用户名: 密码: 验证码:
水生植物的瘤胃微生物转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水生植物被广泛用于富营养化严重的湖泊、河流等水体的修复,但其生长迅速且难以控制,如处理不当容易造成水体的二次污染。另一方面,利用厌氧生物技术能够将水生植物作为一种可再生的生物质实现转化,不仅避免了二次污染问题,还可以提供氢气、有机酸和甲烷等产品,具有较好的环境和经济效益。本论文在全面的实验研究和深入的理论分析基础上,解析了水生植物的瘤胃微生物厌氧降解过程,并对其降解和预处理工艺学进行了优化。主要研究内容和结果如下:
     1、利用红外光谱、X射线光电子能谱和凝胶色谱研究了水生植物(以美人蕉为例)的降解过程。研究结果表明,水解过程是决定降解效率的限速步骤;利用红外光谱能够定性和半定量地表征美人蕉组分纤维素、半纤维素和木质素的降解过程;美人蕉表面的主要成分木质素的分解主要发生在厌氧转化过程的初期。
     2、利用序批式试验,结合部分因子设计和响应曲面法,优化了影响美人蕉降解的关键生态因子和工艺条件,并探讨了不同因子之间的关系。部分因子设计和响应曲面相结合能够有效地强化美人蕉的瘤胃微生物降解过程,底物浓度和pH对水生植物的降解影响最为显著。美人蕉降解的优化条件为:pH 6.6和底物浓度8.2g VS/L,而VFA生成的优化条件为:pH 6.7和底物浓度6.9g VS/L。
     3、利用响应曲面法研究优化了芦苇的汽爆预处理条件,并借助于紫外光谱、X射线光电子能谱和热重分析的结果探讨了其作用机制。优化条件下得到的最大产物生成速率为0.485g COD/L/d,条件为:含水率18%,汽爆压力1.6 MPa,时间8.0 min;得到的最大产物产率0.432g COD/g,条件为:含水率20%,汽爆压力1.8 MPa,时间8.0 min。汽爆处理破坏了芦苇的致密结构,增加了原料的比表面积和吸附能力,从而提高了芦苇的生物转化效率和速率。
     4、研究了重金属对蒲草厌氧转化的影响。适量的重金属增加了瘤胃微生物转化蒲草的效率,特别是在Cd(Ⅱ)、Cu(Ⅱ)和Cr(Ⅵ)分别为1.6、2.4和4.0 mg/L时;高剂量的重金属浓度对瘤胃微生物中有抑制作用,尤其是产甲烷细菌耐毒性最差;三种重金属按毒性影响大小排序为:Cd(Ⅱ)>Cu(Ⅱ)>Cr(Ⅵ)。
     5、研究了表面活性剂存在时美人蕉的厌氧酸化过程。响应曲面法分析结果表明,在美人蕉和吐温80浓度分别为6.3g VS/L和2.0 ml/L时,最大有机酸产率为0.147g/g VS,吐温80对酸化产率的影响远大于底物浓度;吐温80可能通过破坏美人蕉的结构,降低木质素对水解细菌和酶的非再生性吸附,从而提高有机酸的产率。
     6、建立了利用近红外光谱测定水生植物木质素、干重、挥发性物质和生物降解组分的新方法。利用近红外反射光谱分析技术和偏最小二乘回归法优化了光谱范围和光谱预处理方法,建立了近红外光谱测定水生植物中木质素、干物质、挥发性物质含量以及生物降解组分的校正模型。利用10个水生植物样品对所建模型的实际预测效果进行了验证,预测值与化学值的相关系数分别为0.959、0.859、0.893和0.821。结果表明,近红外光谱技术可以快速、准确地测定水生植物组成含量,能够用于评价水生植物的生物降解性。
Recently aquatic plants are extensively applied for ecological restoration of eutrophic lakes or rivers. However, the rapid growth of aquatic plants causes difficulty in controling, and could become a new pollution source if effective post-treatment is missing. On the other hand, as a renewable lignocellulosic resource the aquatic plants can be converted into volatile fatty acids (VFAs) and/or biogas (i.e., H_2 and CH_4) through anaerobic digestion.
     In this work, an investigation into aquatic plants degradation by rumen microorganisms was perfonned and pretreatment techniques of aquatic plants were optimized. Also, a novel method for determining aquatic plant degradation process based on near infrared reflectance spectroscopy (NIRS) was developed. Main contents and results are as follows:
     1. The anaerobic degradation of cannas, a typical aquatic plant, was investigated and characterized using Fourier transferred infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and gel penetration chromatography (GPC). Experimental results indicate that the hydrolysis was the limiting step for the anaerobic digestion of aquatic plants by rumens. FTIR was able to semi-quantitively and qualitatively describe the degradation of cellulose, hemicellulose and lignin in aquatic plants. XPS and GPC analyses show that part of lignin fraction was decomposed to soluble components in the initial phase of the anaerobic digestion.
     2. Fractional factorial design (FFD) and response surface methods (RSM) were employed to select appropriate pH and substrate concentration to obtain high degradation efficiency and VFA yield. Results indicate that both substrate concentration and pH had a significant influence on VFA production. Furthermore, a high degradation efficiency could be obtained under optimized conditions of pH 6.6 and substrate concentration of 8.2 g VS/L, while a higher VFAs yield achieved at pH 6.7 and substrate concentration of 6.9 g VS/L.
