用户名: 密码: 验证码:
中微子实验和振荡参数分析的若干研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宇宙大爆炸初期,中微子已经大量的存在了。由于中微子本身质量非常小,不带电,只参加弱相互作用,反映截面非常小,因此,大量的中微子长时间的存留下来。除了大爆炸后遗留下来的中微子,宇宙中还存在广泛的中微子产生源,例如超新星爆发,恒星内部核反应,宇宙射线以及地球上各种物质的衰变过程等。但是由于与物质的作用截面非常小,中微子的探测非常困难,因此我们对中微子的认识仍然很肤浅。自从Pauli提出中微子假说至今已经有70多年的时间了,中微子依然是萦绕在科学家头脑中的难题。
     现在我们知道存在三代中微子,最早电子味的中微子在1956年通过反应堆实验被探测到。而放射性化学实验Homestake对太阳产生的电子味中微子进行探测,发现电子味中微子在传播到地球的过程中发生了缺失现象。随后进行的一系列实验均证实了这一结论。对此存在很多可能的解释,其中一种可能的解释就是中微子振荡机制,也就是电子味中微子在从太阳传播到地球的过程中转换成了其他味的中微子。先期的实验只能证实探测器探测到的中微子比理论预期的少,还不能确定这是否是由于中微子振荡引起的。太阳中微子问题的真正突破是在2001年后,新一代的太阳中微子实验SNO通过1000吨重水同时测量三种味的中微子,从而获得了电子味中微子的消失以及ν_μ,ν_τ的产生证据,而且三种中微子的总流量与John Bahcall给出的标准太阳模型的预言是一致的。虽然其他的解释还不能完全排除,但是中微子振荡机制是对太阳中微子问题最自然,最可能的一种解释。而此后进行的反应堆中微子实验KamLAND,第一次探测到40%的反应堆中微子消失了。这最终确认了中微子振荡机制。现在可以肯定地说,太阳中微子发生了振荡,转换为了其他味的中微子,而且太阳中微子混合是大角度混合。中微子是有质量的。这有着重要的意义,它要求修改粒子物理的标准模型,预示着存在超出标准模型的新物理,如轻子数不守恒,质子衰变等。中微子物理成为近年来科学研究的一个重要方向。
     中微子是一种极为神秘的粒子,自从发现中微子振荡以后,可以说它的神秘面纱已逐渐被揭开。研究中微子物理,一个重要的方向就是分析中微子实验,应用中微子振荡机制给出中微子参数的区间估计。我们首先回顾了粒子物理中中微子质量的描述,给出Dirac质量,Majorana质量以及更为一般的Dirac-Majorana质量的表述形式。然后对中微子振荡进行了详尽的讨论,得出了两味中微子的简单情况下,真空和物质中的振荡生存几率。并主要讨论了均匀物质和绝热近似下的振荡公式以及物质效应引起的MSW共振机制。我们应用中微子振荡机制来解释太阳中微子实验,使用了传统的最小方差分析以及贝叶斯分析方法,对中微子实验数据进行了分析,从而给出了太阳中微子问题的LMA MSW绝热解的参数区间。利用贝叶斯方法的独特性质,我们还排除了中微子振荡的一些其他模型,很好的验证了LMA解,并且证明现在的LMA解已经非常稳定和可靠。另外,通过太阳中微子实验的分析和大气中微子实验的结果,轻子混合矩阵PMNS的6个独立参数中,我们已经知道了四个,还有两个是未知的,其中包括了最重要的CP破缺相因子。由于混合矩阵中CP相因子都是与θ_(13)耦合在一起的,因此实验对θ_(13)的测量变得尤为重要。只有完成对θ_(13)的测量,才能开始至关重要的寻找CP破坏效应及其根源的实验研究。因而θ_(13)的探测对研究味物理的核心问题意义重大。一旦θ_(13)被测定,将极大地提高我们对太阳、大气和长基线中微子振荡次级效应的认识,也将有助于我们研究超新星中微子振荡问题。位于中国广东的大亚湾反应堆中微子实验有可能会对θ_(13)进行很好的测量。我们使用不同的分析方法,对大亚湾中微子实验的不同方案进行了模拟,并给出了一个我们认为更为有效的探测器摆放方案,在我们的模拟中,大亚湾中微子实验有希望探测到sin~2 2θ_(13)大于0.02的值。大亚湾实验有着非常好的实验条件,在技术上没有太多的困难,是非常可行的反应堆中微子实验,随着实验技术的发展,大亚湾实验还有可能取得比我们模拟更精确的结果。
     中微子研究是当前粒子物理,天体物理和宇宙学研究的前沿热点。近年来中微子物理研究的一系列重大成果预示着粒子物理研究的新突破。中微子物理正处于一个大发展时期。中微子是最轻的基本粒子,是所有粒子衰变的最终产物。中微子有微小的质量,使得它可以构成宇宙中的热暗物质,对宇宙结构的形成有重要的影响。中微子振荡中的CP破缺可能对理解宇宙中的物质反物质不对称现象起关键作用。同时,中微子携带天体的许多信息,中微子不带电,不会像带电粒子一样被物质阻挡和磁场偏转,也不会像光子和带电粒子一样,与宇宙背景辐射相互作用。因此用中微子作探针,可以直达宇宙深处,将极大地推动天文学的发展。中微子振荡生存几率与其通过的物质密度有关,因此用中微子作探针,还能测量中微子通过地段的物质密度,从而获得太阳,地球的内部信息。随着科学的发展,我们会对中微子有更多的了解和认识。
