用户名: 密码: 验证码:
纤维素的改性及其用于生物大分子分离的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳是一种分析DNA和蛋白质等带电生物大分子最有效、最广泛的技术之一。与传统凝胶电泳相比,它具有高效、微量、高灵敏度及易于自动化的特征。毛细管电泳的核心部件是毛细管电泳柱,虽然用未经处理的石英毛细管电泳柱可以进行多种样品的分离,但是要有效地分离生物大分子,如蛋白质和DNA,只用未经处理的毛细管电泳柱就难以奏效了,解决问题的有效办法之一就是对毛细管电泳柱进行涂覆。对毛细管进行涂覆的主要目的有:减少被分析物质与毛细管内壁的相互作用;改变电渗流的影响;提高分析的重现性;满足一些特殊要求物质的分离。围绕这些内容,本文着重开展了以下几个方面的工作。
     1.羟乙基纤维素/聚丙烯酰胺共混物在DNA测序中的研究
     使羟乙基纤维素(HEC)与线形聚丙烯酰胺(LPA)共混物构成聚合物网络,并将其用于DNA的测序,这种聚合物网络同时具有LPA对DNA优良的筛分性能和HEC对毛细管内壁动态涂覆的能力。用2.5%w/v的这种介质在没有对软件系统优化的情况下,73 min内对标准DNA的读写长度可达900个碱基。
     2.羟乙基纤维素接枝改性聚合物在毛细管电泳分离双链DNA中的研究
     用于双链DNA(dsDNA)分析的理想的毛细管涂层必须具备以下特点:高的分离效能,动态涂覆功能,较低的粘度。在本文中,我们采用原子转移自由基活性聚合方法(ATRP),合成了羟乙基纤维素接枝聚丙烯酰胺的共聚物(HEC-g-PAM)。因为作为主链的HEC具有很好的动态涂覆功能,而PAM具有良好的分离功能。通过与未涂覆的毛细管以及用HEC涂覆的毛细管的比较,证明HEC-g-PAM是一种性能优良的涂层。
     3.阳离子羟乙基纤维素在毛细管电泳蛋白质分离中的应用
     蛋白质也是一类非常重要的生物大分子。实际上,用未涂覆毛细管电泳对蛋白质进行分离很难达到好的效果。这是因为蛋白质和毛细管壁之间存在着各种不同的反应,包括:氢键结合,静电作用,憎水作用等。为了消除这些反应的影响以及达到对电渗流进行控制的目的,就必须对毛细管进行涂覆。目前,已经有多种聚合物用于这种目的,阳离子聚合物就是其中重要的一种。本文合成了阳离子羟乙基纤维素(cat-HEC),然后利用这种聚合物涂覆的毛细管柱对蛋白质进行了分离,并与其他涂层的性能进行了比较。结果表明cat-HEC能够有效地减少碱性蛋白质在毛细管内的吸附。用该种毛细管分离蛋白质,具有分离效率高(N>200,000 plate/m),重复性好(RSD<1.O%),涂层使用时间长等优点。
     4.羟乙基纤维素接枝改性聚合物在毛细管电泳分离蛋白质中的应用
     采用了传统的Ce~(4+)自由基引发聚合合成了HEC-g-P4VP聚合物,将这种纤维素接枝改性聚合物涂覆在毛细管内壁,研究了它在不同pH条件下对电渗流的影响。然后利用这种聚合物涂覆的毛细管柱进行碱性、中性、酸性蛋白质的分离。结果表明HEC-g-P4VP能够在毛细管内壁形成稳定的涂层,能有效地减少蛋白质在毛细管内的吸附。
Capillary electrophoresis (CE) has been proven to be a powerful method for DNA and protein analysis. It offers great advantages over conventional slab gel electrophoresis in terms of higher resolution, shorter analysis time, minimal sample requirement, negligible waste of toxic chemicals, high detection sensitivity, and ease of automation. Like the other chromatography technique, the capillary electrophoresis column is the most important component. Although some biomacromolecules can be analyzed in the bare fused-silica capillaries, the separation medium has played an important role in high performance CE for DNA and protein separations. There are many reasons for modification of the capillary wall in electrophoresis. Goals may include reduction or elimination of analyte-wall interactions, alteration of electroosmotic flow (EOF) for rapid separation, improved reproducibility, and better resolution of particularly difficult separation problems. Base on these findings, we designed work on the following aspects:
     1. HEC and LPA composite matrices for DNA sequencing
     A network was formed by matrix of HEC and LPA for DNA sequencing, trying to combine the high sieving ability of LPA and the dynamic coating ability of HEC. The results showed that under the appropriate ratio of HEC to LPA, the networks yielded a read length of up to 900 bases of contiguous sequence in 73 min without optimized base-calling software.