     3. Steam explosion pretreatment was used to improve the ruminal degradation of Bulrush and optimized with RSM. Furthermore, the influences of steam explosion on Bulrush were also explored using UV spectroscopy, XPS, thermogravimetric analysis and other chemical analysis. A maximum R_(max) of 0.485 g COD/L/d could be obtained under the optimized conditions of a moisture of 18%, steam pressure of 1.6 MPa and retention time of 8.0 min, while a maximum P_s of 0.432 g COD/g could be obtained at a moisture of 20%, steam expressure of 1.8 MPa and retention time of 8.0 min. Spectral analyses show that steam explosion disrupted the rigid structure of plant cell wall to improve the specific surface area which was beneficial for the ruminal hydrolyzation of aquatic plants.
     4. The ruminal degradation of cattails in the presence of heavy metals was investigated. When the concentrations of Cd (II), Cu (II) and Cr (VI) were 1.6, 2.4 and 4.0 mg/L, respectively, a high degradation efficiency of cattails was obtained. A higher dosage of heavy metal inhibited the microbial activity, especially for the methanogenic microorganisms. The toxic order of these three metals at a high dosage was in the order of Cd (II) > Cu (II) > Cr (VI).
     5. An important quatic plant, cannas, was investigated for its anaerobic acidogenisis by rumen microorganisms. Experimental results indicate that Tween 80 concentration had a significant influence on cannas degradation. This might be attributed to the fact that Tween 80 at an appropriate concentration could improve the activity of the hydrolytic enzymes and weaken the negative effect of lignin fraction.
     6. A new NIRS-based method to predict the Klason lignin, total solids (TS), volatile solids (VS) and biodegradable fraction (BF) of aquatic plants was established. The prediction models were developed using partial least squares after pretreatment at a proper spectral range. Calibration models for the NIRS measurement yielded high determination coefficients (R~2) of 0.959, 0.859, 0.893 and 0.821, respectively. Experimental results show that the established method was able to rapidly and effectively predict the composition and the biodegradability of aquatic plants.
引文
[1]Smith,V.H.,Tilman,G.D.,Nekola,J.C.,1999.Eutrophication:Impacts of excess nutrient inputs on freshwater,marine,and terrestrial ecosystem.Environ Pollut.100(1-3),179-196.
    [2]Smith,V.H.,2003.Eutrophication of freshwater and coastal marine ecosystems-A global problem.Environ.Sci.Poll.Res.10(2),126-139.
    [3]Rast,W.,Thornton,J.A.,1996.Trends in eutrophication research and control.Hyrol.Proc.10(2),295-313.
    [4]Mitsch,W.J.,Lefeuvre,J.C.,Bouchard,V.,2002.Ecological engineering applied to river and wetland restoration.Ecol.Engineer.18(5),529-541.
    [5]Chapin,F.S.,Brain,H.W.,Richard,J.H.,1997.Biotic control over the function of ecosystems.277,500-504
    [6]种云霄,胡洪营,钱易.大型水生植物在水污染治理中的应用研究进展.环境污染治理技术与设备,2003,4(2),36-40.
    [7]Campbell,N.A.,In Biology,3rd ed.Benjamin Cummings:Redwood City,CA,1993.68-70.
    [8]高洁,汤烈贵.1999.纤维素科学,科学出版社.
    [9]Yan,L.F.,Li,W.,Yang,J.L.,Zhu,Q.S.,2004.Direct visualization of straw cell walls by AFM.Macromol.Biosci.4,112-118.
    [10]杨敏.2002.高效木质素降解菌处理秸秆类农业废弃物的资源化研究.中国科学院生态环境研究中心博士后论文.
    [11]Tuomela,M.,Vikman,M.,Hatakka,A.,Itavaara,M.,2000.Biodegradation of lignin in a compost environment:a review.Biores.Technol.72,169-183..
    [12]Terashima,N.,Atalla,R.H.,Vanderhart,D.L.,1997.Solid state NMR spectroscopy of specifically C13-enriched lignin in wheat straw from coniferin.Phytochem.46,863-870.
    [13]Sun,R.C.,Fang,J.M.,Goodwin,A.,Lawther,J.M.,Bolton,A.J.,1998.Physico-chemical and structural characterization of alkali lignins from abaca fibre.J.Wood Chem.Technol.18,313-331.
    [14]Sun,R.C.,Mott,L.,Bolton,J.,1998.Fractional and structural characterization of ball milled and enzyme lignins from oil palm empty fruit bunch fiber.Wood Fiber Sci.30,301-311.
    [15]朱斌,陈飞星,陈增奇.2002.利用水生植物净化富营养化水体的研究进展.上海环境科学.21(9),564-567.
    [16]Chapin,F.S,Brain,H.W,Richard,J.H.,1997.Biotic control over the function of ecosystems,Science.277,500-504.
    [17]Reddy,K.R.,Debusk,T.A.,1987.State of the art utilization of aquatic plants in water pollution control.Wat.Sci.Tech.19(10),61-79.
