用户名: 密码: 验证码:
地震台阵技术在地震学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数字地震台网的急剧增加和基于互联网的数据共享,产生了巨大的地震波数据积累。这种数据积累给地震学带来的优势不仅仅体现于其射线覆盖率和地震定位的准确性,而且还方便研究者应用特殊的分析方法提取来自地球深部更为细微结构的信息。本文利用GRSN、FNET、ORFEUS、CDSN等台网所接收到的波形数据,对昆仑山地震的破裂过程、苏门答腊地震的P波波形混杂、欧洲南部410km地震波速度间断面和西太平洋下地幔D”层的剪切波速度异常等问题进行了详细的地震学研究。
     2001年11月14日的昆仑山地震(Ms8.1),是我国大陆近半个世纪以来最强烈的地震,其地震破裂过程具有极长的走滑破裂带(~400km)和超过剪切波速度的破裂速度。本文以地表野外观测到的破裂带和INSAR同震破裂成像的结果为断层约束,通过改进的后向褶积(back-projection)方法,从位于地震震中西北的GRSN台网和震中东南的ISN台网两个角度联合对昆仑山地震的破裂过程进行了成像研究。结果显示,从破裂速度的角度出发,昆仑山地震可以分为四段,其破裂速度分别为2.3km/s、5.5km/s、4.3km/s和4.1km/s。除第一段的破裂速度低于Rayleigh波速度外,其它几段的破裂速度都超过了地壳中剪切波的波速,这种现象被称为超剪切破裂。这些速度段的空间分布与破裂带断层的产状有着良好的对应关系。该结果证实了陈晓非教授提出的超剪切速度破裂与断层地表出露的关系很可能是解释昆仑山地震中由sub Rayleigh速度破裂转变为超剪切速度破裂的转换机制。
     苏门答腊地震中PP等后续震相对P波震相的污染给地震学研究,特别是对该地震震源过程的研究带来了一定困难。为解决这一问题,本文提出了一种基于不同震相慢度的循环叠加方法,以期将这些震相分离开来,同时还构造了一系列理论地震图用于检验该方法的正确性。结果表明,分离出的波形清晰度高,失真较小,将分离波形按走时叠加得到的波形重构也与原始输入波形相符。本文利用通过这一检验后的波形分离方法对2005年3月28目的Nias地震和2004年12月26日的Sumatra地震分别进行了P波波形的提取。进一步的研究还显示,对于Sumatra地震的超长破裂带(>1200km),本方法还存在一定不足,不过尚在可接受范围内。通过对Nias、地震和2006年7月17日的Java地震持续时间进行的详细分析显示,这两个地震的持续时间分别为~120s和~190s。由此推断,后一地震引发海啸的可能较大,这与实际情况相符。
     本文还利用GRSN和ORFEUS台网数据对欧洲南部地幔中的410km地震波速度间断面的精细结构进行了研究。对P波在该间断面绕射波形的观测和理论分析显示,单纯的尖锐速度结构或是线性渐变的速度过渡层产生的绕射波形都与观测到的振幅变化规律不符。我们利用F—K方法对各种不同速度结构的410km间断面模型计算了理论地震图,并将计算结果的振幅变化规律与实际数据做了详细的比较。结果显示,这一地区的410km间断面并不十分尖锐,其过渡带厚度约为20km。而最符合实际数据提供的振幅变化规律的结构模型,为具有50%的线形速度渐变层和50%的速度阶跃。这一结果与Gaherty(1999)根据矿物学实验提出的地震波速度随深度变化的规律相似,可看做是后者的一个近似的地震观测学证据。这一点表明,这个速度变化层可能的地球化学解释是由上地幔中橄榄岩和榴辉岩的特定比例造成的。
     针对西太平洋剪切波低速区边缘所引起的复杂剪切波波形,本文还相应于何玉梅等(2006)提出的D”层速度结构模型提出了能适于更大震中距范围内数据的模型。本文提出的模型在核幔边界上方30km~230km处存在2%高速异常层,而去除了何玉梅等模型中该区域存在超低速区的结构。这种模型与钙钛矿在较高温情况下相变所产生的速度结构十分类似。我们推测,后钙钛矿相变是引起该区域剪切波波形复杂化的原因。
     在本文的最后,我们研究了2000年以来斐济—汤加地区发生的14个震深大于180km的地震。采用其在中国数字地震台网上接受到的数据,我们发现在某些台站,尤其是KMI台站上接收到的数据波形中ScS震相存在明显延迟,导致S+ScS的整体波形形状发生变化。为解释D”层对数据波形的影响,我们按层析模型的异常分布构建了D”层的剪切波速度异常模型。对这些模型的地震图合成表明,靠近震源一侧为约—3%低速异常的模型可能解释数据波形的变化。本文还对异常区的边界范围进行了确认,由于研究区域所处的特殊位置,这一结果对确定太平洋低速异常区的边界提供了重要证据。
Benefit form the building of digital seismic networks and the Internet sharing,a great deal of seismology data is available.It would advantage us not only in numbers, but also in quality.With special analysis methods for these seismic arrays,we can get more details of seismic signals,which infer more structures in the Earth.In this research,we analysis data from networks include GRSN,FNET,ORFEUS,CDSN and etc to solve several problems:the rupture process of the Kokoxili earthquake,the waveform mixing of the Sumatra earthquake,the fine structure of the 410km discontinuity beneath the south Europe,and the S velocity anomalies of the lowermost mantle beneath the western Pacific.