     2. Novel hydroxyethylcellulose graft copolymer for separation of double-stranded DNA fragments
     An ideal separation medium for dsDNA separations using CE should possess the following properties: high sieving ability, dynamic coating ability, and relatively low viscosity. In this work, hydroxyethylcellulose-graft-polyacrylamide (HEC-g-PAM) copolymer was synthesized using atom transfer radical polymerziation (ATRP). The reason we chosen HEC as the backbone is that HEC has both good sieving ability and dynamic coating ability for DNA separation. HEC-g-PAM with well-defined structures was applied for the first time as a medium for the separation of dsDNA in the bare fused-silica capillaries. The effectiveness of HEC-g-PAM for dsDNA fragment analysis was evaluated in comparison with that of HEC conventionally used for this purpose. Furthermore, the influences of PAM graft length on the separation performances of dsDNA were also discussed.
     3. Cationized hydroxyethylcellulose as a novel, adsorbed coating for basic protein separation
     Protein is another important biomacromolecules. In practice, the efficiencies typically achieved in protein separations by CE are considerably lower because of different types of interactions, including hydrogen-bonding, electrostatic, and hydrophobic interactions, between the proteins and the silica wall of the capillary. In order to minimize protein adsorption and stabilize EOF, a large amount of polymers have been explored to form stable dynamic coatings on capillary wall and show high efficiency in reducing protein adsorption. In previous studies, the cationic polymer derivatives were shown to be capable of suppressing the adsorption of fluorescently labeled amino acids, peptides, and proteins. Therefore, we take account of introducing cationized groups into HEC, then using cationized hydroxyethylcellulose (cat-HEC) as novel, hydrophilic, adsorbed capillary coating for electrophoretic protein analysis. The reason we chosen cat-HEC is that the HEC backbone has good sieving ability and the cat-HEC polymer contains cationic groups as substituents which can form ionic bond with the negative silanol groups on the silica surface. The results showed that highly efficient and rapid protein separation has been obtained over a wide pH range. These coatings demonstrated the excellent reproducibility of migration times of the three proteins, with relative standard deviation (RSD) values less than 1.0%.
     4. Novel hydroxyethylcellulose graft copolymer for protein separation
     New separation medium, hydroxyethylcellulose-graft-poly(4-vinylpyridine) (HEC-g-P4VP), synthesized by using ceric ammonium nitrate (CAN) initiator in aqueous nitric acid solution, used for protein separation by CE is presented. The properties of HEC-g-P4VP as coating of capillary wall for basic, acidic and neutral protein separation were studied. The polymer efficiently coated the capillary inner surface by a dynamic process, thereby leaded to high efficiency, reproducibility and recovery of proteins analyzed by CE.
引文
Albarghouthi M N, Stein T M, Barron A E, Poly-N-hydroxyethylacrylamide as a novel, adsorbed coating for protein separation by capillary electrophoresis[J]. Electrophoresis. 2003, 24: 1166-1175.
    Baba Y, Ishimaru N, Samata K, et al. High-resolution separation of DNA restriction fragments by capillary electrophoresis in cellulose derivative solutions[J]. J. Chromatogr. 1993, 653: 329-335.
    Bae Y C, Soane D, Polymeric separation media for electrophoresis: Cross-linked systems or entangled solutions[J]. J. Chromatogr. 1993, 652: 17-22.
    Barkema G T, Marko J F, Widom B. Electrophoresis of charged polymers simulation and scaling in lattice model of reptation[J]. Phys. Rev. 1994,49: 5303-5309.