    [18]Farahbakhshazad,N.,Morrison,G.M.,Ammonia removal processes for urine in an upflow macrophyte system.Environ Sci Technol,1997,31(11),3314-3317.
    [19]Zimmo,O.R.,van der Steen,N.R,Gijzen,H.J.,2003.Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Res. 37(19), 4587-4594.
    [20] Vaillant, N., Monnet, F., Vernay, P., Sallanon, H., Coudret, A., Hitmi. A., 2002. Urban Wastewater Treatment by a Nutrient Film Technique System with a Valuable Commercial Plant Species (Chrysanthemum cinerariaefolium Trev.). Environ. Sci. Technol. 36(9), 2101-2106.
    [21] Machate, T, Heuermann, E., Schramm, K.W., Ketturp, A., 1999. Purfication of fuel and nitrate contaminated ground water using a free water surface constructed wetland plant. J. Environ. Qual. 28(5), 1665-1673.
    [22] Tanner, C.C, Clayton, J.S., Upsdell, M.P, 1995. Effect of loading rate and planting on treatment of dairy farm wastewater in constructed wetland. 2. Removal of nitrogen and phosphorus. Water Res. 29(1), 27-34.
    [23] Joseph, B., Hughes, J., 1997. Transforaiation of TNT by aquatic plants and plant tissue cultures. Envion. Sci. Technol. 31(1), 266-271.
    [24] Rubin, E., Ramaswami, A., 2001. The potential for phytoremediation of MTBE. Water Res. 35(5), 1348-1353.
    [25] Thaer, L.K., 1997. Heavy metal in water, suspended particles, sediments, and aquatic plants of the upper region of Euphrates river, Iraq. Environ. Sci. Health. 32(10), 2497 - 2506.
    [26] Sparling, D.W., 1998. Metal concentrations in aquatic macrophytes as influenced by soil and acidification. Water Air Soil Pollut, 18(12), 203-221.
    [27] Zayer, A., 1998, Phytoaccumulation of trace elements by wetland plants: Duckweed. Environ. Qual., 27(3), 715-720.
    [28] Hansen, D., 1998, Selenium removal by constructed wetland: role of biological volatilization. Environ. Sci. Technol. 32(5), 591-597.
    
    [29] Fraser, L.H., Carty, S., Steer, D.N., 2004. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms. Bioresource Technol. 94(2), 185-192.
    [30] Sooknah, R.D., Wilkie, A.C., 2004. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol. Engineer. 22, 27-42.
    [31] Singhal, V., Rai, J.P.N., 2003. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Biores. Techol. 86(3),221-225.
    [32]金相灿.2001.湖泊富营养化控制和管理技术,化学工业出版社,北京.
    [33]蔡福林.2003.一种水生植物饲料及其制作方法,中国专利:CN01139286.X.
    [34]Gajalakshmi,S.,Ramasamy,E.V.,Abbasi,S.A.,2002.High-rate composting vemicomposting of water hyacinth.Biores.Techol.83(3),235-239.
    [35]Moorhead,K.K.,Nordstedt,R.A.,1993.Batch anaerobic digestion of water hyacinth:Effects of particle size,plant nitrogen content,and inoculum volume.Biores.Tech.65,71-76.
    [36]Russell,J.B.,1991.Intracellular pH of acid-tolerant ruminal bacteria.Appl.Environ.Microbiol.57,3383-3384.
    [37]Russell,J.B.,Rychlik,J.L.,2001.Factors that alter rumen microbial ecology.Science 292,1119-1122.
    [38]Hungate,R.E.,1966.The Rumen and Its Microbes.Academic Press,New York,3rd ed.
    [39]Tajima,K.,Arai,S.,Ogata,K.,Nagamine,T.,Matsui,H.,Nakamura,M.,Aminov,R.I.,Benno,Y.,2000.Rumen bacterial community transition during adaptation to high-grain diet.Anaerobe 6,273-284.
    [40]Windham,W.R.,Akin,D.E.,1984.Rumen fungi and forage fiber degradation.Appl.Environ.Microbiol.,48,473-476.
    [41]Dehority,B.A.,1998.Generation times of Epidinium caudatum and Entodinium caudatum,determined in vitro by transferring at various time intervals.J.Anim.Sci.76(4),1189-1196.
    [42]Dehority,B.A.,Tirabasso,P.A.,2000.Antibiosis between ruminal bacteria and ruminal fungi.Appl.Environ.Microbiol.66,2921-2927.
    [43]Orpin,C.G.,1975.Studies on the rumen flagellate Neocallimastix.frontalis.J.Gen.Microbiol.,91,249-262.
    [44]Orpin,C.G,1983.The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls.Anim.Feed Sci.Tech.,52,261-275.
    [45]Akin D.E.,Rigsbyl,L.,1987.Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen.Appl.Environ.Microbio.53,1987-1995.
    [46]Wilson,D.,1996.Manipulation of infection levels of horizontally transmitted fungal endophytes in the field.Mycol.Res.100,827-830.
    [47]Mountfort,D.O.,Asher,R.A.,1989.Production of xylanase by the ruminal anaerobic fungus Neocallimastix frontalis.Appl.Environ.Microbiol.55(4),1016-1022.
