用户名: 密码: 验证码:
强地震形变过程的有限元数值模拟及其动力学环境的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过全球定位系统(GPS)和卫星孔径干涉雷达(InSAR)等大地测量观测强地震引起的同震和震后形变,结合地质构造条件分析,利用有限元数值模拟,使得我们可以对地震区域地球动力学环境有更加详细地了解,进而对地震孕育和地壳动力学演化等地质过程有更深入的认识和理解。本文利用固体力学理论,针对不同粘弹介质、孔隙介质以及粘弹—孔隙等介质的本构方程,建立和导出了其适用于FEPG(有限元程序生成系统)的虚功方程。以GPS观测所得地表形变做约束,用FEPG(有限元程序生成系统)实现了强地震引起的同震和震后形变有限元数值模拟,并掘此分析了以介质物性为中心的强地震区域的环境动力学特征。
     本文在前人震后形变分析和模拟基础之上,根据粘弹松弛和流体调整所引起的震后形变的物理含义,建立孔隙—粘弹本构方程以及适应于FEPG平台的有限元数值模拟所必需的虚功方程。同时针对震后形变所表现出的粘弹松弛特点,以Burgers体粘弹模型特点以及本构方程出发,建立相应虚功方程,实现了以Burgers体为粘弹介质模型的震后形变有限元数值模拟。以Burgers体为粘弹介质模型探讨了强地震引起的三个阶段的形变效应,同震的瞬时弹性瞬态响应、呈指数衰减的短期形变响应和线性增加的长期稳态形变响应。
     在理论模拟和分析的基础上,本文以实际地震为例详细讨论地震引起的同震和震后形变过程。
     本文以1999年Mw7.6级集集地震为例,讨论不同的位错模型和介质模型(均匀、层状均匀及横向不均匀等)对同震形变的影响。通过数值模拟分析本文认为,在条件允许的情况,在讨论地震形变时有必要考虑小断层位错模型和更加接近实际的非均匀介质模型,计算和探讨了集集地震引起的库仑应力变化及其与集集地震余震对应关系。
     本文以2001年Ms8.1级地震为例,以GPS观测形变为约束,通过有限元数值模拟,解释GPS所观测的震后形变表现出较为奇特的区域特征。用数值模拟结合网格搜索法确定了羌塘块体和柴达木盆地下地壳的粘滞系数分别约为5.0×10~(17)Pa.s,9.0×10~(18)pa.s相差十余倍。正是由于昆仑断裂带南北两侧下地壳粘滞系数的这十余倍的差异引起了断层两侧震后形变格局明显不同,这也可能是羌塘块体和柴达木盆地表现为不同现代地壳运动的直接原因。与此同时,本文还通过数值模拟定性地讨论了断层北侧地表形变在震后短期内转向的现象。我们发现,对于靠近断裂附近的测点上的形变转向也许是粘弹性松弛和孔隙流体调整共同作用的结果,而单独的粘弹性松弛或者孔隙流体调整不能引起这种转向。所以在分析短期震后形变时综合考虑粘弹—松弛介质物性和孔隙流体调整很有必要。
     本文探讨了震后不同时间尺度的形变机理问题。研究表明,简单的粘弹介质模型(Maxwell体)不能同时解释震后短期和长期的形变过程,该模型表现出对同一地震同一地区而言,使用震后不同时期内形变资料,将得到不同的介质粘滞性质。本文证明了。以Burgers体为粘弹介质模型可以较好地解决使用Maxwell体等简单的粘弹介质模型所不能解释的震后形变过程随时间变化的问题,即模拟预测表现出来的震后短期和长期形变不协调的现象。通过数值模拟分析了1960年Mw9.5级智利地震震后形变过程,较成功地解释了该强烈地震震后短期和长期形变观测数据。
     本文的研究表明,以观测地表形变为约束,结合实际地质条件,选取合理的介质物性模型,构建有限元模型的框架,利用有限元数值模拟的方法,研究强地震形变过程和规律,是分析了以介质物性为中心的强地震区域的环境动力学特征的有效方法。
The coseismic and postseismic deformation observed by GPS and InSAR is used as the constraints in displacement of numerical simulation. We can learn more information about the regional geodynamic environment by the calculation and the geological condition and then research the some geological processes, such as, the gestation earthquake and dynamic evolution in crust. In this paper, we get the virtual work equations of FEPG (Finite Element Program Generator) on the base of viscoelastic, poroelastic and poro-viscoelastic constitutive relationship. We calculate the coseismic and postseismic deformation using FEM. We use the GPS data of crust deformation as the constraints and obtain different Fortran programs of different questions by FEPG, and study the role of physical characters in regional geodynamic behavior.