    Barron A E, Blanch H W, Soane D S. A transient entanglement coupling mechanism for DNA separation by capillary electrophoresis in ultradilute polymer solutions[J]. Electrophoresis, 1994,15:597-615.
    Barron A E, Soane D S, Blanch H W. Capillary electrophoresis of DNA in uncross-linked polymer solutions[J]. J. Chromatogr. A. 1993, 652: 3-16.
    Barron A E, Sunada W M, Blanch H W. The use of coated and uncoated capillaries for the electrophpretic separation of DNA in dilute polymer solutions[J]. Electrophoresis. 1995, 16: 64-74.
    Barron A E, Sunada W M, Blanch H W. The effects of polymer properties on DNA separation by capillary electrophoresis in uncross-linked polymer solutions[J]. Electrophoresis. 1996, 17:744-757.
    Belder D, Deege A , Husmann H ,et al., Cross-linked poly(vinyl alcohol) as permanent hydrophilic column coating for capillary electrophoresis[J]. Electrophoresis. 2001, 22: 3813-3818.
    Buchholz B A, Doherty E A S, Albarghouthi M N, MicroChannel DNA sequencing matrices with a thermally controlled "viscosity switch"[J]. Anal. Chem. 2001, 73: 157-164.
    Butler J M, McCord B R., Jung J M, et al, Quantitation of polymerase chain reaction products by capillary electrophoresis using laser fluorescence[J], J. Chromatogr. B. 1994, 658: 271-280.
    Carlmark, A., Malmstrom, E., Atom transfer radical polymerization from cellulose fibers at ambient temperature[J]. J. Am. Chem. Soc. 2002,124: 900-901.
    Carrilho E, Ruiz-Martinez M C, Berka J, et al. Rapid DNA sequencing of more than 1000 bases per run by capillary electrophoresis using replaceable linear polyacrylamide solutions[J]. Anal. Chem. 1996, 68: 3305-3313.
    Chang H T, Yeung E S, J. Poly(ethyleneoxide) for high resolution and high-speed separation of DNA by capillary electrophoresis[J]. J Chromatogr. B. 1995, 669: 113-123
    Chiari M, Cretich M, Damin F, et al. New adsorbed coatings for capillary electrophoresis [J]. Electrophoresis. 2000, 21: 909-916.
    Chiari M, Cretich M, Riva S, et al. Performances of new sugar-bearing poly(acrylamide) copolymers as DNA sieving matrices and capillary coatings for electrophoresis[J]. Electrophoresis. 2001,22:699-706.
    Chiari M, Damin F, Melis A, et al. Separation of oligonucleotides and DNA fragments by capillary electrophoresis in dynamically and permanently coated capillaries, using a copolymer of acrylamide and (3 -D-glucopyranoside as a new low viscosity matrix with high sieving capacity[J]. Electrophoresis. 1998,19: 3154-3159.
    Chiari M, Melis A. Low viscosity DNA sieving matrices for capillary electrophoresis[J]. Rrendsin Analytical Chemistry, 1998,17: 623-632
    Chiari M, Micheletti C, Nesi M, et al. Towards new formulations for polyacrylamide matrices: N-acryloylaminoethoxyethanol, a novel monomer combining high hydrophilicity with extreme hydrolytic stability[J]. Electrophoresis. 1994,15: 177-186.
    Chiari M, Nesi M, Fazio M, Righetti PG, Capillary electrophoresis of macromolecules in ' syrupy' solutions: facts and misfacts[J]. Electrophoresis. 1992,13: 690-697.
    Chiari M, Nesi M, Righetti PG, Capillary zone electrophoresis of DNA fragments in a novel polymer network: Poly(N-acryloylaminoethoxyethanol) [J]. Electrophoresis. 1994,15: 616-622.
    Chu B, Liang D. Copolymer solutions as separation media for DNA capillary electrophoresis[J]. J. Chromatogr. A. 2002, 966:1-13.
    Cifuentes A, Diez-Masa J C, Fritz, et al. Polyacrylamide-coated capillaries probed by atomic force microscopy: Correlation between surface topography and electrophoretic performance[J]. Anal Chem. 1998,70:3458-3462.
    Corradini D, Cannarsa G, et al. Effects of alkylamines on electroosmotic flow and protein migration behaviour in capillary Electrophoresis[J]. J Chromatogr A. 1995, 709: 127-134.