    [48]Akin,D.E.,1989.Role of rumen fungi in fiber degradation.J.Dai.Sci.73,3023-3032.
    [49]Orpin,C.G.,Joblin,K.N.,1997.The Rumen Microbial Ecosystem,Hobson,RN.,Stewart,C.S.,Eds.Blackie,London.
    [50]Joblin,K.N.,Naylor,G.E.,1990.Williams A G.Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi.Appl.Environ.Microbiol.56,2287-2295.
    [51]Jarvis,G.N.,Strompl,C.,Burgess,D.M.,Skillman,L.C.,Mooree,R.B.,Joblin,K.N.,2000.Isolation and identification of ruminal methanogens from grazing cattle.Curr.Microbiol.40(5),322-327.
    [52]Stumm,C.K.,Gijzen,H.J.,Vogel,G.D.,1982.Association of methanogenic bacteria with ovine rumen ciliates.Br.J Nutr.47,95-99.
    [53]Hobson,P.N.,Stewart,C.S.,1997,The Rumen Microbial Ecosystem,Blackie Academic & Professional,London.
    [54]高巍,孟庆翔.2003.瘤胃细菌、原虫和真菌降解植物细胞壁的相对贡献及其互作。中国农业大学学报.8(5),98-104.
    [55]凌代文.1999,厌氧微生物研究的新进展.微生物学通报.22(4),245-252.
    [56]Cheng,K.J.,Forsberg,C.W.,Minat,H.,1991.Microbial ecology and physiology of feed degradation within the rumen.Academic Press,Toronto.
    [57]Miron,J.,Forsberg,C.W.,1999.Characterisation of cellulose-binding proteins that are involved in the adhesion mechanism of Fibrobacter intestinalis DR7.Appl.Microbio.Biotechnol.51(4),491-497.
    [58]Pell,A.N.,Schofield,P.,1993.Microbial adhesion and degradation of plant cell walls.In:Jung,H.R.,Buxton,D.R.,Hatfield,R.D.,Ralph,J.,Forage cell wall structure and digestibility.America,Madison,WI.
    [59]McAllister,T.A.,Bae,H.D.,Jones,G.A.,1994.Microbial attachment and feed digestion in the rumen.J.Anim.Sci.72,3004-3008.
    [60]Owens,F.N.,Secrist,D.S.,Hill,W.J.,Gill,D.R.,1998.Acidosis in cattle:A review.J.Anim.Sci.76,275-286.
    [61]Russell,J.B.,Wilson,D.B.,1996.Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J.Dai.Sci.79,1503-509.
    [62] Russell, J.B., 1991. Intracellular pH of acid-tolerant ruminal bacteria. Appl. Microbio. Biotechnol. 57, 3383-3384.
    [63] Gijzen, H.J., Zwart, K.B., Verhagen, F.J.M., Vogels, G.P., 1988. High-Rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis. Biotechnol. Bioeng. 31(5), 418-425.
    [64] Pavlostathis, S.G., Miller, T.L., Wolin, M.J. 1988, Fermentation of Insoluble Cellulose by Continuous Cultures of Ruminococcus albus. Appl. Environ. Microbiol. 54(11), 2655-2659.
    [65] Weimer, P.J., French, A.D., Calamari, T.A., 1991. Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl Environ Microbiol. 57(11), 3101-3106.
    [66] Mourino, F., Akkarawongsa, R., Weimer, P. 1, 2001. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. J. Dairy Sci. 84, 848-859.
    [67] Barnes, S.P., Keller, J., 2003. Cellulosic waste degradation by rumen-enhanced anaerobic digestion. Water Sci. Technol. 48(4), 155-162.
    [68] Hu, Z.H., Wang, G, Yu, H.Q., 2004. Anaerobic degradation of cellulose by rumen microorganisms at various pH values. Biochem. Eng. J. 21(1), 59-62.
    [69] Hu, Z.H., Yu, H.Q., Zhu Z.F., 2005. Influence of particulate size and initial pH on the cellulose degradation by ruminal microbes. Int. Biodeter. Biodegr. 55(3), 233-238.
    [70] O'SuIlivan, C.A.. Burrell, P.C, Clarke W.R, Blackall L.L, 2007. The effect of biomass density on cellulose solubilisation rates. Bioresource Technol. In press.
    [71] Giujzen, H.J., Zwart K.B., van Gelder, P.T., Vogels, G.D., 1986. Continuous cultivation of rumen microorganisms, a system with possible application to the anaerobic degradation of lignocellulosic waste materials. Appl. Microbiol. Biotechnol. 25,155—162.
    [72] Lubberding, H.J., Giujzen, H.J., Heck, M., Vogels, G.D., 1988. Anaerobic digestion of onion waste by means of rumen microorganisms. Biol. Wastes, 25(1), 61-67.
    [73] Giujzen, H.J., Op den Camp, H.J.M., Vogels, G.D., 1992. Conversion of cereal residues into biogas in a rumen-derived process, World J. Microbiol. Biotechnol. 8(4),428-433.
    [74]Kivaisi,A.K.,Eliapenda,S.1995.Application of rumen microorganisms for enhanced degradation of bagasse and maize bran.Biomass and Bioenerg.8(1),45-50.