     Long strike-slip co-seismic rupture zone(>400km)has been observed after the 14~(th)November,2001 Kokoxili earthquake.The rupture speed of this earthquake has been determined to exceed the shear wave velocity in the crust.Based on the results of field investigations and INSAR reevaluations,we used an improved back projection method to image the rupture process of this earthquake.As a result,the rupture process of the Kokoxili earthquake can be divided with rupture velocity 2.3km/s,5.5km/s,4.3km/s and 4.1km/s in 4 segments.Rupture started at sub-Rayleigh wave speed and became supershear when it approached the main Kunlun fault at the south Bukadabanfeng.The 4 segments divided with rupture speed can correspond well with the fault segments,which is Taiyanghu segment,the two parts of the Kusaihu segment and the Kunlun Pass segment.It seems that the mechanism of sub-Rayleigh rupture transferring to supershear can be explained with the surface touching of the fault.
     In the Sumatra earthquake,the long series of P wave train mixing with PP phase bring us a lot of trouble.We use a stacking method divide the mixing phases.To check the method,we calculated a group of synthetic seismograms and applied the dividing method on them.In result,the divided phases were clear,and the reconstructed seismograms fit well with the input seismograms.Using this method, we divided P waveforms from the wave train of the 28~(th)Mar,2005 Nias earthquake and the 26~(th)December,2004 Sumatra earthquake.Further researches shows that the huge rupture zone of the Sumatra earthquake still affect the result,but the effect is acceptable.As an application,we divided the P waveform form 17~(th)July,2007 Java earthquake to get the actual extended time of the event.Using this we can get this parameter rapidly and actually even for large events.