In early universe,neutrinos were produced in the Big Bang.They are most ubiquitous particles in the universe.Neutrinos are elementary particles with tiny masses,electrically neutral,and weak interactions.Most of the neutrinos exist due to its small cross section.Except the neutrinos produced in the Big Bang,neutrinos are copiously produced in natural sources:in the supernova,in the burning of the stars,in the interaction of cosmic rays and in the beta decay of the matters in earth.Neutrino is hard to be detected for its weak interaction with matter.Therefore,our knowledge of neutrino is still very shallow.It is already more than seventy years since Pauli postulated the existence of neutrinos.But neutrino is still a lingering problem in the minds of scientists.
     Now we know that there exists three generations of neutrinos.The electron neutrino was observed at the first time in the reactor experiment in 1956.The pioneering Homestake experiment is a radiochemical experiment which detected the solar neutrinos.The first data of the Homestake experiment indicated that the solar neutrino flux on the Earth was significantly smaller than that predicted by the SSM.A series of experiments are in agreement with that measured in Homestake.One of the possible explanations is neutrino oscillation mechanism.Solar electron neutrino may be converted into other flavor neutrino on their way from the Sun to the Earth.There are also many other hypothesizes to solve this problem.Preliminary experiments could only confirm the deficit of solar electron neutrinos.But we don't know whether it is because of neutrino oscillation.A significantly progress of Solar Neutrino Problem was made since 2001.The new generation solar neutrino experiments SNO is a 1000-tonne heavy water Cherenkov detector.It can make simultaneous measurements of the flux of all active flavor neutrinos.It would provide the evidence of the disappearance of the electron neutrino and the production ofν_μ.ν_τ.The total flux of three active neutrinos is agreement with the prediction of SSM given by John Bahcall.The neutrino oscillation mechanism is turn out to be the most natural and reasonable solution of the SNP although other solution can't be excluded absolutely. The KamLAND reactor neutrino experiment is the first experiment that observes reactor antineutrino disappearance.There are 40 percent of the reactor neutrino disappeared.It conclusively demonstrated the neutrino flavor transformation.Now we can confirm that solar neutrino is converted to other flavor neutrinos,and neutrino oscillation occurrs.The mixing angle is large.It is important that neutrino is massive. Some modification should be made into the Standard Model.It can indicate the existence of new physics beyond the Standard Model such as lepton number violation, proton decay etc.Neutrino physics become an important direction in recent years.