    [75]Strayer,R.F.,Finger,B.W.,Alazraki,M.R 1997.Evaluation of an anaerobic digestion system for processing CELSS crop residues for resource recovery.Adv Space Res.20(10),2009-2015.
    [76]李梅,冯仰廉,李胜利,莫放,1999.不同粗饲料在瘤胃持续模拟装置中挥发性脂肪酸产生量及比例的研究.饲料研究,2,11-12.
    [77]Seon,J.,Creuly,C.,Duchez,D.,Ports,A.,Dussap,C.G.,2003.Degradation of plant wastes by anaerobic process using rumen bacteria.Water Sci.Technol.48(4),213-216.
    [78]Hu,Z.H.,Yu,H.Q.,2005.Application of Rumen Microorganisms for Enhanced Anaerobic Fermentation of Corn Stover.Process Biochem.40,2371-2377.
    [79]Kivaisi,A.K.,Mtila,M.,1998.Production of biogas from water hyacinth (Eichhornia crassipes)(Mart)(Solms)in a two-stage bioreactor.World J.Microbiol.Biotechnol.14,125-131.
    [80]Hu,Z,H.,Yu,H.Q.,2006.Anaerobic digestion of cattail by rumen cultures,Waste Manage.26(11),1222-1228.
    [81]Chen,X.L.,Wang,J.K.,Wu,Y.M.,Liu,J.X.,2008.Effects of chemical treatments of rice straw on rumen fermentation characteristics,fibrolytic enzyme activities and populations of liquid- and solid-associated ruminal microbes in vitro.Anim.Feed Sci.Technol.141(12),1-14.
    [82]Konishi,C.,Matsui,T.,Park,W.,Yano,H.,Yano,F.,1999.Heat treatment of soybean meal and rapeseed meal suppresses rumen degradation of phytate phosphorus in sheep.Anita.Feed Sci.Technol.80(2),115-122.
    [83]Ngian,M.F.,Pearce,G.R.,Ngian,K.F.,Lin,S.H.,1978.Anaerobic digestion of sodium hydroxide pretreated pig faeces using sheep rumen liquor or anaerobic digester mixed liquor as inoculum.Agriculture and Environment,4(2),139-154.
    [84]Ben-Ghedalia,D.,1982.Degradation of cell-wall monosaccharides of chemically treated grape branches by rumen microorganisms.Eur.J.Appl.Microbiol.Biotechnol.16,142-145.
    [85]Playne,M.J.,1984.Increased digestibility of bagasses by pretreatment with alkalis and steam explosion. Biotechnol. Bioeng. 26(5), 426 - 433.
    [86] Rai, S.N., Mudgal, V.D., 1987. Effect of sodium hydroxide and steam pressure treatment on the utilization of wheat straw by rumen microorganisms. Biol. Wastes, 21(3), 203-212.
    [87] Jayasuriya, M.C.N., Hamilton, R., Rogovic, B., 1987. The use of an artificial rumen to assess low quality fibrous feeds, Biological Wastes. 20(4) 241-250.
    [88] Reddy, D.V, Mehra, U.R., U.B., 1989. Singh Effect of hydrogen peroxide treatment on the utilization of lignocellulosic residues by rumen micro-organisms. Biol. Wastes, 28(2), 133-141.
    [89] Lewis, S.M, Montgomery, L., Garleb, K.A., Berger, L.L., Jr, G.C.F., 1988. Effects of alkaline hydrogen peroxide treatment on in vitro degradation of cellulosic substrates by mixed ruminal microorganisms and Bacteroides succinogenes S85. Appl. Environ. Microbiol. 54(5), 1163-1169.
    [90] Miron, J., Ben-Ghedalia, D., 1992. The effect of sulphur dioxide application level or the biodegradation of wheat straw carbohydrates by rumen microorganisms and by Trichoderma viride cellulose. Bioresource Technol. 41(2), 139-144.
    [91] Miron, J., Ben-Ghedalia, D., 1981. Effect of chemical treatments on the degradability of cotton straw by rumen microorganisms and by fungal cellulose. Biotechnol. Bioeng. 23(12), 2863-2873.
    [92] Blasig, J.D., Holtzapple, M.T., Dale, B.E, Engler, C.R, Byers, F.M, 1992. Volatile fatty acid fermentation of AFEX-treated bagasse and newspaper by rumen microorganisms. Resources, Conservation and Recycling, 7(1-3), 95-114.
    [93] Kivaisi, A.K, Eliapenda, S., 1994. Pretreatment of bagasse and coconut fibres for enhanced anaerobic degradation by rumen microorganisms. Renewable Energy, 5(5-8), 791-795.
    [94] Jalc, D, Zitnan, R, Nerud, F, 1994. Effect of Fungus-treated straw on ruminal fermentation in vitro. Anim. Feed Sci. Technol. 46(1-2), 131-141.
    [95] Deschamps, F.C, Ramos, L.P, Fontana, J.D, 1996. Pretreatment of sugar cane bagasse for enhanced ruminal digestion. Appl. Biochem. Biotechnol. 57, 58171-58182.