     In this paper, firstly, we get the constitutive relations and other equations used in FEM calculation by FEPG. These equations are based on the theories of viscoelastic relaxation and poroelastic rebound and other researches of postseismic displacement. As the characters of observed deformation of earthquake, we use Burgers body as the viscoelastic medium, get virtual work equations used in FEPG and simulate the postseismic deformation. The postseismic displacements based on the Burgers body include three kinds of deformations, which are the elastic coseismic deformation, the exponentially-decaying short-time deformation, the linearly-increasing steady-state long-time deformation.
     Based on these theoretical simulation and analyses, we study the coseismic and postseismic deformation of strong earthquake in detailed.
     In this study, we take 1999 Mw7.6 Chi-Chi earthquake for example to study the effect of sub-fault model and layered geological crust model to the coseismic deformation. From the simulation, it is essential to use the sub-fault model composed of many small faults and layered geological crust inhomogeneous model. And then calculate the Coulumb stress change caused by Chi-Chi earthquake and analyze the relation of the Coulumb stress change and the spatial distribution of the aftersocks.
     After the 2001 Ms 8.1 Kunlun earthquake, postseismic displacements were resolved with GPS. The observed data showed that there were many differences between the deformations on south and north side of the Kunlun fault. And after short-time adjustment, the deformation on the north side changed direction from westward to eastward. These GPS data are used as the constraints in FEM modeling of postseismic deformation. Using 3D poro-viscoelastic model, the modeling results show that the horizontal inhomogeneous viscosities in lower crust can play an important part in geodynamic behavior. The best-fitting viscosities of lower crust about are 5.0×10~(17)Pa.s, 9.0×10~(18)Pa.s, respectively in Qiangtang block and Qaidam basin. This difference of viscosity of two sides of Kunlun fault is the direct reason for the differences of postseismic deformation between these two blocks. The simulation suggests that the postseismic deformation after 2001 Kunlun Ms8.1 earthquake may be caused not only by the viscoelastic relaxation but also by poroelastic rebound.
     And we research the cause of the short-time and long-time postseismic deformation after one earthquake. Firstly we simulate the postseismic deformation by Maxwell model. If the viscosity is lower, the relaxation is going to balance, so there is no long-term postseismic deformation. On the other hand, if the viscosity is higher, the rate of strain may be a constant. Take 1960 Chile earthquake as example, the postseismic deformation modeled with Burgers model includes coseismic deformation, transient postseismic deformation and long-term postseismic deformation. As to the calculated postseismic deformation of 1960 Chile earthquake, there is no uncoordinated phenomenon caused by the Maxwell model, when we take the Burgers model as viscoelastic medium.
     From our research, based on the geological condition and physical characters of crust, we can study the seismic deformation of strong earthquake using FEM numerical simulation. Then we can analyze the role of physical characters in regional geodynamic behavior by this efficient the method.
引文
艾金(Akin,J.E.)著,张纪刚译,1992,有限元法的应用与现实,北京:科学出版社
    布隆仁坦И.Н.,谢缅佳也夫K.A.,1965,数学手册(罗零,石峥嵘译),北京:高等教育出版社
    陈杰,陈宁坤,丁国瑜,等.2001年昆仑山口西81级地震地表破裂带.第四纪研究,2003,23(6),629-639
    陈文彬,徐锡伟,张志坚等,2001,2001年11月14日青新交界Ms8.1地震地表破裂带的初步调查,西北地震学报,23(4),313-317
    陈运泰等,1975,根据地面形变的观测研究1966年邢台地震的震源过程,地球物理学报,18(3),164-181
    陈运泰,黄立人,林邦慧等,1979,用大地测量资料反演的1976年唐山地震的位错模式,地球物理学报,22(3),201-216
    程晓,李小文,邵芸等,2006,南极格罗夫山地区冰川运动规律DINSAR遥感研究,科学通报,51(17),2060-2067
    当光明,王赞军,2002,青海昆仑山口西Ms8.1级地震地表破裂带特征与主要震害,地质通报,21(2),105-120
    杜世通,1996,地震波动力学,山东东营,石油大学出版社
    傅容珊,李力刚,黄建华等,1999,青藏高原隆升过程的三阶段模式,地球物理学报,42(5),609-616
    傅容珊,黄建华,徐耀民等,1997,青藏高原-天山地区岩石构造运动的地幔动力学机制,地球物理学报,40,658-668
    郝平,傅征祥,田勤俭,刘杰,刘桂萍,昆仑山西口8.1级地震强余震库仑破裂应力触发研究[J],地震学报,2004,Vol26,No.1,30-37
    蒋友谅,1980,有限元法基础,北京-国防工业出版社
    江在森,马宗晋,张希,等.GPS初步结果揭示的中国大陆水平应变场与构造变形[J].地球物理学报,2003,46(3),352-358.