     Neutrino is a very mysterious particle.We get more and more knowledge about neutrino since the oscillation mechanism is confirmed.To analyze the neutrino experiment data and give the estimate interval of the oscillation parameters is one of the important directions in neutrino research.We first review the neutrino mass in particle physics.We talk about the Dirac mass,Majorana mass and the general case of Dirac-Majorana mass.And we give a detailed description on neutrino oscillation.In the simple case of two flavor neutrino oscillation,we derive the survival probability in vacuum and in matter.We mainly derive the oscillation formula in the uniform matter and in the adiabatic approximation case,especial the MSW mechanism.We analyze the experiment data by the oscillation mechanism.Both the traditional least-squares analysis and the Bayesian analysis are use in our analysis.And the estimate interval in our analysis confirms the LMA MSW adiabatic solution for SNP.And we even exclude several other hypothesises on oscillation model by the special character of Bayesian analysis.This significantly proves the LMA solution.In our conclusion,the LMA solution is stable and reliable.Through.the analysis of the solar neutrino experiments and the atmospheric neutrino experiments,we have known four parameters of the total six absolute parameters in the PMNS mixing matrix.There are still two parameters unknown.One of them is the most important parameter,CP violation phase.The CP phase is always associated withθ_(13),so the detection ofθ_(13) is more important in the next generation experiments.We can detect the CP violation effect and study the hypostasis of CP violation only if we complete the detection ofθ_(13).So the detection ofθ_(13)is significantly to the study of the flavor physics.An precise detection ofθ_(13)will greatly enhance our knowledge about the secondary effect of the solar,atmosphere and long base line neutrino oscillation but also will help us to study supernova neutrino oscillation problems.A practical possibility is a reactor experiment at DaYa-Bay,which is located in Guang Dong Province in southern China.We explain different methods of analysis and importantly, arrangements of the detectors' positions accompanied by our simplified simulations on the possible sensitivity regions.Furthermore we suggest a more potential setting for the Da Ya Bay experiment.In our analysis,the experiment will be able to discover a sin~2 2θ_(13)greater than 0.02.The Da Ya Bay experiment is simply,has no technical difficulty and has suitable experiment circumstance.It is a very feasible reactor experiment.With improvement in technology and better budget the sensitivity can be even better.
     In current research,neutrino physics is the forefront of the particle physics, astrophysics and cosmology.In recent years,a series of major achievements in neutrino physics indicate the important progress in particle physics.Neutrino physics is still in a period of great development.Neutrino is the lightest elementary particle and is the final product in all particle decays.Neutrinos have small but finite masses. They may in fact be a sizable fraction of hot dark matter and are great in relevant to the formation of the universe structure.The CP violation in neutrino oscillation may play a fundamental role in understanding the matter and antimatter asymmetry in our universe.At the same time,neutrinos carry with much information of the orb. Neutrino is electrically neutral,so it would not be deflected in the magnetic field and not be blocked by matter like charged particles.Also it will not interact with the CMB like charged particle and photon.So used neutrinos to probe the depths of the universe will greatly promote the development of astronomy.The survival probability of neutrino oscillation is affected by the density of material in the trajectory.So we can measure the density of the materials where neutrinos passed through to obtain the internal information of sun and the earth.Along with the development of science,we may get more and more knowledge and understanding of neutrinos.
引文
[1] W. Pauli, letter sent to the Tubingen conference, Dec. 1930.
    [2] F. Reines and C. L. Cowan, Phys. Rev. 113,273 (1959).
    [3] M. C. Gonzalez-Garcia and Y. Nir, Rev. Mod. Phys. 75,345 (2003), hep-ph/0202058.
    [4] B. Pontecorvo, Sov. Phys. JETP. 26,984-988 (1968).
    [5] V. N. Gribov and B. Pontecorvo, Phys. Lett. B28,493 (1969).
    [6] W. M. Yao et al. [Particle Data Group], J. Phys. G33,1 (2006).
    [7] S. L. Adler, Phys. Rev., 177,2426-2438 (1969).
    [8] J. S. Bell and E. Jackiw, Nuovo Cim., A60,47-61 (1969).