    [96] Clarkson, W.W, Xiao W, 2000. Bench-scale anaerobic bioconversion of newsprint and office paper. Water Sci. Technol. 41(3), 93-100.
    [97] Sonakya, V, Raizada, N, Dalhoff, R, Wilderer, P.A., 2003. Elucidation mechanism of organic acids production from organic matter (grass) using digested and partially digested cattle feed, Water Sci. Technol. 48(8), 255-259.
    
    [98] O'Sullivan, C.A.. Burrell, P.C, Clarke W.R, Blackall L.L, 2006. Comparison of cellulose solubilisation rates in rumen and landfill leachate inoculated reactors. Bioresource Technol. 97(18), 2356-2363.
    
    [99] O'Sullivan, C.A.. Burrell, RC, 2007. The effect of media changes on the rate of cellulose solubilisation by rumen and digester derived microbial communities. Waste Manage. 27, 1808-1814.
    [1] Hu, Z.H., Wang, G, Yu, H.Q., 2004. Anaerobic degradation of cellulose by rumen microorganisms at various pH values. Biochem. Eng. J. 21 (1), 59-62.
    [2] Oh, S., Rheem, S., Sim, J., Kim, S., Baek, Y, 1995. Optimizing conditions for the growth of Lactobacillus casei YIT 9018 in tryptone-glucose medium by using response surface methodology. Appl. Environ. Microbiol. 61, 3809-3814.
    [3] Box, G.E.P., Draper, N.R., 1987. Empirical model-building and response surfaces. New York: John Wiley & Sons.
    [4] Hwang, S.K., Lee, Y.S., Yang, K.Y., 2001. Maximization of acetic acid production in partial acidogenesis of swine wastewater. Biotechnol. Bioeng. 75, 521-519.
    [5] Nawani, N.N., Kapadnis, B.P., 2005. Optimization of chitinase production using statistics based experimental designs. Process Biochem. 40,651-660.
    [6] Yue, Z.B., Yu, H.Q., Harada, H., Li, Y.Y., 2007. Optimization of anaerobic acidogenesis of an aquatic plant Canna indica L. by rumen cultures. Water Res 41,2361-2370.
    [7] Fang, H.H.P., Liu, H., 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technol. 82, 87-93.
    
    [8] Lee, Y.J., Miyahara, T., Noike, T., 2001. Effect of iron concentration on hydrogen fermentation. Bioresource Technol. 80,227-231.
    [9] Goering, H.K., van Soest, PJ., 1970. Forage Fiber Analysis (apparatus, reagents, procedures, and some applications). Agricultural Handbook, No. 379. United States Department of Agriculture, Washington, DC.
    [10] APHA, 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, New York.
    [11] Vavilin, V.A., Lokshina, L.Y., Flotats, X., Angelidaki, I., 2007. Anaerobic digestion of solid material: Multidimensional modeling of continuous-flow reactor with non-uniform influent concentration distributions, 97,354-366
    [12] Yang, K., Yu, Y, Hwang, S., 2003. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation. Water Res. 37,2467-2477.
    [13] Du, G.C., Yu, J., 2002. Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates. Environ. Sci. Technol. 36, 5511-5516.
    [14] Veeken, A., Hamelers, B., 1999. Effect of temperature on hydrolysis rates of selected biowaste components.Bioresource Technol.69,249-254.
    [15]Kivaisi,A.K.,Eliapenda,S.,1995.Application of rumen microorganisms for enhanced anaerobic degradation of bagasse and maize bran.Biomass Bioeng.8,45-50.
    [16]Hu,Z.H.,Yu,H.Q.,2005.Application of rumen microorganisms for enhanced anaerobic degradation of corn stover.Process Biochem.40,2371-2377
    [1]Yasanthan,N.,Salem,D.R.,2001.Structure characterization of heat set and drawn polyamide 66 fibers by FTIR spectroscopy.Mat.Res.Innovat.4,155-160.
    [2]Tarasova,N.B.,Petrova,O.E.,Faizullin,D.A.,Davydova,M.N.,2005.FTIR-spectroscopic studies of the fine structure of nitrocellulose treated by Desulfovibrio desulfuricans.Anaerobe 11,312-314.
    [3]Schultz,T.P.,Templeton,M.C.,McGinnis,G.D.,1985.Rapid determination of lignocellulose by diffuse reflectance Fourier transform infrared spectrometry.Anal.Chem.57(14),2867-2869.
    [4]Grandmaison,J.L.,Thibault,J.,Kaliaguine,S.1987.Fourier transform infrared spectrometry and thermogravimetry of partially converted lignocellulosic materials.Anal.Chem.59(17),2153-2157.
    [5]Berben,S.A.,Rademacher,J.P.,Sell,L.O.,Easty,D.B.,1987.Estimation of lignin in wood pulp by diffuse reflectance Fourier transform infrared spectrometry.Tappi Journal,129-133.
    [6]Chart,K.Y.,Xu,L.C.,Fang,H.H.P.,2002.Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacterial.Environ.Sci.Technol.36,1720-1727.
    [7]Gustafsson,J.,Ciovica,L.,Peltonen.J.,2003.The ultrastructure of spruce kraft pulps studied by atomic force microscopy(AFM)and X-ray photoelectron spectroscopy(XPS).Polymer.44,661-670.
