用户名: 密码: 验证码:
丹参SmGRP1基因克隆及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丹参(Salvia miltiorrhiza Bunge)为唇形科多年生草本药用植物,其主要药理活性成分为脂溶性二萜醌类和水溶性酚酸类化合物,具有活血化淤,凉血消肿,清心除烦,消炎、抗病毒、抗肿瘤、抗溃疡等多种重要的药理活性,被广泛应用于心脑血管、月经不调以及多种炎症等疾病的治疗。近年来,随着药材需求量的增加,丹参野生资源破坏日益严重。因此,利用现有研究平台,整合基因组学、转录组学以及代谢组学等方法,筛选丹参优良种质形成相关基因,探讨优异种质形成的分子机理具有重要的意义。本研究以丹参EST数据库中一高丰度表达的新基因为研究对象,对该基因的表达及调控特征进行研究,结合体外表达蛋白的活性分析以及该基因“knock in”和“knock down”突变体的生理变化等研究结果,阐明该基因的功能,为进一步开发利用这一新的基因资源奠定基础。具体研究内容如下:
     1.通过对丹参EST数据库的分析,发现一条由11个EST组成的unigene,利用blast x在NCBI的“nr”库中检索不到该基因的相似序列,推测其可能为一新基因。该基因包含一个全长456 bp的开放读码框,其编码的多肽序列中谷氨酸含量高达33.77%,因此将该基因命名为SmGRP1(Salvia miltiorrhiza Glutamic acid-Rich Protein 1)。
     2.利用PCR和RT-PCR法获得SmGRP1基因DNA和cDNA全长。通过cDNA及DNA序列的比对发现,该基因由两个外显子和一个内含子组成,全长837 bp。内含子序列长度为381 bp,位于Glu~5和Val~6之间。信息学分析显示该蛋白的分子量为15.801 kDa,理论等电点为3.79,不稳定常数为103.93,为不稳定的酸蛋白。该蛋白不含Trp,Tyr和Cys等芳香族氨基酸,不具有信号肽,没有膜锚定或跨膜结构域,总体表现为亲水性蛋白。α-螺旋为其主要的二级结构单元,很难形成复杂的高级结构。
     3.利用DNA Walking的方法克隆获得SmGRP1基因长为1,932 bp的5'侧翼序列,PLACE、PlantCARE等软件分析显示该区域含有大量与生物源或非生物源胁迫相关的顺式作用元件和激素应答元件,提示该基因的表达可能与激素及各种逆境胁迫相关。Real time quantitativeRT-PCR研究显示该基因在根、茎、叶中均有表达,但叶和茎中的表达丰度远高于根;外源ABA和NaCl处理以及暗培养、脱水和损伤胁迫等均可诱导SmGRP1基因的表达,其中,ABA和黑暗可使其表达丰度显著提高,低温处理则抑制该基因的表达。
     4.构建SmGRP1基因的原核表达载体,并对表达的蛋白进行纯化。Ca~(2+)结合蛋白的特异性染色剂Stains-all染色结果显示SmGRP1蛋白可能具有Ca~(2+)结合特性,而Ca~(2+)凝胶迁移电泳实验显示,这种结合可能不会造成蛋白空间构象的改变。
     5.SmGRP1基因启动子-报告基因融合载体转化丹参的结果显示,SmGRP1基因5'侧翼区具有启动子活性。启动子5'缺失实验证实报告基因的表达可以被ABA、黑暗、高温、NaCl以及低温等条件所影响,而且不同的5'缺失片段对报告基因表达影响的程度有所不同,实验结果显示,ABA响应的顺式作用元件主要分布在-1,851--760 bp区域,黑暗响应的元件主要分布在-759--252 bp的区域,高温响应元件主要分布在-251-+81 bp的区域,在-1,851--760 bp的区域存在低温响应的增强型元件,而在-759--252 bp的区域则存在低温响应的抑制性元件。NaCl响应元件则分散在-1,851--102 bp区域内。
     6.通过农杆菌介导的转基因方法获得丹参SmGRP1基因“knock in”和“knock down”突变体。结果显示,在正常培养条件下,“knock in”和“knock down”各株系与对照植株相比无明显的表型差异,但“knock in”株系的气孔开度变小。利用外源ABA、NO、H_2O_2和黑暗等能够诱导气孔关闭的因素处理“knock down”株系,植株气孔维持开放,表现为不关闭的状态。此外,当暴露于空气中时,“knock down”株系脱水速率明显比对照植株快,而“knock in”株系脱水速率则慢于对照株系。
     综上所述,SmGRP1基因在叶和茎中高丰度表达,而且其表达受外源ABA和NaCl,暗培养、脱水和伤害处理以及温度等因素的影响。通过对该基因“knock in”和“knock down”突变体株系进行分析,以及SmGRP1蛋白与Ca~(2+)的结合实验推测,丹参SmGRP1可能通过与Ca~(2+)的作用调节气孔运动,参与植株抵御外界不良环境的过程,具体的作用机制尚有待于进一步探讨。
Salvia miltiorrhiza Bge.is a well-known medicinal plant.Its root(called danshen or tanshen in Chinese but better known in the west as Chinese sage or red sage root) contains two major groups of identified biologically active compounds,the hydrophilic caffeic-acid-derived phenolic acids,and various lipophilic tanshinones belonging to the diterpene quinines,and has been formulated and used clinically for the treatment of various diseases such as cardiovascular and cerebrovascular disease. With continued pharmacologic studies on its secondary metabolites,more and more biological activities including antioxidant,anti-thrombosis,anti-hypertension,antivirus and antitumor have been reported.In recent years,the wild resources of S.miltiorrhiza are destroyed severely with the constantly rising demand for its pharmacologic properties.Therefore,screening genes related to the eminent characters of S.miltiorrhiza and discussing its molecular mechanism are of great significance.Here,a novel unigene with high abundance in the EST database of S.miltiorrhiza was found and its expression pattern was also studied.Furthermore,the function of this gene was elucidated via studying the physiological changes of its "knock in" and "knock down" mutants.This study will provide information for further investigating and utilizing this special gene.The main results were as follows:
     1.A unigene composed by 11 ESTs were found by screening the EST library of S.miltiorrhiza. It showed no significant similarities with the sequences in NCBI "nr" database by blast x analysis, which implied that this putative gene may be a novel gene.Very interestingly,this novel gene encoded a peptide,glutamic acid residue content of which was as high as 33.77%.Based on this,the new gene was designated as SmGRP1(Salvia miltiorrhiza Glutamic acid-Rich Protein 1).
     2.The entire DNA and cDNA sequence of SmGRP1 were cloned using PCR and RT-PCR methods.Comparation of these two sequences suggested that SmGRP1 consisted of two extrons and one intron of 381 bp whose position was between Glu~5 and Val~6.Bioinformatics analysis showed that the molecular weight of SmGRP1 was 15.801 kDa,the theoretical pI was 3.79 and the instability index is 103.93,which implied that SmGRP1 was an unstable acidic protein.Interestingly,there were no aromatic amino acids such as Trp,Tyr and Cys in the protein.Also no signal peptide and transmembrane domain existed in SmGRP1.Prediction by ProtScale showed that SmGRP1 was a hydrophilic protein.Besides,alpha helix was the main secondary structure unit of the protein.