    [9] M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity, edited by F.van Nieuwenhuizen and D. Freeman (North Holland, Amsterdam, 1979); T. Yanagida, Prog. Theor. Phys. B135,66 (1978) [10] G. Lazarides, Q. Shafi and C. Wetterich, Nucl. Phys. B181,287 (1981); R. N. Mohapatra and G. Senjanovi'c, Phys. Rev. D23,165 (1981).
    [11] R. N. Mohapatra, New J. Phys. 6, 82 (2004).
    [12] R. N. Mohapatra, 2004, hep-ph/0412379, SEESAW25, Paris, June, 2004
    [13] R. N. Mohapatra and P. B. Pal, Massive Neutrinos in Physics and Astrophysics, World Scientific, 1998, Lecture Notes in Physics, Vol.60
    [14] H. Fritzsch and Z. z. Xing, Prog. Part. Nucl. Phys. 45,1-81 (2000), hep-ph/9912358
    [15] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49,652 (1973).
    [16] B. Pontecorvo, Sov. Phys. JETP. 6,429 (1957).
    [17] B. Pontecorvo, Sov. Phys. JETP. 7,172-173 (1958).
    [18] G. Danby et al., Phys. Rev. Lett. 9, 36-44 (1962).
    [19] B. Pontecorvo, Sov. Phys. JETP. 10,1236-1240 (1960).
    [20] Z. Naki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962)
    [21] S. T. Petcov, Massive neutrinos and neutrino oscillations, Reviews of Modern Pysics, July 1987
    [22] Wolfenstein, Phys. Rev. D 17, 2369 (1978).
    [23] Barger, V. K. Whisnant, and R. J. N. Phillips, Phys. Rev. D 22, 1636 (1980).
    [24] G. Breit, Rev. Mod. Phys. 5, 91 (1993).
    [25] S. T. Petcov and S. Toshev, Phys. Lett. B187,120 (1987).
    [26] A. J. Baltz and J. Weneser, Phys. Rev. D 35, 528 (1987).
    [27] Bouchez, M. Cribier, J. Rich, M. Spiro, D. Vignaud and W. Hampel, Phys. C 32,499 (1986).
    [28] E. D. Carlson, Phys. Rev. D34,1454 (1986).
    [29] V. A. Chechin, V. K. Ermilova and V. A. Tsarev, Pis'ma Zh. Eksp. Teor. Fiz. 43,353 (1986).
    [30] A. Messiah, 1986, in Massive Neutrinos in Astrophysics and in Particle Physics: Proceedings of the VIth Moriond Workshop, Tignes, Savoie, France, edited by 0. Fackler and J. Tran Thanh Van (Edition Frontieres, Gif-sur-Yvette).
    [31] S. P. Mikheyev and A. Yu. Smirnov, 1986, in Massive Neutrinos, in Astrophysics and in Particle Physics: Proceedings of the VIth Moriond Workshop, Tignes, Savoie, France, edited by O. Fackler and J. Tran Thanh Van (Edition Frontieres,Gif-sur-Yvette), p.335.
    [32] J. N. Bahcall, M. H. Pinsonneault, and S. Basu, Astrophys. J. 555. 990-1012 (2001) astro-ph/0010346.
    [33] S. Eidelman et al., Phys. Lett. B 592,1 (2004).
    [34] J. N. Bahcall, Neutrino Astrophysics, Cambridge University Press (1989).
    [35] J. N. Bahcall et al., Phys. Rev., C54,411-422 (1996) nucl-th/9601044.
    [36] J. N. Bahcall, Phys. Rev., C56,3391, (1997) hep-ph/9710491.
    [37] J. N. Bahcall et al., Phys. Rev. D49,3923-3945 (1994).
    [38] J. N. Bahcall, M. H. Pinsonneaul, Phys. Rev. Lett. 92,121301 (2004) astro-ph/0402114.