    利布特里 L.大地构造物理学和地球动力学(孙坦译),北京 地质出版社 1986
    李廷栋,1995,青藏高原隆升的过程和机制,地球学报,(1),1-9
    李延兴,胡新康,帅平,张中伏,黄瑊,胡小工,2001,中国大陆地壳水平运动统一速度场的建立与分析,地震学报,23(5):453-459.
    马超,单新建,昆仑山Ms8.1地震震源参数的多破裂段模拟研究,地球物理学报,2006,49(2),428-437
    马超,单新建,2006,基于实测植分段线性内插模型的InSAR视线向同震位错分解--以青藏高原昆仑山Ms8.1地震为例,地震学报,28(1),98-104
    马杏垣主编.中国岩石圈动力学地图集,1989,北京:中国地图出版社
    马宗晋,陈鑫连,叶叔华,等.2001,中国大陆区现今地壳运动的GPS研究.科学通报,46(13):1 11821 120.
    马宗晋,张培震,任金卫等,2003,从GPS水平矢量场对中国及全球地壳运动的新认识,地球科学进展,18(1),4-11
    乔学军,王琪,杜瑞林等.昆仑山口西Ms8.1地震的地壳变形特征,大地测量与地球动力学,2002,22(4),6-11
    任金卫,王敏 GPS观测的2001年昆仑山口西MS 811级地震地壳变形,第四纪研究,2005,25(1),34-44
    单新建,马瑾,王长林等,2002,利用差分干涉雷达测量技术(D-InSAR)提取同震形变场,地震学报,24(4),14-26
    单新建,柳稼航,马超,2001年昆仑山口西8.1级地震同震形变场特征的初步分析.地震学报,2004,26(5),474-480
    单新建,马瑾,王长林等,2001,利用星载D INSAR技术获取的地表形变场提取玛尼地震震源断层参数,中国科学D辑,32(10),837-844
    沈正康,万永革,甘卫军,曾跃华,任群.东昆仑活动断裂带大地震之间的黏弹性应力触发研究[J].地球物理学报,2003,(6)
    石耀霖,关于应力触发和应力影概念在地震预报中应用的一些思考[J],地震,2001,Vol21,No.3,1-7
    孙苟英,刘激扬,王仁.1994,1976年唐山地震震时和震后变形的模拟[J].地球物理学报,37(1):46-55.
    陶玮,沈正康,万永革等根据InSAR同震测量资料反演东昆仑断裂两侧地壳弹性介质差异,中国地球物理第二十二届年会会刊,2006年10月15-19日,成都,四川科学技术出版社,2006,595
    万永革,吴忠良,周公威,黄静,几次复杂地震中不同破裂事件之间的“应力触发”问题[J],2000,地震学报,Vol22,No.6,568-576
    万永革,王敏,沈正康等 利用GPS和水准测量资料反演2001年昆仑山口西8.1级地震的同震滑动分布,地震地质,2004,26(3):393-404
    王超,刘智,张红,2000,张北-尚义地震同震形变场雷达差分干涉测量,科学通报,45(23),2500-2553
    王超,张红,刘智,2002,星载合成孔径雷达干涉测量,北京,科学出版社
    王辉,张怀,张国民等 昆仑山口西8.1级地震影响场的三维并行有限元模拟,中国地球物理第二十二届年会会刊,2006年10月15-19日,成都,四川科学技术出版社,2006,433
    王静瑶,吴云,2000,现代地壳运动与地震监测预报研究的现状和发展趋势,地球科学进展,15(1),84-89
    王龙莆,1979,弹性理论,北京,科学出版社
    王勖成,2003,有限单元法,北京:清华大学出版社
    王琪,张培震,马宗晋.2002,中国大陆现今构造变形GPS观测数据与速度场[J].地学前缘,9(2):4152429.