    [8]Hu,Z.H.,Liu,S.Y.,Yue,Z.B.,Yan,L.F.,Yang,M.T.,Yu,H.Q.2008.Micro-scale analysis of in vitro anaerobic degradation of lignocellulosic wastes by rumen microorganisms.Environ.Sci.Technol.42(1),276-281.
    [1]Galbe,M.,Zacchi,G.,2007.Pretreatment of lignocellulosic materials for efficient bioethanol production.Biofuels,108,41-65.
    [2]Khanal,S.K.,Grewell,D.,Sung,2007.Ultrasound applications in wastewater sludge pretreatment:A review.Critical reviews in environmeantl science and technology 37(4),277-313.
    [3]Elliott,A.,Mahmood,T.,2007,Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues.Water Res.41,4273-4286.
    [4]Liu,H.W.,Walter,H.K.,Vogt,G.M.,Vogt,H.S.,Holbein,B.E.,2002.Steam pressure disruption of municipal solid waste enhances anaerobic digestion kinetics and biogas yield.Biotechnol.Bioeng.77,121-130.
    [5]Ewanick,S.M.,Bura,R.,Saddler,J.N.,2007.Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol.Biotechnol.Bioeng.98(4),737-746.
    [6]Zheng,Y.Z.,Lin,H.M.,Tsao,G.T.,1998,Pretreatment for cellulose hydrolysis by carbon dioxide explosion,Biotechnol.Progr.,14(6),890-896,1998
    [7]Teymouri,F.,Laureano-Perez,L.,Alizadeh,H.,Dale,B.E.,2005,Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover, 96(18), 2014-2018.
    [8] Cullis, I.E, Saddler, J.N., Mansfield, S.D., 2004. Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnol. Bioeng. 85 (4), 413-421.
    [9] van Ginkel, S., Sung, S.W., Lay, J.J., 2001. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35(24), 4726-4730.
    [10] Ribitsch, V., Stana-Kleinschek, K., Kreze, T, Strnad, S., 2001.The significance of surface charge and structure on the accessibility of cellulose fibres. Macromol. Mater. Eng. 286,648-654.
    [11] Pind, P.E, Angelidaki, L, Ahring, B.K., 2003. A new VFA sensor technique for anaerobic reactor systems. Biotechnol. Bioeng. 82(1), 54-61.
    [12] Borzacconi, L., Lopez, I., Anido, C, 1997. Hydrolysis constant and VFA inhibition in acidogenic phase of MSW anaerobic degradation. Water Sci. Technol. 36(6-7), 479-484.
    [13] Yang, B., Wyman, C.E., 2006. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 94,611-617.
    [14] Tumela, M., Vikaman, M., Hatakka, A., Itavaara, M., 2000, Biodegradation of lignin in a compost environment: a review. Bioresource Technol. 72,169-183.
    [15] Castro, F.B., Hotten, P.M., Orskov, E.R., Rebeller, M., 1994. Inhibition of rumen microbes by compounds formed in the steam treatment of wheat straw. Bioresource Technol. 50(1), 25-30.
    [16] Panagiotou, G, Olsson, L., 2007. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng. 96(2), 250-258.
    [17] Chen, H.Z., Liu, L.Y. 2007, Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresource Technol. 98(3), 666-676.
    [18] Chan, K.Y., Xu, L.C., 2002. Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacterial. Environ. Sci. Technol. 36, 1720-1727.
    [19] Gustafsson, J., Ciovica, L., Peltonen. J., 2003. The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer. 44, 661-670.
    [1] Hervas, G., Frutos, P., Giraldez, F.J., Mora, M.J., Fernandez, B., Mantecon, A.R., 2005, Effect of preservation on fermentative activity of rumen fluid inoculum for in vitro gas production techniques. Anim. Feed Sci. Technol. 123,107-118.
    [2] Murray, A.H., Iason, G.R., Stewart, C, 1996. Effect of simple phenolic compounds of heather (Calluna vulgaris) on rumen microbial activity in vitro. J. Chem. Ecol. 22(8), 1493-1504.
    [3] Hervas, G., Frutos, P., Giraldez, F.J., Mora, M.J., Fernandez, B., Mantecon, A.R., 2005. Effect of preservation on fermentative activity of rumen fluid inoculum for in vitro gas production techniques. Anim. Feed Sci. Technol. 123,107-118.
    [4] Cheng S.P., 2003. Heavy metal pollution in China: Origin, pattern and control. Environ. Sci. Pollut. Res. 10(3), 192-198.
    [5] Lenartova, V., Holovska, K., Javorsky, P., 1998. The influence of mercury on the antioxidant enzyme activity of rumen bacteria Streptococcus bovis and Selenomonas ruminantium. FEMS Microbiol. Ecol. 27(4), 319-325.
    [6] Goto, M., Bae, H., Yahaya, M.S., Karita, S., Kim, W., Baah, J., Sugawara, K., Cheng, K.J., 2003. Effects of surfactant Tween 80 on enzymatic accessibility and degradation of orchard grass (Dactylis glomerata L.) at different growth stages. Asian-Aust. J. Anim. Sci. 16, 83-87.