    [39] B. T. Cleveland et al., Astrophys. J. 496,505 (1998); K. Lande, Talk given at the Neutrino '96 Int. Conference, June 13-19,1996, Helsinki, Finland; see also: R. Davis, Prog. Part. Nucl. Phys. 32, 13 (1994); B. T. Cleveland et al., Nucl. Phys. B (Proc.Suppl.) 38,47 (1995).
    [40] M. Altmann et al., Phys. Lett. B 616,174 (2005) hep-ex/0504037; P. Anselmann et al., Phys. Lett. 8 357,237 (1995) (see also: ibid. B 327,377 (1994)).
    [41] J. N. Abdurashitov et al., J. Exp. Theor. Phys. 95,181 (2002) astro-ph/0204245; V. Gavrin et al., Talk given at the Neutrino'96 Int. Conference, June 13-19,1996 Helsinki, Finland; J. N. Abdurashitov et al., Phys. Lett. B 328,234 (1994).
    [42] J. Hosaka et a!., hep-ex/0508053; M. B. Smy et al., Phys. Rev. D 69,011104 (2004), hep-ex/0309011; S. Fukuda et al., Phys. Lett. B 539,179 (2002), hep-ex/0205075.
    [43] Q. R. Ahmad et al., Phys. Rev. Lett. 87,071301 (2001), nucl-ex/0106015; Phys. Rev. Lett. 89, 011302 (2002), nucl-ex/0204009.
    [44] Q. R. Ahmad et al., Phys. Rev. Lett. 89,011301 (2002), nucl-ex/0204008.
    [45] S. N. Ahmed et al., Phys. Rev. Lett. 92, 181301 (2004), nucl-ex/0309004.
    [46] B. Aharmim et al. [SNO Collaboration], Phys. Rev. C 72,055502 (2005), nucl-ex/0502021.
    [47] A. Suzuki, talk at the XVIII International Conference on Neutrino Physics and Astrophysics, Takayama, Japan, (1998); K. Eguchi et al. [KamLAND Collaboration], Phys. Rev. Lett. 90, 021802 (2003); T. Araki et al. [KamLAND Collaboration], Phys. Rev. Lett. 94,081801 (2005).
    [48]G. J. Feldman and R. D. Cousins, Phys. Rev. D 57,3873 (1998) physics/9711021.
    [49] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Phys. Rev. D 66,053010 (2002) hep-ph/0206162.
    [50] M. V. Garzelli and C. Giunti, Astropart. Phys. 17,205 (2002) hep-ph/0007155;
    [51] M. V. Garzelli and C. Giunti, JHEP 0112,017 (2001) hep-ph/0108191.
    [52] M. V. Garzelli and C. Giunti, Phys. Rev. D 65,093005 (2002), hep-ph/0111254.
    [53] M. C. Gonzalez-Garcia and Y. Nir hep-ph/0202058.
    [54] G. L. Fogli and E. Lisi, Astropart. Phys. 3,185 (1995) with updated uncertainties as discussed in G. L. Fogli, E. Lisi, D. Montanino, and A. Palazzo, Phys. Rev. D 62, 013002 (2000).
    [55] J. N. Bahcall, M. C. Gonzalez-Garcia, and C. Pena-Garay, hep-ph/0204194.
    [56] G. L. Fogli, E. Lisi, D. Montanino, and A. Palazzo, Phys. Rev. D 62,013002 (2000).
    [57] J. N. Bahcall, Phys. Rev. C 56,3391 (1997).
    [58] A. M. Dziewonski and D. L. Anderson, Phys. Earth Planet. Interiors 25,297 (1981).
    [59] J. N. Bahcall, P. I. Krastev and E. Lisi, Phys. Rev. C 55,494 (1997) nucl-ex/9610010.
    [60] B. Faid, G. L. Fogli, E. Lisi and D. Montanino, Phys. Rev. D 55,1353 (1997) hep-ph/9608311.
    [61] J. N. Bahcall, M. Kamionkowski and A. Sirlin, Phys. Rev. D 51,6146 (1995) astro-ph/9502003.