    王卫民,赵连锋,李娟,姚振兴,1999年台湾集集地震震源破裂过程[J],地球物理学报,2005,48,132-147
    魏文博,金胜,叶高峰等,藏北高原地壳及上地幔导电性结构-超宽频带大地电磁测深研究结果,地球物理学报,2006,49(4):1215-1225
    吴德伦,林成功,2003,非饱和粘土孔隙弹性压力理论,岩土力学,24(1),49-52
    吴功建,高锐 等,青藏高原”亚东-格尔木地学断面”综合地球物理调查与研究,地球物理学报,Vol34(5),1991,552-561
    邢燕,王建军,张景发等,2004,D-InSAR技术在地震同震形变研究中的应用,测绘科学,29(2),64-68
    徐锡伟,陈文彬,于贵华等,2002,2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征,地震地质,24(1),1-14
    袁龙蔚.1986,流变力学 北京:科学出版社
    张国民,田勤俭,王辉,可可西里-东昆仑活动构造带强震活动研究,地学前缘,2003,10(1),39-46
    张洁,胡光道,罗宁波,2004,INSAR技术在滑坡监测中的应用研究,工程地球物理学报,1(2),147-153
    张景发,刘钊,2002,InSAR技术在西藏玛尼强震区的应用,清华大学学报,42(6),847-850
    张培震,王琪,马宗晋,中国大陆现今构造变形的GPS速度场与活动地块,地学前缘,2002,9(2),430-441
    张培震,邓起东,张国民等,2003,中国大陆的强震活动与活动地块,中国科学(D辑),33(增刊),12-20
    周德培,朱本珍,毛坚强.1995.流变力学原理及其在岩土工程中的应用[M].成都:西南交通大学出版社
    周光泉,刘孝敏.1988,粘弹性理论 合肥:中国科学技术大学出版
    周仕勇,陈晓非,近震源破裂过程反演研究-Ⅱ.台湾集集地震震源破裂过程的近场反演[J],中国科学(D),2006,36(1),49-58
    朱伯芳,1998,有限单元法原理和应用,第2版,北京:中国水利电力出版社
    朱守彪,蔡永恩,利用GPS观测的时间序列资料反演地壳地幔黏性结构,地球物理学报,2006,49(3):771-777
    朱文耀,陈宗颐,王小亚,等,1997,中国大陆地壳运动的初步研究,中国科学(D辑),27(5):385-389
    Barrientos,S.E.,Plafker,G,Lorea,E.1992.Postseismie coastal uplift in southern Chile[J].GRL,19(7):701-704
    Bell J.W.,Amelung F.,Ramelli A.R.et al.,2002,Land subsidence in Las Vegas,Nevada,1935-2000:new geodetic data show evolution,revised spatial patterns,and reduced rates,Geological Society of America,Ⅷ(3),155-174
    Biot M.A.,General Theory of Three-Dimensional Consolidation,Journal of appliod physics,1941,Vol12,155-164
    Blot M.A.,1956,General solutions of the equations of elasticity and consolidation for a porous material,J.Appl.Mech.,78,91-98
    Biot M.A.,1962,Generalized theory of acoustic propagation in porous dissipative media,J.Acoust.Soc.Am.,34,1254-1264
    Carcione,J.M.,Kosloff,D.Kosloff,R.1988.Wave propagation simulation in a linear viscoacoustic medium[J].Geophys.J.,93:393-407
    Carcione,J.M.Wave propagation in anisotropic linear viscelatic media:theory and simulated wavefields,Geophys.J.Int.1990,101,739-750
    Chen W S, Huang B S, Chen U G, et al. 1999 Chi-Chi Earthquake: A case study on the role of thrust-ramp structure for generating earthquake[J]. Bull. Seism . Soc. Am., 2001,91(5):986-994
    Chinnery, M. A. 1961, The deformation of ground around surface faults, Bull. Seism. Soc. Am. 51,355-372
    Chinnery, M. A. 1963, The stress changes that accompany strike-slip faulting, Bull. Seism. Soc.Am. 53,921-932
    Chlieh, M. Chabalier, J. B. Ruegg, J. C. et al. 2004. Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations[J].Geophys. J. Int., 158:695-711
    Cocco, M., Rice, J. R., 2002, Pore pressure and poroelasticity effects in Coulomb stress analysts of earthquake interactions, J. Geophys. Res., 107(B2),
    Crook, C. N., 1984, Geodetic measurements of horizontal crustal deformation associated with the October 15, 1979 Imperial Valley California earthquake, PhD thesis, Univ. of London
    Cummins,P.R., Hirano,S, Kaneda, Y., Refined coseismic displacement modeling for the 1994 Shikotan and Sanriku-oki earthquakes[J]. Geophys.Res.Lett., 1998,25,3219-3222
    Deng, J., Sykes, L. R., Evolution of the stress field in southern California and triggering of moderate-size earthquake: A 200 year perspective, J. Geophys. Res. [J],1997, 102, NO.B5,9859-9886
    Deng J., Gurnis M., Kanamori H. et al. 1998. Viscoelastic low in the lower crust after the 1992 Landers, California, earthquake[J]. Science ,282:1689-1692.
