ?zer,Daigger Glen T.,Graef tephen P, et al.Evaluation of IAWQ activated sludge model No.2 using steady-state data from four full-scale wastewater treatment plants[J],Water Environment Research,1998,70(6):1216-1223.
    [194]程声通,陈毓龄编著.环境系统分析,北京,高等教育出版社,1990:20-25.
    [195]Makinia J, Wells S. A general model of the activated sludge reactor with dispersive flow-I model development and parameter estimation[J], Wat Res, 2000,34(16):3987-3996.
    [196]Makinia J, Wells S. A general model of the activated sludge reactor with dispersive flow-II model verification and application[J], Wat Res, 2000,34(16):3997-4006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700