     3.Totally,1,932 bp-long 5' flanking region of SmGRP1 gene was obtained by DNA walking. Plant growth regulators responsive elements and biotic or abiotic responsive elements were found in this region using PLACE and PlantCARE softwares.Real time quantitative RT-PCR technique was performed to characterize the expression patterns of the gene.It showed that SmGRP1 expressed in all examined tissues of S.miltiorrhiza but most highly in leaves and stems.The expression level of SmGRP1 was prominently enhanced under ABA and dark treatments.Also the expression level can be induced by high temperature,NaCl,and dehydration treatments,while low temperature suppressed its expression.
     4.A recombinant vector pQE30-SmGRP1 was constructed and transferred into E.coli M15 for protein expression and purification.Stains-all staining implied that the protein may be a Ca~(2+) binding protein,but this binding activity could not arouse the conformation change of SmGRP1 as revealed by Ca~(2+)-dependent mobility shift assay.
     5.According to cis-acting elements' localization predicted by bioinformatical tools,five 5' deleted promoter segments were obtained by PCR and cloned into pCAMBIA-1391z vector.All of the "Promoter-reporter" constructs were transformed into S.miltiorrhiza and a large number of positive transformants of each construct were obtained.Consistent with the result of real-time quantitative RT-PCR analysis,the reporter gene's expression could be induced by ABA,dark,high temperature,NaCl and low temperature treatments by GUS staining analysis.Moreover,the transformants of different 5'-deletion construct responsed differently under diverse treatments.This result implied that the ABA responsive elements were mainly located in -1,851- -760 bp,dark responsive elements mainly in -759- -252 bp region,high temperature responsive elements maily in -251- +81 bp region and NaCl responsive elements mainly in -1,851- -102 bp region.
     6.The "knock in" and "knock down" mutants of SmGRP1 were achieved by Agrobacterium tumefaciens-mediated gene transformation method.Results indicated that all the mutants showed no obvious phenotypic differences compared with the control plantlets,except that the stoma aperture of the "knock in" mutants were always smaller.While the epidermal strips of both mutants and control plantlets were treated by ABA,dark,NO and H_2O_2,the stoma of the "knock down" lines remained open.Besides,the water loss rate of "knock in" mutants was slower than control lines when exposed to air,while that of"knock down" mutants was much quicker.
     In conclusion,SmGRP1 expressed highly in leaves and stems of S.miltiorrhiza,and its expression can be induced by ABA,dark,dehydration,NaCl and some other stress conditions. SmGRP1 was presumed to involve in stomatal closure course as a Ca~(2+) binding protein and play important roles in plant stress resistance.
引文
[1]国家药典委员会.中华人民共和国药典,一部[M].北京:化学工业出版社,2005:73.
    [2]K.Hase,R.Kasimu,P.Basnet,et al.Preventive effect of lithospermate B from Salvia miltiorrhiza on experimental hepatitis induced by carbon tetrachloride or D-galactosamine/lipopolysaccharide.Planta Med,1997,63:22-26.
    [3]T.Tanaka,S.Morimoto,G.Nonaka,et al.Magnesium and ammonium-potassium lithospermates B,the active principles having a uremia-preventive effect from Salvia miltiorrhiza.Chem Pharm Bull,1989,37:340-344.
    [4]N.Arda,N.Goren,A.Kuru,et al.Saniculoside N from Sanicula europaea.J Nat Prod,1997,60:1170-1173.
    [5]张白嘉,刘榴.丹参水溶性成份药理研究进展[J].国外医学植物药分册,1993,8(6):248-251.
    [6]R.W.Jiang,K.M.Lau,P.M.Hon,er al.Chemistry and biological activities of Caffeic acid derivatives from Salvia miltiorrhiza.Current Medicinal Chemistry,2005,12:237-246.
    [7]杜冠华,张均田.丹酚酸A对小鼠脑缺血再灌注致学习记忆功能障碍的改善作用及作用机制[J].药学学报,1995,30(3):184.
    [8]邹正午,徐理钠,田金英.迷迭香酸抗血栓和抗血小板聚集作用[J].药学学报,1993,28(4):241.
    [9]X.Wang,S.L.Morris-Natschke,K.H.Lee.New developments in the chemistry and biology of the bioactive constituentes of Tanshen.Medicinal Research Reviews,2007,27(1):133-148.
    [10]林汉钦.从丹参分离出一种新丹参酮成分[J].中华药学杂志,1993,45(9):615-618.
    [11]J.S.Choi,H.S.Kang,H.A.Jung,et al.A new cyclic phenyllactamide from Salvia miltiorrhiza.Fitoterapia,2001,72(1):30-34.
    [12].Li H C,Chang W L.Diterpenoids from Salvia miltiorrhiza.Phytochemistry,2000,53(8):951-953.
    [13]郭济贤.丹参的研究与临床应用[M].北京:中国医药科技出版社,1992:29.
    [14]W.L.Wu,W.L.Chang,C.F.Chen.Cytotoxic activities of tanshinones against human carcinoma cell lines.Am J ChinMed,1991,19:207-216.
    [15] S. Y. Ryu, C. O. Lee, S. U. Choi. In vitro cytotoxicity of tanshinones from Salvia miltiorrhiza. Planta Med, 1997, 63: 339-342.
    