    Deresiewicz, H., Levy, A., 1967, The effect of boundaries on wave propagation in a liquid-filled porous solid: X-Transmission through a stratified medium, Bull. Seis. Soc. Am., 57(3),381-391
    Elkhoury, J. E., Brodsky, E., Duncan, C. A., 2006, Seismic waves increase permeability, Nature,441, 11351138
    Evans, W. C, Soest, M. C, Hurwitz, S. et al., 2004, Magmatic intrusion west of Three Sisters,central Oregon, USA: the perspective from spring geochemistry, Geology, 32(1), 69-72
    Freed A M .Time-dependent changes in failure stress following thrust earthquake[J]. J Geophys Res, 1998 , 103, 24393-24409
    Freed, A., Burgmann, R. 2004. Evidence of powerlaw flow in the Mojave desert mantle[J].Nature, 430, 548-551.
    Freed, A., Lin, J., 2001, Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer, Nature, 411,180-183
    
    Fu, G Y., Sun, W. K., Effects of spatial distribution of fault slip on calculating coseismic displacement: Case studies of the Chi-Chi earthquake (Mw7.6) and the Kunlun earthquake(Mw7.8) [J], Geophys. Res. Let, 2004,31,
    Geertsma, J., 1973, Land subsidence above compacting oil and gas reservoirs, J. Petr. Tech., 25,734-744
    Harris, R. A., Introduction to special section: Stress triggers, stress shadows, and implication for seismic hazard, J. Geophys. Res. [J], 1998, 103,24,347- 24,358.
    
    Hernandez B.Cotton F.Campillo M,et al.A comparison between short term (Co-Seismic) and long term (one year) slip from the landers earthquake:measurements from strong motion and SAR interferometry[J].Geophys.Res.Lett, 1997,24:1579-1582
    Hou, C. S., Hu, J. C, Shen, L. C. et al., 2005, Estimation of subsidence using GPS measurements,and related hazard: the Pingtung Plain, southwestern Taiwan, C. R. Geoscience,337,1184-1193
    Iwasaki, T., Sato, R., 1979, Strain field in a semi-infinite medium due to an inclined rectangular fault, J. Phys. Earth 27,285-314
    
    J.-C. Hu, S.-B. Yu, J.Angelier, H.-T.Chu, 2001, Active deformation of Taiwan from GPS measurements and numerical simulations, J. Geophys. Res. 106,2265-2280.
    Ji, C, Helmerger, D. V., Wald, D. J., and K.-F. Ma, Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake[J], J.Geophys. Res. ,2003, 108(B9),2412,doi: 10.1029/2002 JBOO1764
    Ji, C, Helmerger, D. V., Wald, D. J. et al, 2001, Slip distribution and tectonic implication of the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Let, 28(23), 4379-4382
    Jeager, N. C, Cook, N. G W., Fundamentals of rock mechanics[M], 1979, London: Chapman and Hall
    Jonsson S., Segall P., Pedersen R. Bjornsson G Post-earthquake ground movements correlated to pore-pressure transients, Nature, 2003 ,424 179-183
    Khazaradze, G, Klotz, J., 2003, Short and long-term effects of GPS measured crustal deformation rates along the South-Central Andes, J.Geophys. Res., 108(B4),1-13
    Kaufmann, G, Amelung, F., 2000, Reservoir-induced deformation and continental rheology in vicinity of Lake Mead, Nevada, J.Geophys. Res., 105(B7), 16341-16358
    King.G, Stein, R. S., and Jian Lin, Static stress changes and the triggering of earthquake, Bull. Seismol. Soc. Am. [J], 1994,2 March
    King, G C. P., Cocco, M., 2000, Fault interaction by elastic stress changes: New clues from earthquake sequences, Adv. Geophys., 44,1-38
    
    Kirby, S. H., 1983, Rheology of the lithosphere, Rev. Geophys. Space Phys., 21, 1458-1487.