     The May 18,1998,earthquake in south Italy(Mw5.4)produced a strong topside reflection off the 410-km discontinuity which was recorded on a multitude of seismic arrays throughout the south Europe.Data from GRSN and ORFEUS networks provide a detailed look at the 410-km structure.The salient features of the data set are(1) amplitude of P410 is 1/2 that of P phase in distance 16°~14°;(2)P410 match P phase together at distance 14°;(3)amplitude of P410 is 2/3 that of P phase in distance 14°~11°;(4)P410 die away rapidly in distance 11°~10.5°;(5)P410 disappears when distance little than 10.5°.These features are best modeled by a 20km thick 410-km model which contains a 50%part of linear gradient and a 50%part of velocity jump. The model is similar with a mineralogical model for Olivineα-βtransition.
     In the last part of the article,we observed the lowermost mantle beneath the western pacific with seismic wave trains.We calculated the ScS-S residuals from CDSN data,and found strong S velocity abnormal(-3s)in the southwestern part of the research area,where the northeastern part is a weak abnormal area.We use 2D finite-difference programs to calculate some synthetics with 3 typical mantle models: mantle plumes with -3%S velocities,the edge of mantle plumes with -3%S velocities in the right half,and a -30%ULVZ in the bottom of the mantle.Comparing the synthetics with the data,we considered that the source of the S abnormal can be explained that the area is in the edge of the Pacific mantle Plume.
引文
1.徐锡伟,陈文彬等,2002,2001年11月14日昆仑山库塞湖地震(Ms8.1)地表破裂带的基本特征,地震地质,24:1.
    2.马超,单新建,2006,昆仑山Ms8.1地震震源参数的多破裂段模拟研究,地球物理学报,49(2):428-437.
    3.刘希强,周蕙兰,1996,地幔内部间断面研究的进展,国际地震动态,11.
    4.臧绍先,周蕙兰等,2003,地球内部结构和物质性质的研究,地震学报,25:453-464.
    5.吴珍汉等,2006,东昆仑南部西大滩断裂的地震鼓包及形成时代,地质论评,52:16-20.
    6.王庆良,王建华等,2004,东昆仑断裂带及昆仑山口西8.1级地震垂直形变研究,地震地质,26:273-282.
    7.唐群署,李丽红,2006,核幔边界D”区的地震学研究进展,地学前缘,13:213-224.
    8.吴树仁等,2002,昆仑山地震地表破裂带东段几何学与运动学,地质通报,21:554-562.
    9.周丽梅,臧绍先,1994,地球内部间断面研究的地震学方法,地球物理学进展,9:33-53.
    10.侯渭,谢鸿森,1996,关于地核和核幔边界区物质的成分及运动特征的研究进展,地球科学进展,11:204-209.
    11.李光品,傅容珊,1995,核-幔边界的动力学背景,地球物理学报,38:548-551.
    12.朱介寿,2000,下地幔及核幔边界结构及地球动力学,地球科学进展,15:139-143.
    13.青海省地震局,中国地震局地壳应力研究所,1999,东昆仑活动断裂带,北京,地震出版社,186.
    14.任金卫,汪一鹏,吴章明,等.1999.青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率(A).见:中国地震局地质研究所编.活动断裂研究(7).北京:地震出版社.147-163.
    15.徐锡伟.2000.藏北玛尼地震科学考察.1999《中国地震年鉴》.北京:地震出版社.327-329.
    16.乔学军,王琪,杜瑞林等,2002,昆仑山口西Ms8.1地震的地壳变形特征,大地测量与地球动力学,22(4),6-11
    17.任金卫,王敏,2005,GPS观测的2001年昆仑山口西MS 811级地震地壳变形,第四纪研究,25(1),34-44
    18.陶玮,沈正康,万永革等,2006,根据InSAR同震测量资料反演东昆仑断裂两侧地壳弹性介质差异,中国地球物理第二十二届年会会刊,2006年10月15-19日,成都,四川科学技术出版社,595
    19.Aiming Lin,et al,2002,Co-seismic Strike-Slip and Rupture Length Produced by the 2001 Ms8.1 Central Kunlun Earthquake, Science, 296:2015.
    