    [16] S.I. Jang, S.I. Jeong, K.J. Kim, et al. Tanshinone IIA from Salvia miltiorrhiza inhibits inducible nitric oxides ynthase expression and production of TNF-alpha,IL-1betaand IL-6 in activated RAW 264.7 cells. Planta Med, 2003, 69: 1057-1059.
    
    [17] J. Liu, H. M. Shen, C.N. Ong. Salvia miltiorrhiza inhibits cell growth and induces apoptosis in human hepatoma HepG2 cells. Cancer Lett, 2000, 153: 85-93.
    
    [18] X. Ouyang, K. Takahashi, K. Komatsu, er al. Protective effect of Salvia miltiorrhiza on angiotensin Il-induced hypertrophic responses in neonatal rat cardiac cells. Jpn J Pharmacol. 2001, 87: 289-296.
    
    [19] G. T. Liu, T. M. Zhang, B. E. Wang, et al. Protective action of seven natural phenolic compounds against peroxidative damage to biomenbranes. Biochem Pharmacol, 1992,43 (2): 147-152.
    
    [20] Y. S. Huang, J. T. Zhang. Antioxidative effect of three water-soluble compenents isolated from Salvia miltiorrhiza. Yao Xue Xue Bao, 1992, 27 (2): 96-100.
    
    [21] D. Y. Li, Li N. Xu, X. G. Liu. Effects of water-soluble components isolated from Salvia miltiorrhiza on oxygen free radical generation and lipid peroxidation. J Chin Pharm Sci, 1995,4 (2): 107-112.
    
    [22] Y. Liu, J. T. Zhang. Hydroxyl radical scavenging effect of Salvianolic acids. J Chin Pharm Sci, 1994, 3 (1): 43-50.
    
    [23] Y. L. Lin, Y. Y. Chang, Y. H. Kuo, et al. Anti-lipid-peroxidative principles from Tournefortia sarmentosa. J Nat Prod, 2002, 65 (50): 745-747.
    
    [24] Z.W. Zou, L. N. Liu, J. Y. Tian. Antithrombotic and antiplatelet effects of rosmarinic acid-solubale component isolated from Radix Salvia miltiorrhiza (Danshen).Acta Pharm Sin, 1993, 28: 241-245.
    
    [25] A. Mazumder, N. Neamati, S. Sunder, et al. Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action.J Med Chem, 1997, 40 (19): 3057-3063.
    
    [26] C. W. Hooker, W. B. Lott, D. Harrich. Inhibitors of human immunodeficiency virus type 1 reverse transcriptase target distinct phases of early reverse transcription. J Virol,2001, 75(7): 3095-3104.
    
    [27] H. Kohda, O Takeda, S. Tanaka, et al. Isolation of inhibitors of adenylate cyclase from dan-shen, the root of Salvia miltiorrhiza. Chem Pharm Bull (Tokyo), 1989, 37 (5): 1287-1290.
    
    [28] M. Nagai, M. Noguchi, T Iizuka, et al. Vasodilator effects of des (alpha-carboxy-3,4-dehydroxyphenethyl) lithospermic acid (8-epiblechnic acid), a derivative of lithospermic acids in Salviae miltiorrhizae radix. Biol Pharm Bull, 1996, 19 (2):228-232.
    
    [29] J. Y. Chang, C. Y. Chang, C. C. Kuo, et al. Salvinal, a novel microtubule inhibitor isolated from Salviae miltiorrhiza Bunge (Danshen), with antimitotic activity in multidrug-sensitive and-resistant human tumor cells. Mol Pharmacol, 2004, 65: 77-84.
    
    [30] R. Kasimu, K. Tanaka, Y. Tezuka, et al. Comparative study of seventeen Salvia plants: Aldose reductase inhibitory activity of water and MeOH extracts and liquid chromatography-massspectrometry (LC-MS) analysis of water extracts. Chem Pharm Bull, 1998,46:500-504.
    
    [31] Y. L. Liu, G. T. Liu. Inhibition of human low-density lipoprotein oxidation by Salvianolic acid-A. Acta Pharm Sin, 2002, 37: 81-85.
    