    Klotz, J., Khazaradze, G, Angermann, D. et al.2001. Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes[J]. EPSL, 193: 437-446
    Klotz, J., Angermann, D., Michel, W. et al. 1999. GPS-derived deformation of the centran Andes including 1995 Antofagasta Mw=8.0 earthquake[J]. Pure appl. Geophys. 154:709-730
    Lasserre C, Peltzer G, Crampe' F, et al. Coseismic deformation of the 2001 Mw = 7.8 Kokoxili earthquake in Tibet, easured by synthetic aperture radar interferometry. J Geophys Res, 2005,110, B12408, doi:10.1029/2004JB003500
    Li, V. C, Seale, S. H., Cao, T. Q., 1987, Postseismic stress and pore pressure readjustment and aftersock distributions, Tectonophysics, 144, 37-54
    Lin A, Ouchi T, Chen A, et al. Co-seismic displacements, folding and shortening structures along Chelungpu surface rupture zone occurred during the 1999 Chi-Chi ( Taiwan ) earthquake[J].Tectonophysics, 2001, 330: 225- 244
    Lin J. and A.M. Freed, Time-dependent viscoelastic stress transfer and earthquake triggering, In:Environment, Natural Hazards, and Global Tectonics of the Earth, ed. Y.J. Chen, Advances in Earth Sciences Monograph, Volume 2, pp. 21 - 38, Higher Education Press, Beijing, 2004
    Loevenbruck, A., Cattin, R., Le, Pichon et al., coseismic slip resolution and post-seismic relaxation time of the 1999 Chi-Chi, Taiwan, earthquake as constrained by geological observations, geodetic measurements and seismicity[J], Geophy. J. Int., 2004, 158, 310-326
    Lorenzo, M. F., Roth, F., Wang, R. 2006. Inversion for rheological parameters from post-seismic surface deformation associated with the 1960 Valdivia earthquake, Chile[J]. Geophys. J. Int.,164:75-87 Ma, K.-F., C.-H. Chan, and R. S. Stein, Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi, Taiwan, earthquake[J], J. Geophys. Res. [J], 2005,110, B05S19, doi:10.1029/2004JB003389.
    Ma, K.-F., J.-H. Wang, and D.-P. Zhao, Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan[J], J. Phys. Earth, 1996,44, 85-105
    Ma Kuo-Fong, Jim Mori, Shiann-Jong Lee, and S. B. Yu Spatial and Temporal Distribution of Slip for the 1999 Chi-Chi, Taiwan, Earthquake[J] Bulletin of the Seismological Society of America, 2001,91: 1069-1087
    
    Massonnet, D., Rossi, M., Carmona, C, Adragna, F., Peltzer, G, Feigl, K., and Rabaute, T, 1993,The displacement field of the Landers earthquake mapped by radar interferometry: Nature,364,138-142.
    Masterlark T.L. Regional fault mechanics following the 1992 Landers earthquake, 2000, PHD thesis
    Masterlark T. Wang, H. F. 2003. Transient Stress-Coupling Between the 1992 Landers and 1999 Hector Mine, California, Earthquakes[J]. Bull seism Soc Am, 92(4):1470-1486
    McNamara DE, Owens TJ, Silver PG, Wu FT, Shear wave anisotropy beneath the Tibetan Plateau.J. Geophys. Res. 1994, 99: 13655-65
    Melosh H, Raefsky A. 1980, The dynamic origin of subduction zone topography, Geophys. J. R.astr. Soc,60, 8441-8451
    Melosh H, Raefsky A. 1981. A simple and efficient method for introducing faults into finite element computations[J]. Bull seism Soc Am, 135: 1391-1400
    Min W, Zhang P., and Deng Q., Preliminary Studies on Regional Paleoearthquake Behavior in the Interaction Area between the Northeastern Margin of Tibetan Plateau and the Ordos Block,Acta Seismologica Sinica, 13, 2000, 180-188
    Nalbant S S, Hubert A, King G C P. Stress coupling between earthquakes in the northwest Turkey and the north Aegean Sea[J]. J Geophys Res, 1998.103:24 469-24 486
    Nur, A., Mavko, G, 1974, Postseismic viscoelastic rebound, Science, 183,204
    Okada, Y. 1985. Surface deformations due to shear and tensile faults in a half space[J]. Bull seism Soc Am,75: 1135-1154
    
    Okada, Y. 1992. Internal deformation due to shear and tensile faults in a half space[J]. Bull seism Soc Am, 82: 1018-1040
    Ouchi, T., A. Lin, T. Maruyama, The 1999 Chi-Chi (Taiwan) Earthquake: Earthquake Fault and Strong Motions[J], Bulletin of the Seismological Society of America, 2001,91: 966-976
    Owens TJ, Zandt G 1997. Implications of crustal property variations for models of Tibetan plateau evolution. Nature 387:37-43
    Patzig, R., Shapiro, S., Asch, G et al., 2002, Seismogenic plane of the northern Andean subduction zone from aftershocks of the Antofagasta (Chile) 1995 earthquake, Geophys. Res.Lett., 20(8), 1246-1249
    Peltzer, G, Rosen, P., Hudnut, K., 1996, Postseismic rebound in fault stop overs caused by pore fluid flow, Science, 273, 1202-1204
    Peltzer, G, Rosen, P., Rogez, F. et al., 1998, Poroelastic rebound along the Landers 1992 earthquake surface rupture, J. Geophy. Res., 103(B12), 30131-30145
    Piombo A,Martinelli G,Dragoni M, 2005, Post-seismic fluid flow and Coulomb stress changes in a poroelastic medium, Geophys J Int, 162, 507-515.