    Cottet H, Gareil P, Viovy J L. The effect of blob size and network dynamics on the size-based separation of polystyrenesulfonates by capillary electrophoresis in the presence of entangled polymer solutions[J]. Electrophoresis. 1998,19: 2151-2162.
    de Gennes P G. Scaling Concepts in Polymer Physics. Ithaca, N Y: Cornell Univ. Press, 1979
    Doherty E A S, Kan C W, Annelise E B, Sparsely cross-linked "nanogels" for microchannel DNA sequencing[J]. Electrophoresis. 2003,24: 4170-4180.
    Dolkin V, Gurske W A, Capillary electrophoresis in sieving matrices: Selectivity per base, mobility slope, and inflection slope[J]. Electrophoresis. 1999, 20: 3373-3380.
    Duke T, Viovy J L, Semenov A N. Electrophoretic mobility of DNA in gels. I. New biased reptation theory including fluctuations[J]. Biopolymers. 1994, 34: 239-247.
    Duke T, Viovy J L. Theory of DNA electrophoresis in physical ges and entangled polumer solutions[J], Phys. Rev. E. 1994,49: 2408-2416.
    Doherty E A S, Kan C W, Paegel B M, Yeung S H I, et al, Sparsely cross-Linked "nanogel" matrixes as fluid, mechanically stabilized polymer networks for high-throughput microchannel DNA sequencing[J]. Anal. Chem. 2004, 76: 5249-5256.
    Francois J, Sarazin D, Schwartz T, Weill G. Polyacrylamide in water: molecular weight dependence of and [η] and the problem of the excluded volume exponent[J]. Polymer. 1979, 20: 969-97:5.
    Gao, Q., Yeung, E.S., A matrix for DNA separation: Genotyping and sequencing using poly(vinylpyrrolidone) solution in uncoated capillaries[J]. Anal. Chem. 1998,70:1382-1388.
    Gelfi C, Simo-Alfonso, E., Sebastiano, R, et al. Novel acrylamido monomers with higher hydrophilicity and improved hydrolytic stability: III. DNA separations by capillary electrophoresis in poly(N-acryloylaminopropanol) [J]. Electrophoresis. 1996, 17: 738-743.
    Gilges M, Kleemiss M H, Schomburg G. Capillary zone electrophoresis separations of basic and acidic proteins using poly(vinyl alcohol) coatings in fused silica capillaries[J]. Anal Chem. 1994, 66: 2038-2046.
    Goetzinger W, Kotler L, Carrilho E, et al. Characterization of high molecular mass linear polyacrylamide powder prepared by emulsion polymerization as a replaceable polymer matrix for DNA sequencing by capillary electrophoresis[J]. Electrophoresis. 1998,19: 242-248.
    Giddings J.C. Generation of variance, theoretical plates, resolution and peak capacity in electrophoresis and sedimentation[J]. Separ.Sci. 1969,4,181-189.
    Grossman P D, Soane D S. Experimental and theoretical studies of DNA separations by capillary electrophoresis in entangled polymer solutions[J]. Biopolymers. 1991, 31: 1221-1228.
    Guillaume L E. Capillary electrophoresis using copolymers of different composition as physical coatings: A comparative study[J]. Electrophoresis. 2006,27 :1041-1049.
    Gupta KC, Khandekar K., Temperature-responsive cellulose by ceric(IV) ion-initiated graft copolymerization of N-isopropylacrylamide[J], Biomacromolecules. 2003, 4, 758-765.
    Guttman A., Cooke N., Capillary gel affinity electrophoresis of DNA fragments[J]. Anal.Chem. 1991, 63,2038-2042.
    Hardenborg E, Zuberovic A, Ullsten S, et al. Novel polyamine coating providing non-covalent deactivation and reversed electroosmotic flow of fused-silica capillaries for capillary electrophoresis[J]. J Chromatogr A. 2003,1003: 217-221.
    Heiger DN., Cohen AS., Separation of DNA restiiction fragments by high-performance capillary electrophoresis with low and zone cross-linked polyacrylamide using continuous and pulsed electric-fields[J]. J. Chromatogr. 1990, 516: 33-48.