    20. Arwen Deuss, Simon A. T. Redfern, Kit Chambers, John H. Woodhouse, 2006, the Nature of the 660-Kilometer Discontinuity in Earth's Mantle from Global Seismic Observations of PP Precursors, 311:198-202.
    
    21. Arwen Deuss and John Woodhouse, 2001, Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle, 294:354-359.
    
    22. Aki, K., 1979, Characterization of barriers on an earthquake fault, J. Geophys. Res., 84,6140-6148.
    
    23. Andrews, D. J.,1976, Rupture velocity of plane strain shear cracks, J. Geophys. Res., 81,5679- 5687.
    
    24. Aki, K.& Richards, P.G, 2002. Quantitative Seismology Theory and Methods, 2nd edition, University Science Books, Sansalito, CA.
    
    25. Ammon, C, 1991, Isolation of receiver effects from teleseismic P waveforms, Bull. Seim.Soc.Am., 82:2504-2510.
    
    26. Anderson, D.L., 1998.The EDGES of the mantle, in The Core-Mantle Boundary Region, edited by M. Gurnis, M. E. Wysession, E. Knittle, and B. A. Buffett, pp. 255-271, AGU,Washington, D.C..
    
    27. Anderson, O. L., 2002, The power balance at the core-mantle boundary, Phys. Earth Planet.Inter., 131:1-17,
    
    28. Bina, C.R., 1991, Mantle discontinuities, Review of Geophysics Supple, 783-793.
    
    29. Bouchon, M., M.-P. Bouin, H. Karabulut, M. N. Toksoz, M. Dietrich, and A. J. Rosakis (2001), How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquakes, Geophys. Res. Lett., 28:2723-2726.
    
    30. Benz, H. and J. Vidale, 1993, Sharpness of upper-mantle discontinuities determined from high-frequency reflections, Nature, 365:147-150.
    
    31. Bijwaard, H., W. Spakman, and E. R. Engdahl, 1998, Closing the gap between regional and global travel time tomography, J. Geophys. Res., 103,30055-30078.
    
    32. Boschi, L, and A. M. Dziewonski, 1999, High- and low-resolution images of the Earth's mantle: Implications of different approaches to tomographic modeling, J. Geophys. Res., 104,25,567-25,594.
    33. Boschi, L., and A. M. Dziewonski, 2000, Whole Earth tomography from delay times of P,PcP, and PKP phases: Lateral heterogeneities in the outer core or radial anisotropy in the mantle?, J. Geophys. Res., 105,13675-13696.
    
    34. C. Lassere et al, 2005, Coseismic deformation of the 2001 Mw=7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry, J.Geophys.Res., 110:B12408.
    
    35. Chen X F. 1999. Seismogram synthesis in multi-layered half-space, Part I. Theoretical formulation [J]. Earth Res. China, 13(2), 150-174.
    
    36. Chen X F, Zhang H M. 2001. An efficient method for computing Green's functions for a layered half-space at large epicentral distances, Bull Seism Soc Amer, 91,858-869.
    
    37. C.Vigny, W.J.F.Simons, S.Abu, Ronnachai Bamphenyu, et al, 2005.Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in southeast Asia, Nature,VOL.436, 201-206.
    
    38. Castle, J. C, and R. D. van der Hilst, 2000, The core-mantle boundary under the Gulf of Alaska: No ULVZ for shear waves, Earth and Planet. Sci. Lett. 176,311-321.
    
    39. Castle, J. C, and R. D. van der Hilst, 2003, Using ScP precursors to search for mantle structures beneath 1800 km depth, Geophys. Res. Lett., 30(8):1422.
    
    40. D. P. Robinson, 2006, The Mw7.8, 2001 Kunlunshan earthquake: Extreme rupture speed variability and effect of fault geometry, J.Geophys.Res., 111 :B08303.
    
    41. David P. Hill, 1972, An Earth-Flattening Transformation for Waves From a Point Source, 62:1195-1210.
    
    42. Duk-Kee Lee and Stephen P. Grand, 1996, Depth of the upper mantle discontinuities beneath the East Pacific Rise, Geophys.Res. Lett., 23:3369-3372.
    
    43. D.L. Anderson, 1989, Theory of the Earth (Blackwell Scientific, Boston, Mass.).
    
    44. Davies, G., and M. Gurnis, 1986, Interaction of mantle dregs with convection lateral heterogeneity at the core-mantle boundary, Geophys. Res. Lett., 13,1517-1520.
    