    Pollitz, F. F. (1997), Gravitational viscoelastic postseismic relaxation on a layered spherical Earth, J. Geophys. Res., 102,17921-17941.
    Pollitz, F.F., Wicks, C. & Thatcher, W., 2001. Mantle flow beneath a continental strike-slip fault:postseismic deformation after the 1999 Hector Mine earthquake, Science, 293(5536),1814-1818.
    Pollitz, F. F. 2005. Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake[J]. J. Geophys. Res.,
    Pride, S.R.. Gangi, A. F., Morgan, D. D., 1992, Deriving the equations of motion for porous isotropic media, J. Acoust. Soc. Am, 92(6), 3278-3289
    Pride, S.R.. 1994, Governing equation for the coupled electromagnetics and acoustics of porous media, Physical Review B, 50(21), 15678-15696
    Pride, S.R., Moreau, F., Gavrilenko, P, Mechanical and electrical respons due to fluid-pressure equilibration following an earthquake, J Geophys Res, 2004,109, B03302,doi: 10.1029/2003JB002690
    Pritchard, M. E., Simons, M., Rosen, P. A. et al., 2002, Coseismic slip from the 1995 July 30 Mw=8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations, Geophys.J. Int., 150,362-376
    Pritchard, M. E., 2003, Recent crustal deformation in west-central South America, PhD thesis,California Institute of Technology
    R. S. Stein and M. Lisowski,: The 1979 Homestead Valley earthquake sequence, California:Control of aftershock and postseismic deformation[J], J. Geohys. Res., 1983,88,6477-6490
    Rice, J. R., Cleary, M. P., 1976, Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constitunts, Rev. Geophys., 14,227-241
    Roeloffs, E. A., 1988, Hydrologic precursors to earthquakes: A review, Pure Appl. Geophys., 126,177-209
    Roeloffs, E. A., 1996, Poroelastic techniques in the study of earthquake related hydrologic phenomena, Adv. Geophys., 37,135-195
    Roeloffs, E. A., 1998, Persistent water level changes in a well near Parkfield, California, due to local and distant earthquake, J. Geophys Res., 103, 869-889
    Roeloffs, E. A., 1997, Quilty, E. G, Water level and strain changes preceding and following the August 4, 1985, Kettleman Hills, California, earthquake, Pure Appl. Geophys., 149,21-49
    Ruegg, J. C, Campos, J., Armijo, R. et al. 1996. The Mw=8.1 Antofagasta(north Chile) earthquake of July 30,1995: first results from teleseismic and geodetic data[J].GRL,23(9):917-920
    Scholz, C. H., Wyss, M., Smith, S. W., 1969, Seismic and asismic slip on the San Andreas fault, J.Geophys. Res., 74, 2049-2069
    Segall, P., 1985, Stresses and subsidence resulting from subsurface fluid withdrawal in the epicentral region of the 1983 Coalinga earthquake, J. Geophys., Res., 90,6801-6816
    Sheu, Shyh-Yang, Shieh, Chiou-Fen. 2004. Viscoelastic-afterslip concurrence: a possible mechanism in the early post-seismic deformation of the Mw 7.6, Chi-Chi(Taiwan) earthquake[J]. Geophys. J. Int.,159:l 112-1124
    Shieh, C. F., Sheu, S. Y., Shih, R. C, 2001, Correlation between surface damage and the coseismic displacement and stress relaxation of the 1999 Chi-Chi, Taiwan earthquake, GRL,28(17), 3381-3384
    
    Sibuet, J. C, Hsu, S. K., 2004, How was Taiwan created? Tectonophysics, 379, 159-181
    Smith, S. W., Wyss, M, 1968, Displacement on the San Andreas fault subsequent to the 1966 Parkfield earthquake, Bull. Seism. Soc. Am., 58, 1955-1973
    Sobiesiak, M. M. 2000. Fault Plane Structure of the Antofagasta, Chile, Earthquake of 1995[J].GRL, 27(4):577-600