    Heller C, Duke T, Viovy J L. Electrophoretic mobility of DNA in gels. II. Systematic experimental study in agarose gels[J]. Biopolymers. 1994, 34:249-259.
    Heller C. Principles of DNA separation with capillary electrophoresis[J]. Electrophoresis. 2001,22:629-643.
    Heller C, Finding a universal low viscosity polymer for DNA separation (II) [J]. Electrophoresis. 1998,19, 3114-3127.
    Hiroyuki N, Shigenobu S., Chem D., Cationized hydroxyalkylcellulose and process for producing the same. US Patent, 6197950, 2001.
    Hjerten S. High-performance electrophoresis: Elimination of electroendosmosis and solute adsorption[J], J Chromatogr A. 1985, 347: 191-198.
    Jung H J, Bae Y C. Theory for the capillary electrophoresis separation of DNA in polymer solutions[J], J Chromatogr. A. 2002, 967: 279-287.
    Huang M F, Kuo Y C, Huang C C, et al. Separation of long double-stranded DNA by nanoparticle-filled capillary Electrophoresis[J]. Anal. Chem. 2004, 76: 192-196.
    Huang M X, Plocek J, Novotny M V. Hydrolytically stable cellulose-derivative coatings for capillary electrophoresis of peptides, proteins and glycoconjugates[J]. Electrophoresis. 1995, 16: 396-401.
    Huang X Y, Doneski L J, Wirth M J. Surface-confined living radical polymerization for coatings in capillary Electrophoresis[J]. Anal Chem. 1998, 70:4023-4029.
    Hubert S, Slater G, Viovy J. Theory of capillary electrophoretic separation of DNA using ultradilute polymer solutions[J]. Macromolecules. 1996,29:1006-1009.
    Iki N, Yeung E S. Non-bonded poly(ethylene oxide) polymer-coated column for protein separation by capillary Electrophoresis[J]. J Chromatogr A. 1996, 731: 273-282.
    Jin Y, Lin B, Feng Y. A collision model for DNA separation by capillary electrophoresis in dilute polymer solution[J]. Fresenius'. J. Anal. Chem. 2001, 370: 1015-1022.
    Kan C W, Doherty E A S, Barron A E, A novel thermogelling matrix for microchannel DNA sequencing based on poly-N-alkoxyalkylacrylamide copolymers[J]. Electrophoresis. 2003, 24: 4161-4169.
    Katayama H, Ishihama Y, Asakawa N. Stable cationic capillary coating with successive multiple ionic polymer layers for capillary electrophoresis[J]. Anal Chem. 1998, 70: 5272-5277.
    Kaupp S, Steffen R, Watzig H. Characterisation of inner surface and adsorption phenomena in fused-silica capillary electrophoresis capillaries[J]. J Chromatogr A. 1996, 744: 93-101.
    Kim Y, Yeung E S, Separation of DNA sequencing fragments up to 1000 bases by using poly(ethylene oxide)-filled capillary Electrophoresis[J]. J. Chromatogr. A. 1997, 781: 315-325.
    Kleemib M H, Gilges M, Schomburg G, Capillary electrophoresis of DNA restriction fragments with solutions of entangled polymers[J]. Electrophoresis. 1993,14: 515-522.
    Kuhr WG, Monnig CA, Capillary Electrophoresis[J]. Anal. Chem. 1992, 64: R389-R407.
    Kurata M, Tsunashima Y. Brandrup J, Immergut E H. Polymer Handbook, John Wiley, New York 1989, pp. VII/1-VII/46
    Liang D, Chu B, High speed separation of DNA fragments by capillary electrophoresis in poly(ethyler.e oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock polymer[J]. Electrophoresis. 1998,19: 2447-2453.
    Liang D, Chu B, Copolymer solutions as separation media for DNA capillary electrophoresis[J]. J. Chromatogr. A. 2002, 966: 1-13.
    Liang D, Song L, Zhou S, et al. Poly(N-isopropylacrylamide)-g-poly(ethyleneoxide) for high resolution and high speed separation of DNA by capillary electrophoresis[J]. Electrophoresis. 1999,20:2856-2863.