    [7] Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31,426-428.
    [8] Mosoni, P., Fonty, G, Gouet, P. 1997. Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Curr. Microbiol. 35,44-47.
    [9] Faixova, Z., Faix, S., 2002. Influence of metal ions on ruminal enzyme activities. Acta Vet. BRNO. 71(4), 451-455.
    [10] Faixova, Z., Faix, S., 2002. Influence of metal ions on ruminal enzyme activities. Acta Vet. BRNO. 71(4), 451-455.
    [11] Lippi, E., Machado, C.H., Araripe, M.C., 2003. Assessment of some clinical and laboratory variables for early diagnosis of cumulative copper poisoning in sheep. Vet. Human Toxicol. 45(6), 289-293.
    [12] Hickey, R.F., Vanderwielen, J., Switzenbaum, M.S., 1989. The effects of heavy metals on methane production and hydrogen and carbonmonoxide levels during batch anaerobic sludge digestion. Water Res. 23, 207-219.
    [13] Pavlostathis, S.G., Giraldo-Gomez, E., 1991. Kinetics of anaerobic treatment: a critical review.Crit.Rev.Environ.Control.21(5-6),411-490.
    [14]Kuo,C.W.,Genthner,B.R.S.,1996.Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia.Appl.Environ.Microb.62(7),2317-2323.
    [15]Codina,J.C.,Munoz,M.A.,Cazorla,F.M.,Perez-Garcia,A.,Morinigo,M.A.,De Vicente,A.,1998.The inhibition of methanogenic activity from anaerobic domestic sludges as a simple toxicity bioassay.Water Res.32(4),1338-1342.
    [16]Lin,C.Y.,then,C.C.,1999.Effect of heavy metals on the methanogenic UASB granule.Water Res.33(2),409-416.
    [17]Nies D.H.,1999.Microbial heavy-metal resistance.Appl.Environ.Microb.51(6),730-750.
    [18]Kaar,W.E.,Holtzapple,M.,1998.Benefits from Tween during enzymic hydrolysis of corn stover.Biotechnol.Bioeng.59,419-427.
    [19]Cheng,K.J.,Forsberg,C.W.,Minat,H.,1991.Microbial ecology and physiology of feed degradation within the rumen.Academic Press,Toronto.
    [20]Miron,J.,Forsberg,C.W.,1999.Characterisation of cellulose-binding proteins that are involved in the adhesion mechanism of Fibrobacter intestinalis DR7.Appl.Microbio.Biotechnol.51(4),491-497.
    [21]Camp,H.J.M.,Verhagen,F.J.M.,Kivaisi,A.K.,Windt,F.E.,Lubberding,H.J.,Gijzen,H.J.,1988,Effects of lignin on the anaerobic degradation of (lingo)cellulosic wastes by rumen microorganisms.Appl.Microbiol.Biotechnol.29,408-412.
    [22]Yang,B.,Wyman,C.E.,2006.BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.Biotechnol.Bioeng.94,611-617.
    [1]Nallathambi Gunaseelan,V.,2004.Biochemical methane potential of fruits and vegetable solid wastefeedstocks.Biomass Bioeng.26(4),389-399.
    [2]Jokela,J.,Vavilin,V.A.,Rintala,J.,2005.Hydrolysis rates,methane production and nitrogen solubilisation of grey waste components during anaerobic biodegradation.Bioresource Technol.96,501-508.
    [3]Baah,J.,Ivan,M.,Hristov,A.N.,Koenig,K.M.,Rode,L.M.,McAllister,T.A.,2007.Effects of potential dietary antiprotozoal supplements on rumen fermentation and digestibility in heifers.Anim.Feed Sci.Technol.137(1-2),126-137.
    [4]Offner,A.,Sauvant,D.,2004.Comparative evaluation of the Molly,CNCPS,and LES rumen models,Anim.Feed Sci.Technol.112(1-4),107-130.
    [5]Saint-Joly,C.,Desbois,S.,Lotti,J.P.,2000.Determinant impact of waste collection and composition on anaerobic digestion performance:industrial results.Water Sci.Teehnol.41(3),291-297.
    [6]Bertran,E.,Iturriaga,H.,Maspoch,S.,2001.Effect of orthogonal signal correction on the determination of compounds with very similar near infrared spectra.Anal.Chim.Acta.431,303-311.
    [7]Svensson,O.,Kourti,T.,MacGregor,J.F.,2002.An investigation of orthogonal signal correction algorithms and their characteristics.J.Chemometr.2002,16,176-188.
    [8]Wold S.,Antti H.,Lindgren E,Ohman,J.,1998.Orthogonal signal correction of near-infrared spectra.Chemomtr.Intell.Lab.Syst.44,175-185.
    [9]Wilmana,D.,Fielda,M.,Listerb,S.J.,Givensc,D.I.2000.The use of near infrared spectroscopy to investigate the composition of silages and the rate and extent of cell-wall degradation.Anim.Feed Sci.Yechnol.88,139-151.
    [10]Angeladiki,I.,Sanders,W.,2004.Assessment of the anaerobic biodegradability of macropollutants.Rev.Environ.Sci.Biotechnol.3,117-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700