    45. Dziewonski, A.M. and Anderson, D.L., 1981, Preliminary Reference Earth Model, Phys.Earth planet. Inter., 25: 297-356.
    
    46. Earle, P. S., and P. M. Shearer, 1997, Observations of PKKP precursors used to estimate small-scale topography on the core-mantle boundary, Science, 277, 667-670.
    
    47. F.Kruger and M.Ohrnberger, 2005. Tracking the rupture of the Mw=9.3 Sumatra earthquake over 1,150km at teleseismic distance, Nature Letters, 03696.
    
    48. F.Kruger and M.Ohrnberger, 2005. Spatio-temporal source characteristics of the 26 December 2004 Summatra earthquake as imaged by teleseismic broadband arrays,Geophys.Res.Lett., 32, L24312.
    
    49. Farnetani, C. G., and M. A. Richards, 1995, Thermal entrainment and melting in mantle plumes, Earth Planet. Sci. Lett., 136,251-267.
    
    50. Filip Neele, 1996, Sharp 400-km discontinuity from short-period P reflections, Geophys.Res. Lett., 23:419-422.
    
    51. G. Muller, 1971, Approximate Treatment of Elastic Body Waves in Media with Spherical Symmetry, Geophys. J. R. astr. Soc, 23:435-449.
    
    52. Guilbert, J., Roueff, A., Vergoz, J. & Cansi, Y. 2005. An original image of the seismic rupture of the Sumatra Mw 9.0 using PMCC from seismic and hydroacoustic small array.Geophys. Res. Lett. 32, L15310, doi: 10.1029/2005GL022966.
    
    53. Guilbert, J., J. Vergoz, E. Schissele, A. Roueff, and Y. Cansi, 2005. Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the Mw = 9.0 Sumatra earthquake, Geophys. Res. Lett.,32, L15310, doi:10.1029/2005GL022966.
    
    54. Garnero, E. J., and D. V. Helmberger, 1996, Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific, Geophys. Res. Lett., 23,977-980.
    
    55. Garnero, E. J., and R. Jeanloz, 2000, Fuzzy patches on the Earth's core-mantle boundary,Geophys. Res. Lett., 27,2777-2780.
    
    56. Garnero, E. J., and T. Lay, 1997, Lateral variations in lowermost mantle shear wave anisotropy beneath the north Pacific and Alaska, J. Geophys. Res., 102,8121-8135.
    
    57. Garnero, E. J., S. P. Grand, and D. V. Helmberger, 1993, Low P wave velocity at the base of the mantle, Geophys. Res. Lett., 20,1843-1846.
    
    58. Garnero, E. J., D. V. Helmberger, and S. P. Grand, 1993, Constraining outermost core velocity with SmKS waves, Geophys. Res. Lett., 20,2463-2466.
    
    59. Grand, S.P., 2002, Mantle shear-wave tomography and the fate of subducted slabs, Phil. Trans. R. Soc. Lond., A, 360,2475-2491.
    
    60. George Helffrich, et al, 2003, Transition zone structure in a tectonically inactive area:410 and 660 km discontinuity properties under the northern North sea, Geophys. J. Int., 193-199.
    
    61. Gilbert, F. and D. Helmberger, 1972, Generalized ray theory for a layered sphere, Geophys. J.R. Astron. Soc, 27:57-80.
    
    62. Helffrich, G., and C. R. Bina, 1994, Frequency dependence of the visibility and depths of mantle seismic discontinuities, Geophys. Res. Lett., 21:2613-2616.
    
    63. Huang, Y., B.-S. Huang, C. Wang, and K. Wen, 2004. Numerical modeling for earthquake source imaging; implications for array design in determining the rupture process, Terr.Atmos. Ocean. Sci., 15(2), 133-150.
    
    64. Helmberger, D.V., 1983. Theory and application of synthetic seismograms, in Earthquakes: Observation, Theory and Interpretation, pp. 174-222, Soc. Italiana di Fisica, Bolgna, Italy.
    