    [62] C. E. Ortiz, A. Garcia, R. A. Waltz, M. Bhattacharya, and A. K. Komives, Phys. Rev. Lett. 85, 2909 (2000).
    [63] M. Smy, in Neutrino 2002
    [64] P. Vogel and J. Engel, Phys. Rev. D 39, 3378 (1989).
    [65] H. Murayama and A. Pierce, Phys. Rev. D 65,013012 (2002) hep-ph/0012075.
    [66] P. Vogel, Phys. Rev. D 29, 1918 (1984).
    [67] P. Vogel and J. F. Beacom, Phys. Rev. D 60,053003 (1999) hep-ph/9903554.
    [68] K. Hagiwara et al. [Particle Data Group Collaboration], Phys. Rev. D 66,010001 (2002).
    [69] F. James, in Advanced Statistical Techniques In Particle Physics, edited by M.R. Whalley and L. Lyons. Durham, UK, Inst. For Particle Physics Phenomenology, 2002, http://www.ippp.dur.ac.uk/Workshops/02/statistics/.
    [70] C. Giunti, in Advanced Statistical Techniques In Particle Physics, edited by M.R. Whalley and L. Lyons. Durham, UK, Inst. For Particle Physics Phenomenology, 2002, http://www.ippp.dur.ac.uk/Workshops/02/statistics/.
    [71] C. M. Bhat, P. C. Bhat, M. Paterno and H. B. Prosper, Phys. Rev. Lett. 81,5056 (1998) astro-ph/9804252; H. B. Prosper hep-ph/0006356, Yellow Report CERN 2000-005, pp. 29-47. Workshop on Confidence Limits, CERN, 17-18 January 2000.
    [72] P. Creminelli, G. Signorelli and A. Strumia, JHEP 0105,052 (2001), hep-ph/0102234.
    [73] H. Jeffreys, Theory of Probability, Oxford University Press, New York, USA, 1961. First published in 1939.
    [74] W.T. Eadie, D. Drijard, F.E. James, M. Roos and B. Sadoulet, Statistical Methods in Experimental Physics, North Holland, Amsterdam, 1971.
    [75] A. Stuart, J.K. Ord and S. Arnold, Kendall's Advanced Theory of Statistics, Vol. 2A, Classical Inference & the Linear Model, Sixth Edition, Halsted Press, 1999.
    [76] T. J. Loredo, in Maximum-Entropy and Bayesian Methods, Dartmouth, 1989, pp. 81-142, http://astrosun.tn.cornell.edu/staff/loredo/bayes/tjl.html.
    [77] T. J. Loredo, in Statistical Challenges in Modern Astronomy, Springer-Verlag, New York, 1992, pp. 275-297, http://astrosun.tn.cornell.edu/staff/loredo/bayes/tjl.html.
    [78] E. T. Jaynes, Probability Theory: The Logic of Science, Cambridge University Press, 2003.
    [79] G. D'Agostini, Bayesian Reasoning in Data Analysis, A Critical Introduction, World Scientific, 2003.
    [80] CHOOZ collaboration, M. Apollonio et al., Initial results from the CHOOZ long baseline reactor neutrino oscillation experiment, Phys. Lett. B 420,397 (1998) hep-ex/9711002; CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466,415 (1999) hep-ex/9907037; M. Apollonio et al., Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station, Eur. Phys. J. C 27,331 (2003) hep-ex/0301017.
    [81] M. Narayan, G. Rajasekaran and S. Uma Sankar, Three flavor implications of CHOOZ result, Phys. Rev. D 58, 031301 (1998) hep-ph/9712409.
    [82] W. Buchmulier and D. Wyler, CP-violation, neutrino mixing and the baryon asymmetry, Phys. Lett. B 521, 291 (2001) hep-ph/0108216.
    [83]C. Bemporad, Underground neutrino detectors in Proceedings of the 3rd International Work-shop on Neutrino Telescopes, Venice 1991.
    [84] P. Huber, M. Lindner and T. Schwetz, R2D2: a symmetric measurement of reactor neutrinos free of systematical errors, hep-ph/0411166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700