    Lin Y W, Huang M F, Chang H T. Nanomaterials and chip-based nanostructures for capillary electrophoretic separations of DNA[J]. Electrophoresis. 2005,26: 320-330.
    Liu T, Liang D, Song L, et al. Spatial open-network formed by mixed triblock copolymers as a new medium for double-stranded DNA separation by capillary electrophoresis[J]. Electrophoresis. 2001, 22: 449-458.
    Maarschalk KV, Vanderpadt A, Vantriet K. Influence of preadsorbed block copolymers on protein adsorption: surface properties, layer thickness, and surface coverage[J]. Langmuir. 1995, 11:3068-3074.
    Madablaushi RS, Vainer M, Dolnik, et al., Versatile low-viscosity sieving matrices for nondenaturing DNA separations using capillary array electrophoresis[J]. Electrophoresis. 1997, 18,104-111.
    McGregor D A, Yeung E S, Detection of DNA fragments separatedby capillary electrophoresis based on their native fluorescence inside a sheath flow[J]. J. Chromatogr.A. 1994, 680:491-496.
    Mcmanigill D. Capillary zone electrophoresis of proteins in untreated fused silica tubing[J]. Anal Chem.1986,58:166-170.
    Menchen S, Johson B, Winnik MA, Xu B, Flowable networks as DNA sequencing media in capillary columns[J]. Electrophoresis. 1996,17:1451-1459.
    Motsch S R, Kleemib M H, et al. Production and application of capillaries field with agarose-gel for electrophoresis[J]. High Resol. Chromatogr. 1991,14: 629-632
    Muthukumar M, Baumgrtner A. Effects of entropic barriers on polymer dynamics[J], Macromolecules. 1989, 22:1937-1941
    Muthukumar M, Baumgrtner A. Diffusion of a polymer chain in random media[J], Macromolecules. 1989,22:1941-1946.
    Nashabeh W, EI Rassi Z. Capillary zone electrophoresis of proteins with hydrophilic fused-silica capillaries[J], J Chromatogr A, 1991, 559: 367-383.
    Ng C L, Lee H K. Prevention of protein adsorption on surfaces by polyethylene oxide-polypropylene oxide- polyethylene oxide triblock copolymers in capillary electrophoresis[J]. J Chromatogr A, 1994, 659: 427-434.
    Nkodo A E, Tinland B. Diffusion coefficient of DNA molecules during free solution[J]. Electrophoresis. 2001, 22: 2424-2432.
    Nkodo AE, Tinland B. Simultaneous measurements of the electrophoretic mobility, diffusion coefficient and orientation of dsDNA during electrophoresis in polymer solutions[J], Electrophoresis 2002, 23: 2755-2765.
    Okada H, Kaji N, Tokeshi M, et al.Channel wall coating on a poly(methyl methacrylate) CE microchip bythermal immobilization of a cellulosederivative for size-based protein separation[J]. Electrophoresis, 2007, 28:4582-4589.
    Olivieri E, Sebastiano R et al., Quantitation of protein binding to the capillary wall in acidic, isoelectric buffers and means for minimizing the phenomenon[J]. J Chromatogr A. 2000 ,894: 273-280.
    Pacios I E, Lindman B, et al., The effect of poly (N,N-dimethylacrylamide) on the lamellar phase of Aerosol OT/water[J]. Colloid. Polym. Sci. 2002,280, 517-525.
    Pariat Y F, Berka J, Heiger D N, Schmitt, Separation of DNA fragmens by capillary electrophoresis using replaceable linear polyacrylamide matrices[J]. J. Chromatogr. A. 1993, 652: 57-66.
    Paulus, A., Husken, D., DNA digest analysis with capillary electrophoresis[J]. Electrophoresis. 1993, 14:27-35.
    Preisler J, Yeung E S. Characterization of Nonbonded Poly(ethylene oxide) Coating for Capillary Electrophoresis via Continuous Monitoring of Electroosmotic Flow[J]. Anal Chem. 1996,68:2835-2889.
    Robert JM, Seong J, Laibinis PE, et al. A very thin coating for capillary zone electrophoresis of proteins based on a tri(ethylene glycol)-terminated alkyltrichlorosilane[J]. Electrophoresis. 2004,25:405-414.