    65. Haskell, N.A., 1963. Radiation pattern of Rayleigh waves from a fault of arbitrary dip and direction of motion in a homogeneous medium, Bull. seism. Soc. Am., 51,495-502.
    
    66. Haskell, N.A., 1964. Radiation pattern of surface waves from point sources in a multi-layered medium, Bull. seism. Soc. Am., 54,377-393.
    
    67. Huang, B.-S. 2001. Evidence for azimuthal and temporal variations of the rupture propagation of the 1999 Chi-Chi, Taiwan earthquake from dense seismic array observations,Geophys. Res. Lett., 28,3377-3380.
    
    68. Huang, Y., B.-S. Huang, C. Wang, and K. Wen, 2004. Numerical modeling for earthquake source imaging; implications for array design in determining the rupture process, Terr.Atmos. Ocean. Sci., 15(2), 133-150.
    
    69. Hellffrich, G.R., 2000, Topography of the transition zone seismic discontinuities,Rev.Geophys., 38:141-158.
    
    70. Hellfrich, G.R. and Wood, B.J., 1996, 410km discontinuity sharpness and the form of the olivine α-β phase diagram: resolution of apparent seismic contradictions, Geophys. J. Int.,126: F6-11.
    
    71. Hedlin, M. A. H., and P. M. Shearer, 2000, An analysis of large-scale variations in small-scale mantle heterogeneity using Global Seismographic Network recordings of precursors to PKP, J. Geophys. Res., 105,13,655-13,673.
    
    72. Ishii, M., and J. Tromp, 1999, Normal-mode and free-air gravity constraints on lateral variations in velocity and density, Science, 285, 1231-1236.
    73. John E and Vidale, 1995, The 410-km-depth discontinuity: A sharpness estimate from near-critical reflections, Geophys.Res. Lett., 22:2557-2560.
    
    74. James B. Gaherty at el, 1999, Testing plausible upper-mantle compositions using fine-scale models of the 410-km discontinuity, Geophys.Res. Lett., 26:1641-1644.
    
    75. John C. Castle and Kenneth C. Creager, 1998, NW Pacfic slab rheology, the seismicity cutoff,and the olivine to spinel phase change, Earth Planets Space, 50:977-985.
    
    76. Kaiwen Xia, 2005, Laboratroy Investigations of Earthquake Dynamics, PHD thesis.
    
    77. Krisoffer T. et al, 2005, Rupture details of the 28 March 2005 Sumatra Mw 8.6 earthquake imaged with telesismic P waves, Geophys.Res. Lett., 32:L24303.
    
    78. Kennett, B. L. N., and E. R. Engdahl, 1995. Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122,108-124.
    
    79. Kennett, B.L.N., Engdahl, E.R, 1991, Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 105:429-565.
    
    80. Kennett, B.L.N., Engdahl, E.R. and Buland, R., 1995, Constrints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122:108-124.
    
    81. Kennett, B. L. N., S. Widiyantoro, and R. D. van der Hilst, 1998, Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle, J. Geophys. Res., 103,12,469-12,493.
    
    82. L. Wen, 2002, An SH hybrid method and shear velocity structures in the lowermost mantle beneath the central Pacific and the south Atlantic Oceans, J.Geophys. Res., 107,doi:10.1029/2001JB000499.
    
    83. Li Haibing at el, 2005, Slip rate on the kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw~7.9 Kokoxili earthquake, 237:285-299.
    
    84. Lay, T. and Don Helmberger, 1983, A lower mantle S-wave triplication and the shear velocity structure of D", Geophys. J. R. Astron. Soc., 75:799-838.
    
    85. Lin, A., M. Kikuchi, and B. Fu, 2003, Rupture segmentation and process of the 2001 Mw 7.8 central Kunlun, China, earthquake, Bull. Seismol. Soc. Am., 93,2477-2492.
    