    [32] G. H. Du, J. T. Zhang. Protective effects of Salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice. Acta Pharm Sin, 1995, 30:184-190.
    
    [33] G. H. Du, Y. Qiu, J. T. Zhang. Protective effect of Salvianolic acid A on ischemia-reperfusion induced injury in isolated rat heart. Acta Pharm Sin, 1995, 30 (10):731-735.
    
    [34] Y. Y. Hu, P. Liu, L. M. Xu, et al. Actions of Salvianolic acid A on CC14-poisoned liver injury and fibrosis in rats. Acta Pharm Sin, 1997, 18 (5): 478-480.
    
    [35] C. H. Liu, Y. Y. Hu, X. L. Wang, et al. Effects of Salvianolic acid A on NIH/3T3 fibroblast proliferation, collagen synthesis and gene expression. World J Gastroenterol,2000, 6 (3): 361-364.
    
    [36] C. H. Liu, P. Liu, Y. Y. Hu, et al. Effects of salvianolic acid-A on rat hepatic stellate cell proliferation and collagen production in culture. Acta Pharm Sin, 2000, 21 (8):721-726.
    
    [37] Y. Y Hu, C. H. Liu, R. P. Wang, et al. Protective actions of salvianolic acid A on hepatocyte injured by peroxidation in vitro. World J Gastroenterol, 2000, 6 (3):402-404.
    
    [38] T. J. Lin, G. T. Liu, Y. Liu, et al. Protection by salvianolic acid A against adriamycin toxicity on rat heart mitochondria. Free Radic Biol Med, 1992, 12 (5): 347-351.
    [39] S. Murakami, H. Kijima, Y. Isobe, et al. Effect of salvianolic acid A, a depside from roots of Salvia miltiorrhiza, on gastric H+, K(+)-ATPase. Planta Med, 1990, 56 (4):360-363.
    
    [40] Y.Tomita, Y.Ikeshiro, H.Ushijima, et al. Jpn. Kokai Tokkyo Koho, Japan. Patent,02131423,1990.
    
    [41] R. Kasimu, K Tanaka, Y. Tezuka, et al. Comparative study of seventeen Salvia plants: aldose reductase inhibitory activity of water and MeOH extracts and liquid chromatography-mass spectrometry (LC-MS) analysis of water extracts. Chem Pharm Bull (Tokyo), 1998,46 (3): 500-504.
    
    [42] C. Y. Wang, F. L. Ma, J. T. Liu, et al. Protective effect of salvianolic acid a on acute liver injury induced by carbon tetrachloride in rats. Bio Pharm Bull, 2007, 30 (1):44-47.
    
    [43] I. S. Abd-Elazem, H. S. Chen, R. B. Bates, et al. Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) intefrase from Salvia miltiorrhiza. Antiviral Res, 2002, 55 (1): 91-106.
    
    [44] G. H. Du, Y. Qiu, J. T. Zhang. Salvianolic acid B protects the memory functions against transient cerebral ischemia in mice. J Asian Nat Prod Res, 2000, 2 (2):145-152.
    
    [45] K. P. Kang, L. H. Zeng, J. Wu, et al. Demonstration of the myocardial salvage effect of lithospermic acid B isolated from the aqueous extract of Salvia miltiorrhiza.Life Sci, 1993, 52 (22): PL239-244.
    
    [46] K. P. Kang, J. Wu, L. H. Zeng, et al. Lithospermic acid B as an antioxidant-based protector of cultured ventricular myocytes and aortic endothelial cells of rabbits. Life Sci, 1993, 52(12):PL189-193.
    
    [47] K. Kamata, M. Noguchi, Nagai M. Hypotensive effects of lithospermic acid Bisolated from the extract of Salviae miltiorrhizae Radix in the rat. Gen Pharmacol,1994, 25(1): 69-73.
    
    [48] P. Liu, Y. Y. Hu, C. Liu, et al. Clinical observation of salvianolic acid B in treatment of liver fibrosis in chronic hepatitis B. World J Gastroenterol, 2002, 8(4):679-685.
    
    [49] M. K. Tang, J. T. Zhang. Salvianolic acid B inhibits fibril formation and neurotoxicity of amyloid beta-protein in vitro. Acta Pharmacol Sin, 2001, 22 (4):380-384.
    [50] C. L.Liu, L. X. Xie, M. Li, et al. Salvianolic acid B inhibits hydrogen peroxide-induced endothelial cell apoptosis through regulating PI3K/Akt signaling.PLoS ONE.2007,2(12):e1321.
    
    [51] S. S. Durairajan, Q. Yuan, L. Xie, et al. Salvianolic acid B inhibits Abeta fibril formation and disaggregates performed fibrils and protects against Abeta-induced cytotoxicty. Neurochem Int, 2008, 52 (4-5): 741-750.
    
    [52] C. S. Liu, N. H. Chen, J. T. Zhang. Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae. Phytomedicine, 2007, 14 (7-8): 492-497.
    
    [53] C. C. Chen, H. T. Chen, Y. P. Chen, et al. Isolation of the components of Salviae miltiorrhizae radix and their coronary dilator activities. Taiwan Yaoxue Zazhi, 1986, 38:226-230.
    
    [54] A. Yagi, N. Okamura, K. Tanonaka, et al. Effects of tanshinone VI derivatives on post-hypoxic contractile dysfunction of perfused rat hearts. Planta Med, 1994, 60:405-409.
    