    Rodbard D, Chrambach A, Estimation of molecular radius, free mobility, and valence using polyacrylamide gel electrophoresis[J]. Anal. Biochem. 1971,40: 95-134
    Roopa S S, Wang Q G, Lee ML. Cycloaliphatic epoxy resin coating for capillary electrophoresis[J]. J Chromatogr A, 2002, 952: 267-274.
    Ruiz-Martinez M C, Berka J, Belenkii A, et al. DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser-induced fluorescence detection[J]. Anal. Chem. 1993,65:2851-2858.
    Sakai-Kato K, Kato M, Nakajima T, et al. Cationic starch derivatives as dynamic coating additives for protein analysis in capillary electrophoresis[J]. J Chromatogr A. 2006, 1111: 127-132.
    Sanders J C, Breadmore M C, Kwok Y C, et al., Hydroxypropyl cellulose as an adsorptive coating sieving matrix for DNA separations: artificial neural network optimization for microchip analysis[J]. Anal. Chem., 2003, 75: 986-994.
    Sartori A, Barbier V, Viovy J L, Sieving mechanisms in polymeric matrices[J]. Electrophoresis. 2003,24: 421-440.
    Sassi A P, Barron M G, Alonoso-Amigo D Y, el al. Electrophoresis of DNA in novel thermoreversible matrices [J]. Electrophoresis. 1996,17:1460-1469.
    Schmalzing D, Piggee C A, et al. Characterization and perfprmance of a neutral hydrophilic coating for the capillary electrophoretic separation of biopolymers[J]. J Chromatogr A. 1993, 652: 149-159.
    Semenov A N, Duke T A J, Viovy J L. Gel electrophoresis of DNA in moderate fields: The effect of fluctuations[J]. Phys. Rev. E. 1995, 51: 1520-1537.
    Shi X, Hammond R W, Morris M D. DNA conformational dynamics in polymer solutions above and below the entanglement limit[J]. Anal. Chem., 1995,67:1132-1138.
    Slater G W, Kenward M, et al. The theory of DNA separation by capillary electrophoresis[J]. Current Opinion in Biotechnology, 2003,14: 58-64.
    Slater G W, Noolandi J. On the reptation theory of gel electrophoresis[J]. Biopolymers. 1986, 25:431-454.
    Slater G W, Noolandi J. New biased-reptation model for charged polymers[J]. Phys Rev Lett, 1985,55:1579-1585.
    Song L, Liu T, Liang D, et al. Separation of double-stranded DNA fragments by capillary electrophoresis in interpenetrating networks of polyacrylamide and polyvinylpyrrolidone[J]. Electrophoresis. 2001,22: 3688-3698.
    Song L, Fang D, Kobos R K, et al. Separation of double-stranded DNA fragments in plastic capillary electrophoresis chips by using E_(99)P_(69)E_(99) as separation medium[J]. Electrophoresis. 1999, 20: 2847-2855.
    Song L, Liang D H, Chen Z J, DNA sequencing by capillary electrophoresis using mixtures of polyacrylamide and poly(N,N-dimethylacrylamide) [J]. J. Chromatogr. A. 2001, 915: 231-239.
    Song L, Liang D, Fang D, Chu B. Fast DNA sequencing up to 1000 bases by capillary electrophoresis using poly(N, N-dimethylacrylamide) as a separation medium[J]. Electrophoresis. 2001,22:1987-1996.
    Srinivasan K, Pohl C, Avdalovic N. Cross-linked polymer coatings for capillary electrophoresis and application to analysis of basic proteins, acidic proteins, and inorganic ions[J]. Anal Chem. 1997, 69: 2798-2805.
    Sudor, Barbier V, Thirot S, et al, New block-copolymer thermoassociating matrices for DNA sequencing: Effect of molecular structure on rheology and resolution[J]. Electrophoresis. 2001,22: 720-728.
    Sunada W, Blanch H. Microscopy of DNA in dilute polymer soIutions[J]. Biotechnol. Progr., 1998, 14: 766-772.
    Sunada W, Blanch H. A theory for the electrophoretic separation of DNA in polymer solutions[J]. Electrophoresis. 1998,19: 3128-3136.