    86. Lomax, A., 2004. Rupture during 8 minutes propagating to the NNW for the 2004 Sumatra-Andaman Island earthquake: Is this earthquake larger than the 1960 Chile earthquake, Eur.Med. Seismol. Cent., Bruyeres-Le-Chatel, France. (Available at http://www.emsc-csem.org/ Doc/SUMATRA_261204.html)
    
    87. Lupei Zhu and Luis A.Rivera, 2002. A note on the dynamic and static displacements form a point source in multilayered media. Geophys.J.Int., 148. 619-627.
    
    88. Lay, T., E. J. Garnero, C. J. Young, and J. B. Gaherty, 1997, Scale-lengths of heterogeneity at the base of the mantle from S-wave differential times, J. Geophys. Res., 102,9887-9909.
    
    89. M. Bouchon and Martin Vallee, 2003, Observation of long Supershear Rupture During the Magnitude 8.1 Kunlunshan Earthquake, Science, 301:824-826.
    
    90. Marcia McNutt, 1999, the Mantle's Lava lamp, Nature, 402:739-740.
    
    91. M Ishii, 2005, Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array, Nature, 435:933-936.
    
    92. Michael Antolik, et al, 2004, The 14 November 2001 Kokoxili (Kunlunshan), Tibet,Earthquake: Rupture Transfer through a Large Extensional Step-Over, Bull. Seis. Soc. Am.,94:1173-1194.
    
    93. M. E. Wysession, et al, 2001, Using MOMA Broadband Array ScS-S Data to Image Smaller-Scale Structures at the Base of the Mantle, 28:867-870.
    
    94. Mori, J., and D. V. Helmberger, 1995, Localized boundary layer below the mid-Pacific velocity anomaly identified from aPcP precursor, J. Geophys. Res., 100,20,359-20,365.
    
    95. Ni, S., and D. V. Helmberger, 2003, Ridge-like lower mantle structure beneath South Africa,J. Geophys. Res., 108, B2,2094.
    
    96. Niu, F., and L. Wen, 2001, Strong seismic scatterers near the core-mantle boundary west of Mexico, Geophys. Res. Lett., 28,3557-3560.
    
    97. Ozacar, A. A., and S. L. Beck, 2004, The 2002 Denali fault and the 2001 Kunlun fault earthquakes: Complex rupture processes of two large strikeslip earthquakes, Bull. Seismol.Soc. Am., 94, S278-S292.
    
    98. Peter M. Shearer, 1999. Introduction to Seismology, Cambridge University Press, Chapter 4, Ray theory: Travel Times, 36-52; Chapter 8, Surface Waves: Normal Modes, 144-158.
    
    99. P. M. Shearer and Megan P. Flanagan, 1999, Seismic Velocity and Density Jumps Across the 410- and 660-Kilometer Discontinuities, Science, 285:1545-1548.
    
    100. P.M. Shearer, 1990, Seismic imaging of Upper-mantle structure with new evidence for a 520km discontinuity, Nature, 344:121-126
    101. P.M. Shearer, 1991, Constrains on upper mantle discontinuities from observations of long-period reflected and converted phase, J.Geophys.Res., 96:18147-18182.
    
    102. Raul W. Valenzuela, Michael E. Wysession et al, 2000, Laterial variations at the base of the mantle from profiles of digital Sdiff data, 105:6201-6220.
    
    103. Revenaugh, J. and T. H. Jordan., 1991, Mantle layering from ScS reverberation: 1,waveform inversion of zeroth-order reverberations, J. G. R., 96(B12):19749-19762.
    
    104. Revenaugh, J. and T. H. Jordan., 1991, Mantle layering from ScS reverberation: 2, the transition zone, J. G. R., 96(B12):19763-19780.
    
    105. Revenaugh, J. and T. H. Jordan., 1991, Mantle layering from ScS reverberation: 3, the upper mantle, J. G. R., 96(B12):19781-19810.
    