    [55] B. Y. Kang, S. W. Chung, S. H. Kim, et al. Inhibition of interleukin-12 and interferon-g production in immune cells by tanshinones from Salvia miltiorrhiza.Immuno pharmacology, 2000, 49: 355-361.
    
    [56] S. Y. Ryu, M. H. Oak, K. M. Kim. Inhibition of mast cell degranulation by tanshinones from the roots of Salvia miltiorrhiza. Planta Med, 1999, 65: 654-655.
    
    [57] H. S. Choi, K. M. Kim. Tanshinones inhibit mast cell degranulation by interfering with IgE receptor-mediated tyrosine phosphorylation of PLCg2 and MAPK. Planta Med,2004,70: 178-180.
    
    [58] C. M. Houlihan, C. T. Ho, S. S. Chang. The structure of rosmariquinone—A new antioxidant isolated from Rosmarinus oficinalis L. J Am Oil Chem Soc, 1985, 62:96-98.
    
    [59] J. Y. Kim, K. M. Kim, J. X. Nan, et al. Induction of apoptosis by tanshinone I via cytochrome c release inactivated hepatic stellate cells. Pharmacol Toxicol, 2003, 92:195-200.
    
    [60] G. Honda, Y. Koezuka, M. Tabata. Isolation of an antidermatophytic substance from the root of Salvia miltiorrhiza. ChemPharm Bull, 1988, 36: 408-411.
    
    [61] D. H. Kim, S. J. Jeon, J. W. Jung, et al. Tanshinone congeners improve memory impairments induced by scopolamine on passive avoidance tasks in mice. Eur J Pharmacol, 2007, 574 (2-3): 140-147.
    
    [62] X. L. Niu, K. Ichimori, X. Yang, et al. Tanshinone II-A inhibits low-density lipoprotein oxidation in vitro. Free Radic Res, 2000, 33: 305-312.
    
    [63] Y. Liu, X. Wang, Y. Liu. Protective effects of tanshinone IIA on injured primary cultured rat hepatocytes induced by CC14. Zhong Yao Cai, 2003,26: 415-417.
    
    [64] S. L. Yuan, X. J. Wang, Y. Q. Wei. Anticancer effect of tanshinone and its mechanisms. Chin J Cancer, 2003, 22: 1363-1366.
    
    [65] H. J. Sung, S. M. Choi, Y. Yoon, et al. Tanshinone IIA, an ingredient of Salvia miltiorrhiza Bunge, induces apoptosis in human leukemia cell lines through the activation of caspase-3. Exp Mol Med, 1999, 31: 174-178.
    
    [66] Y. Yoon, Y. O. Kim, W. K. Jeon, et al. Tanshinone IIA isolated from Salvia miltiorrhiza Bunge induced apoptosis in HL60 human premyelocytic leukemia cell line.J Ethnopharmacol, 1999, 68: 121-127.
    
    [67] Anon. Inhibition of proliferation of cultured human smooth muscle cells by tanshinone IIA. Huaxi Yaoxue Zazhi, 1999, 14: 1-3.
    
    [68] H. H. Kim, J. H. Kim, H. B. Kwak, et al. Inhibition of osteoclast differentiation and bone resorption by tanshinone IIA isolated from Salvia miltiorrhiza Bunge. Biochem Pharmacol, 2004, 67: 1647-1656.
    
    [69] U. H. Jin, S. J. Suh, H. W. Chang, et al. Tanshinone IIA from Salvia miltiorrhiza BUNGE inhibites human aortic smooth muscle cell migration and MMP-9 activity through AKT signaling pathway. J Cell Biochem, 2007, Nov 2, DOI: 10.1002/jcb.21599,E public ahead of print.
    
    [70] X. Y. Yu, S. G. Lin, Z. W. Zhou, et al. Tanshinone IIB, a primary active constituent from Salvia miltiorrhiza, exhibite neuro-protective activity in experimentally stroked rats. Neurosci Lett, 2007, 417 (3): 261-265.
    
    [71] W. L. Chang, W. L. Wu, Y. C. Chen, et al. Biological activity of tanshinones. Zhonghua Yaoxue Zazhi, 1990, 42: 183-185.
    
    [72] K. Q. Zhang, Y. Bao, P. Wu, et al. Antioxidative components of tanshen (Salvia miltiorhiza Bung). J Agric Food Chem, 1990, 38: 1194-1197.
    
    [73] X. C. Weng, M. H. Gordon. Antioxidant activity of quinones extracted from tanshen (Salvia miltiorrhiza Bunge). J Agric Food Chem, 1992, 40: 1331-1336.
    