    Swerdlow H, Zhang J Z, Chen D Y, et al, Three DNA sequencing methods using capillary gel electrophoresis and laser-induced fluorescence[J]. Anal. Chem., 1991, 63: 2835-2841.
    Talmadge K W, Tan A K, Zhu M, DNA fragment analysis by capillary polymer sieving electrophoresis using poly(acryloylaminoethoxyethanol)-coated capillaries[J]. J. Chromatogr. A. 1997,781:335-345.
    Valessa B, Brett A B, Annelise E B, Jean-louis V, Comb-like copolymers as self-coating, low-viscosity and high-resolution matrices for DNA sequencing[J]. Electrophoresis. 2002, 23: 1441-1449.
    Viovy J L, Duke T. DNA electrophoresis in polymer solutions: Ogston sieving, reptation and constraint release[J], Electrophoresis. 1993, 14: 322-329.
    Wan H, Marcus Ohman, Lars G. Bonded dimethylacrylamide as a permanent coating for capillary electrophoresis[J]. J Chromatogr A, 2001,924: 59-70.
    Wang Y M, Liang D H, Hao J C, et al, Separation of double-stranded DNA fragments by capillary electrophoresis using polyvinylpyrrolidone and poly(N, N-dimethylacrylamide) transient interpenetrating network[J]. Electrophoresis. 2002, 23: 1460-1466.
    Wang Y M, Liang D H, Ying Q C, Chu B, Quasi-interpenetrating network formed by polyacrylamide and poly(N, N-dimethylacrylamide) used in high-performance DNA sequencing analysis by capillary electrophoresis[J]. Electrophoresis. 2005,26:126-136.
    Williams BA., Vigh C, Fast, accurate mobility determination method for capillary Electrophoresis[J]. Anal. Chem. 1996,68: 1174-1180.
    Xu F, Baba Y. Polymer solutions and entropic-based systems for double-stranded DNA capillary electrophoresis and microchip Electrophoresis[J].Electrophoresis.2004,25:2332-2345.
    Yang R,Wang Y,Zhou D,Novel hydroxyethylcellulose-graft-poly acrylamide copolymer for separation of double-stranded DNA fragments by CE[J].Electrophoresis.2007,28:3223-3231.
    Yang R,Wang Y,Wang X,He W,Pan C,Synthesis of poly(4-vinylpyridine)and block copoly(4-vinylpyridine-b-styrene)by atom transfer radical polymerization using 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetradecane as ligand[J].Eur.Polymer J.2003,39:2029-2033.
    Yao Y J,Li SFY.Capillary zone electrophoresis of basic-proteins with chitosan as a capillary modifier[J].J Chromatogr A,1994,663:97-104.
    Zimm B H.Lakes-straits model of field-inversion gel-electrophoresis of DNA[J].J.Chem.Phys.1991,94:2187-2206.
    Zhou D,Wang YM,Yang RM,et al.,Effects of novel quasi-interpenetrating network/gold nanoparticles composite matrices on DNA sequencing performances by CE[J].Electrophoresis.2007,28:2998-3007.
    Zhou D,Wang YM,Yang RM,et al.,Novel quasi-interpenetrating network/gold nanoparticles composite matrices for DNA sequencing by CE[J].Electrophoresis.2007,28:1072-1080.
    何金兰,高效毛细管电泳[M],北京:科学出版社,1996,72-75.
    林炳承,毛细管电泳导论[M],北京:科学出版社,1996,121-125.
    刘航,王延梅,聚合物涂层技术在毛细管电泳分离蛋白质中的应用[J],高分子通报,2006,17-24.
    王前,许旭,用于毛细管电泳DNA分离的合成聚合物[J],化学进展,2003,15:275-287.
    周丹,王延梅,毛细管电泳无胶筛分介质分离DNA的机理[J],化学进展,2006,18:987-994.
    张文龙,王延梅,用于毛细管电泳分离DNA的聚合物介质的研究进展[J],高分子通报,2006,75-87.
    张文龙,2006,用于毛细管电泳分离DNA及蛋白质的准互穿聚合物网络的合成与表征:[硕士]合肥:中国科学技术大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700