    Steketee, J. A. 1958, On Volterra's dislocation in a semi-infinite elastic medium, Can. J. Phys, 36,192-205
    Thora, A., Sigurjon, J., Pollitz, F. et al., 2005, Postseismic deformation following the June 2000 earthquake sequence in the south Iceland seismic zone, JGR, 110, doi:10.1029/2005JB003701
    Toda, S., R. S. Stein, King.G, Coulomb_25_User_Guide, USGS, 2003
    Vasco, D. W., Karasaki, K., Doughty, C, 2000, Using surface deformation to image reservoir dynamics, Geophysics, 65, 132-147
    
    Wang, H. F., 2000, Theory of linear poroelasticity, Princeton Univ. Press, Princeton, N. J.
    Wang, J., Wyss, M., 1980, Interpretations of postseismic deformation with a viscoelatic relaxation model, J Geophys Res, 85(B11), 6471-6477
    Wang, J. C, C. F. Shieh, and T. M. Chang (2003). Static stress changes as a triggering mechanism of a shallow earthquake: case study of the 1999 Chi-Chi, Taiwan earthquake[J], Physics of the Earth Planetary Interiors, 135,17-25
    Wang Qi, Zhang Pei-zhen et al., Present-day crustal deformation in continental China constrained by Global Positioning System measurements, Science, 294, 2001, 574-577
    Wang,R., Lorenzo Marti' n, F.,Roth, F., Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP[J]. Computers & Geosciences, 2003,29 (2), 195 - 207
    Wang, R., Kumpel, H., 2003, Poroelasticity: Efficient modeling of strongly coupled, slow deformation processes in a multilayered half-space, Geophysics, 68(2), 705-717
    Wang, R., Lorenzo-Martin, F. & Roth, F. 2006. A semi-analytical software PSGRN/PSCMP for calculating co- and post-seismic deformation on a layered viscoelastic-gravitational half-space, Computers and Geosciences[J]. 32:527 - 541
    Wang, R., 1999, A simple orthonormalization method for stable and efficient computation of Green's functions, Bull. Seis. Soc. Am., 89, 733-741
    Wei W, Unsworth M, Jones A et al., Detection of widespread fluids in the Tibetan crust by magnetotelluric studies, Science 2001, 292: 716-718
    Xia, Y., Michel, G W., Reigber, C. et al.2003. Seismic unloading and loading in northern central Chile as observedby differential Synthetic Aperture Radar Interferometry (D-INSAR)and GPS[J].Int. J. Remote Sensing, 24(22): 4375-4391
    
    Xu, X, Yu G, Klinger Y, et al., Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), northern Tibetan Plateau, China. J Geophys Res, 2006, 111, B05316, doi: 10.1029/2005JB003488
    
    Yang, X., Davis, P., 1986, Deformation due to a rectangular tension crack in an elastic half-space,Bull. Seism. Soc. Am. 76, 865-881
    
    Yu, S. B., Chen, H. Y., Kuo, L. C, 1997, Velocity field of GPS stations in the Taiwan area,Tectonophysics, 274,41-59
    
    Yu, S.B., Kuo,L.C, Hsu, Y.J. et al. Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake[J], Bull. Seismol. Soc. Am.,,2001,91,3,995-1012
    Zhang, P., Molnar, P., and Downs, W., Increased sedimentation rates and grainsizes 2-4 Myr ago due to the influence of climate changes on erosion rates, Nature, 410,2001, 891-897.
    Zhang et al. Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi,Taiwan, earthquake[J], J. Geophys. Res., 2003, 108(B5), 2232, doi: 10.1029/2002JB001889
    Zhu L, Helmberger DV. 1998. Moho offset across the northern margin of the Tibetan plateau.Science 281: 1170-1172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700