    [74] D. S. Lee, S. H. Lee, J. G. Noh, et al. Antibacterial activities of cryptotanshinone and dihydrotanshinone I from amedicinal herb, Salvia miltiorrhiza Bunge. Biosci Biotechnol Biochem,1999,63:2236-2239.
    [75]Y.Ren,P.J.Houghton,R.C.Hider,et al.Novel diterpenoid acetylcholinesterase inhibitors from Salvia miltiorhiza.Planta Med,2004,70:201-204.
    [76]W.F.Chiou,M.J.Don.Crytotashinone inhibits macrophage migration by impeding F-actin polymerization and filopodia extension.Life Sci,2007,81(2):109-114.
    [77]X.Y.Yu,S.G.Lin,X.Chen,et al.Transport of cryptotanshinone,a major active triterpenoid in Salvia miltiorrhiza Bunge widely used in the treatment of stroke and Alzheimer's disease,across the blood-brain barrier.Curr Drug Metab,2007,8(4):365-378.
    [78]W.Bian,F.Chen,L.Bai,et al.Dihydrotanshinone I inhibits angiogenesis both in vitro and in vivo.Acta Biochim Biophys Sin,40(1):1-6.
    [79]M.A.Mosaddik.In vitro cytotoxicity of tanshinones isolated from Salvia miltiorrhiza Bunge against P388 lymphocytic leukemia cells.Phytomedicine,2003,10:682-685.
    [80]M.H.Wu,W.J.Tsai,M.J.Don,et al.Tanshinlactone A from Salvia miltiorrhiza modulates interleukin-2 and interferon-gamma gene expression.J Ethnopharmacol,2007,113(2):210-217.
    [81]S.Takeo,K.Tanonaka,K.Hirai,et al.Beneficial effect of Tan-Shen,an extract from the root of Salvia,onpost-hypoxic recovery of cardiac contractile force.Biochem Pharmacol,1990,40:1137-1143.
    [82]陈震.丹参生长与隐丹参酮含量的关系.中药通报,1983,8(1):2.
    [83]黄链栋,胡之壁,刘涤.丹参发状根再生植株的研究.上海中医药杂志,1996,10:40.
    [84]B.Deus-Neumann,M.H.Zenk.Instability of indole alkloid production in Catharanthus roseus cell suspension cultures.Planta Med,1984,50:427-431.
    [85]J.M.Sharp,P.M.Doran.Characteristics of growth and tropane alkaloid synthesis in Atropa belladonna roots transformed by Agrobacterium rhizogenes.J Biotechnol,1990,16:171-186.
    [86]E.L.H.Aird,J.D.Hamill,M.J.C Rhodes.Cytogenetic analysis of hairy root cultures from a number of plant species transformed by Agrobacterium rhizogenes.Plant Cell Tiss Organ Cul,1988,15:47-57.
    [87]张荫麟,宋经元,吕桂兰等.丹参毛状根培养的建立和丹参酮的产生.中国中 药杂志,1995,20(5):259-261.
    [88]宋经元,张荫麟,祁建军等.丹参冠瘿组织丹参高产株系选择和丹参酮的产生.生物工程学报,1997,13(3):317-319.
    [89]宋经元,祁建军,任春玲等.丹参冠瘿组织的生长和总丹参酮的积累动态.药学学报,2000,35(12):929-931.
    [90]J.Y.Wu,M.Shi.Ultrahigh diterpenoid tanshinone production through repeated osmotic stress and elicitor stimulation in fed-batch culture of Salvia miltiorrhiza hairy roots.Appl Microbial Biotechnol,2008,78(3):441-448.
    [91]J.Y.Wu,J.Ng,M.Shi,et al.Enhanced secondary metabolite(tanshinone)production of Salvia miltiorrhiza hairy roots in a novel root-bacteria coculture process.Appl Microbial Biotechnol,2007,77(3):543-550.
    [92]X.Y.Wang,G.H.Cui,L.Q.Huang,et al.Effects of methyl jasmonat on accumulation and release of tanshinones in suspension cultures of Salvia miltiorrhiza hairy root.Zhongguo Zhong Yao Za Zhi,2007,32(4):300-302.
    [93]Y.P.Yan,Z.Z.Wang.Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium turnefaciens-mediated method.Plant Cell Tiss Cult,2007,88:175-184.
    [94]闫亚平.基于EST技术的丹参大规模基因克隆及其外源基因转化技术研究[D].西安:陕西师范大学,2005.
    [95]宋婕.丹参苯丙氨酸解氨酶基因(SmPAL1)的克隆及其功能初探[D].西安:陕西师范大学,2007.
    [96]韩立敏.丹参APX和GPX基因克隆及其表达分析[D].西安:陕西师范大学,2007.
    [97]崔光红.丹参道地药材cDNA芯片构建及毛状根基因表达谱研究[D].北京:中国中医科学院,2006.
    [98]王学勇.丹参毛状根基因诱导表达分析及其有效成分生物合成基因的克隆研究[D].北京:中国中医科学院,2007.
    [99]易博.丹参迷迭香酸代谢酪氨酸支路重要基因克隆及调控分析[D].上海:第二军医大学,2007.
    [100]M.D.Adams,J.M.Kelley,J.D.Gocayne,et al.Complementary DNA Sequencing:Expressed Sequence Tags and Human Genome Project.Science,1991,252:1651-1656.
    [101]J.A.White,J.Todd,T.Newman,et al.A new set of Arabidopsis expressed sequence tags from developing seeds.The Metabolic Pathway from Carbohydrates to Seed Oil.Plant Physiology,2000,124:1582-1594.
    [102]M.D.Adams,M.Dubnick,A.R.Kerlavage,et al.Sequencing identification of 2375 human brain genes.Nature,1992,355(13):632-634.
    [103]D.Bouchez,H.Hofte.Functional genomics in plants.Plant Physiology,1998,118:725-732.
    [104]R.M.Ewing,A.B.Kahla,O.Poirot,et al.Large-scale statistical analysis of rice ESTs reveal correlated patterns of gene expression.Genome Research,1999,9:950-959.
    [105]M.S.Boguski,T.M.Lowe,C.M.Tolstochev.dbEST:database for Expressed Sequence Tags.Nature Genetics,1993,4:332-333.
    [106]Venter.Microbial Genomics:in the Beging.ASM News,1991,5:327-332.
    [107]F.Costanzo.Cloning of several cDNA segments coding rot human liver proteins.EMBO J,1983,2:57-60.
    [108]A.S.Wilcox,A.S.Khan,J.A.Hopkins,et al.Use of 3' untranslated sequences of human cDNAs for rapid chromosome assignment and conversion to STSs:implicartion for an expression map of the genome.Nuleic Acids Research,1991,19:1837-1843.
    [109]K.Okubo,N.Hori,R.Matoba,et al.Large-scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression.Nature Genetics,1992,2:173-179.
    [110]S.Rounsley,K.K.Linx.Large scale sequencing of plant genome.Curr Opin Plant Biol,1998,1(2):136-141.
    [111]李永青,曾伟奇,朱传炳等.人类新基因ZNF322的初步研究[J].生命科学研究,2001,5(2):141-145.
    [112]李刚,胡迎春,张开泰等.“电子”cDNA文库筛选指导基因的全长cDNA克隆[J].生物技术通讯,2000,11(1):1-4.
    [113]N.D.Borgen,W.L.Sato,L.R.Drewes.A lock-clocking oligo(dT) primer for 5'and 3' RACE PCR.PCR Methods Applic,1992,2:144-148.
    [114]邢桂春,张成岗,魏汉东等.采用RACE技术获得全长人新基因MAGE-D1[J].中国生物化学与分子生物学报,2001,17(2):203-208.
    [115]罗瑛,隋建丽,铁轶等.生物信息学辅助定位及延伸辐射诱导未知表达序列标签[J].生物化学与生物物理进展,2001,28(2):188-191.
    [116]韩为东,于力,楼方定等.一个新的白血病相关基因LRD16全长cDNA克隆序列分析及表达特征[J].中国生物化学与分子生物学报,2001,17(2):209-214.
    [117]J.QIAN,X.H.ZHANG,J.B.Yang,et al.Cloning and expression analysis of a novel gene UBAP1,possibly involved in ubiquitin pathway[J].Acta Biochim Biophys Sinica,2001,33(2):147-152.
    [118]C.Hoog.Isolation of a large number of novel mammalian genes by a differential eDNA library screening strategy.Nucleic Acids Research,1991,19(22):6123-61127.
    [119]M.Delseny,K.Coole,M.Raynaol,et al.The Arabidopsis thaliana cDNA sequencing project.FEBS Letter,1997,403(3):221-224.
    [120]K.Yammanoto,T.Sasaki.Large-scale EST sequencing in rice.Plant Molecular Biology,1997,5(1):135-144.
    [121]S.Hisada,T.Akihama,T.Endo,et al.Expressed sequence tags of Citrus fruit during rapid cell development phase.J Amer Soc Hort Sci,1997,122(6):808-812.
    [122]S.Hisada,T.Moriguchi,T.Hidaka,et al.Random sequencing of Sweet Orange (Citrus sinensis Osheck) cDNA library derived from young seeds.J Japan Hort Sci,1996,65(3):487-495.
    [123]J.Y.Liu,C.Hara,M.Umeda,et al.Analysis of randomly isolated cDNAs from developing edosperm of rice(Oryza sativeo):evalution of expressed sequence tags and expression levels of mRNAs.Plant Molecular Biology,1995,29(4):685-689.
    [124]P.Epple,K.Apel,H.Bohlmann.ESTs reveal multigene family for plant defensins in Arabidophsis thaliana.FEBS Letters,1997,400(2):168-192.
    [125]F.Sterky,S.Regan,J.Karlsson,et al.Gene discovery in the wood forming tissue of poplar:Analysis of 5692 expressed sequence tags.Proc Natl Acad Sci USA,1998,95(22):13330-13335.
    [126]I.Allona,M.Quinn,E.Shoop,et al.Analysis of xylem formation in pine by cDNA sequencing.Proc Natl Acad Sci USA,1998,95(16):9689-9693.
    [127]潘巍,席全胜,夏双络等.肝瘤中高表达基因fupl的克隆及其功能[J].生物化学与生物物理学报,2001,33(2):177-178.
    [128]M.D.Adams,S.E.Celniker,R.A.Holt,et al.The Genome sequence of Drosophila melancyaster.Science,2000,287:2185-2195.
    [129]S.V.Wesley,C.Helliwell,N.A.Smith,et al.Constructs for Efficient,Effective and High Throughput Gene Silencing in Plants.The Plant Journal,2001,27:581-590.
    [130] C. Helliwell, S. V. Wesley, A. J. Wielopolska, et al. High throughput vectors for efficient gene silencing in plants. Functional Plant Biology, 2002, 29: 1217-122.
    
    [131] C. Helliwell, P. Waterhouse. Constructs and methods for high-throughput gene silencing in plants. Methods, 2003, 30: 289-295.
    
    [132] P. M. Waterhouse, C. A. Helliwell. Exploring plant genomes by RNA-induced gene silencing. Nature Reviews: Genetics, 2003, 4: 29-38.
    
    [133] D. S. Zarlenga, P. Boyd, J. R. Lichtenfels, et al. Identification and characterisation of a cDNA sequence encoding a glutamic acid-rich protein specifically transcribed in Trichinella spiralis newborn larvae and recognised by infected swine serum.International Journal for Parasitology, 2002, 32 (11): 1361-1370.
    
    [134] A. Sautter, M. Biel, F. Hofmann. Molecular cloning of cyclic nucleotide-gated cation channel subunits from rat pineal gland. Molecular Brain Research, 1997, 48 (1):171-175.
    
    [135] T. Isobe, N. Ishioka, T. Kadoya, et al. Isolation of micro glutamic acid-rich protein from bovine brain. Biochemical and Biophysical Research Communications, 1982, 105(3): 997-1004.
    
    [136] J. Q. Liu, U. Seul, R. Thompson. Cloning and characterization of a pollen-specific cDNA encoding a glutamic-acid-rich protein (GARP) from potato Solarium berthaultii.Plant Molecular Biology, 1997, 33: 291-300.
    
    [137] S. Romo, B. Dopico, E. Labrador. The expression of a new Cicer arietinum cDNA, encoding a glutamic acid-rich protein, is related to development. J Plant Physiol,2002, 159: 1375-1381.
    
    [138] J. Hernandez-Nistal, E. Labrador, I. Martin, et al. Transcriptional profiling of cell wall protein genes in chichpea embryonic axes during germination and growth. Plant physiology and Biochemistry, 2006,44: 686-692.
    
    [139] K. Yuasa, M. Maeshima. Purification, properties, and molecular cloning of a novel Ca-binding protein in radish vacuoles. Plant Physiol, 2000, 124: 1069-1078.
    
    [140] Y. Ide, R. Tomioka, Y. Ouchi, et al. Transcriptional induction of two genes for CcaPs, Novel cytosolic proteins, in Arabidopsis thaliana in the dark. Plant Cell Physiol,2007, 48 (1): 54-65.
    
    [141] X. Huang, A. Madan. CAP3: A DNA Sequence Assembly Program. Genome Research, 1999, 9: 868-877.
    
    [142] J. J. Doyle, J. L. Doyle. A rapid DNA isolation procedure from small quantities of fresh leaf tissue.Phytochem Bull,1987,19:11-15.
    [143]闫亚平,刘世海,王喆之.一种丹参高质量总RNA的提取方法[J].西北植物学报,2004,10:1936-1939.
    [144]A.D.Baxevanis,B.F.F.Ouellette(著),李衍达,孙之荣等(译).生物信息学[M].北京:清华大学出版社,2000:231-250.
    [145]D.W.Mount(著),钟扬,王莉,张亮(主译).生物信息学[M].北京:高等教育出版社,2003:301-345.
    [146]M.G.Reese.Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome.Comput Chem,26(1):51-56.
    [147]K.Higo,Y.Ugawa,M.Iwamoto,T.Korenaga.Plant cis-acting regulatory DNA elements(PLACE) database:1999.Nucleic Acids Research,27(1):297-300.
    [148]M.Lescot,P.Dehais,G.Rhijs,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences.Nucleic Acids Research,2002,30(1):325-327.
    [149]L.I.Brodsky,V.V.Ivanov,Ya.L.Kalai dzidis,et al.GeneBee-NET:Internet-based server for analyzing biopolymers structure.Biochemistry,60(8):923-928.
    [150]J.Kyte,F.Doolittle r.A simple method for displaying the hydropathic character of a protein.J.Mol.Biol,1982,157(6):105-132.
    [151]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000114:323-328.
    [152]H.Nielsen,J.Engelbrecht,S.Brunak,et al.Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.Protein Engineering,1997,10(1):1-6.
    [153]J.D.Bendtsen,H.Nielsen,G.V.Heijne,et al.Prediction of signal peptides:SignalP 3.0.J.Mol.Biol.2004,340:783-795.
    [154]王镜岩,朱圣庚,徐长法(主编).生物化学(上册)(第三版)[M].北京:高等教育出版社,2002:157-181.
    [155]C.Geourjon,G.Deleage.SOPMA:Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments.Comput Appl Biosci,1995,11(6):681-684.
    [156]J.H.Yoo,C.Y.Park,J.C.Kim,et al.Direct interaction of a divergent CaM isoform and the transcription factor,MYB2,enhances salt tolerance in Arabidopsis.The Journal of Biological Chemistry,2005,280(5):3697-3706.
    [157]M.R.McAinsh,H.Clayton,T.A.Mansfield,et al.Changes in stomatal behaviour and guard cell cytosolic free calcium in response to oxidative stress.Plant Physiol,1996,111:1031-1042.
    [158]孙大业,郭艳林,马力耕.细胞信号转导[M].北京:科学出版社,1998.
    [159]D.Sanders,J.Pelloux,C.Brownlee,et al.Calcium at the crossroads of signaling.Plant Cell,2002,14(suppl.1):S401-S417.
    [160]D.Sanders,C.Brownlee,J.Harper.Communicating with calcium.Plant Cell,1999,11:691-706.
    [161]T.Yang,B.W.Poovaiah.Calcium/calmodulin-mediated signal network in plant.TRENDS in Plant Science,2003,8:505-512.
    [162]P.J.White,M.Broadley.Calcium in plants.Annals of Botany.2003,92:487-511.
    [163]J.Liu,J.K.Zhu.An arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance.Proc Natl Acad Sci USA,1997,94:14960-14964.
    [164]J.Liu,J.K.Zhu.A calcium sensor homolog required for plant salt tolerance.Science,1998,280:1943-1945.
    [165]S.H.Chen,M.R.Willmann,H.C.Chen,et al.Calcium signaling through protein kinases.The Arabisopsis calcium-dependent peotein kinase gene family.Plant Pysiology,2002,129:469-485.
    [166]X.Wang.Plant phospholipases.Annual Review of Plant Phsiology and Plant Molecualr Biology,2001,52:211-231.
    [167]S.M.Ritchie,S.J.Swanson,S.Gilroy.From common signalling components to cell specific responces:insights from the cereal aleurone.Physiologia Plantarum,2002,115:342-351.
    [168]P.J.White,H.C.Bowen,V.Demidchik,et al.Genes for calcium-permeable channels in the plasma membrane of plant root cells.Biochimica et Biophysica Acta,2002,1564:299-309.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700