    106. Revenaugh, J., and R. Meyer, 1997, Seismic evidence of partial melt within a possibly ubiquitous low-velocity layer at the base of the mantle, Science, 277,670-673.
    
    107. Ritsema, J., and H. J. van Heijst, 2000, Seismic imaging of structural heterogeneity in Earth's mantle: evidence for large-scale mantle flow, Science Progress, 83,243-259.
    
    108. Russell, S. A., T. Lay, and E. J. Garnero, 1998, Seismic evidence for smallscale dynamics in the lowermost mantle at the root of the Hawaiian hotspot, Nature, 369,255-257.
    
    109. Sidao Ni, Don V. Helmberger, 2003, Seismological constraints on the South African superplume; could be the oldest distinct structure on earth, Earth Planetary Sci. Lett. ,206:119-131.
    
    110. Sidao Ni, Kanamori, H.&Helmberger, D., 2005. Energy radiation from the Sumatra earthquake, Nature, 434, 582.
    
    111. Seth Stein and Emile Okal, 2005. Ultra-long period seismic moment of the great December 26, 2004Sumatra earthquake and implications for the slip process, Sumatra earthquake moment from normal modes.
    
    112. Sidao Ni, 2005. Computational Seismology: Lecture Notes.
    
    113. Sidao Ni et al, 2005, Energy radiation from the Sumatra earthquake, Nature, 434:582
    
    114. S.N.Bhattachara and Swarn Arora, 1997, A Flattening Transformation for P-SV Waves in Transversely Isotropic Earth, Bull. Seis. Soc. Am, 87:1297-1304.
    
    115. S.P. Grand and Don Helmberger, 1984, Upper mantle shear structure of North America Plate, Geophys. J. R. Astron. Soc, 76:399-438.
    116. S.P. Grand and Don Helmberger, 1984, Upper mantle structure beneath the Northwest Atlantic Ocean, J. G R., 89(B13): 11645-11475.
    
    117. Sidao Ni, Xiaoming Ding and Don V.Helmberger, 2000. Constructing synthetics from deep earth tomographic models, Geophys.J.Int., 140, 71-82.
    
    118. Su, W. J., and A. M. Dziewonski, 1997, Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle, Phys. Earth Planet. Int., 100,135-156.
    
    119. Tim Melbourne and Don Helmberger, 1998, Fine structure of the 410-km discontinuity, J.Geophys.Res., 103:10091-10102.
    
    120. Thorne Lay and Edward J. Garnero, 2004, Core-Mantle Boundary Structures and Processes, IUGG.
    
    121. Van der Woerd J, Ryerson F J, Tapponnier P, et al. 1998. Holocene left lateral slip rate determined by cosmogenicsurface dating on Xidatan segment of the Kunlun Fault (Qinghai,China) [J]. Geology, 26 (8): 695-698.
    
    122. Van der Hilst, et al, 1997, Evidence for deep mantle circulation from global tomography,Nature, 386:578-584.
    
    123. van der Hilst, R. D., and H. Karason, 1999, Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: Toward a hybrid convection model, Science, 283,1885-1888.
    
    124. Wolfgang Friederich, 2003, the S-velocity structure of the East Asian mantle from inversion of shear and surface waveforms, Geophys. J. Int., 153:88-102.
    
    125. Wen, L., and D.V. Helmberger, 1998, Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors, Science, 279,1701-1703.
    
    126. Wysession, M. E., 1996, Imaging cold rock at the base of the mantle: The sometimes fate of Slabs?, in Subduction: Top to Bottom, edited by G. E. Bebout, D. Scholl, S. Kirby,and J. P. Platt, pp. 369-384, AGU, Washington, D. C.
    
    127. Xiwei Xu at el, 2006, Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), northern Tibetan Plateau, China,J.Geophys.Res., 111:B05316.
    
    128. Xia, K., A. J. Rosakis, and H. Kanamori, 2004, Laboratory earthquakes: The sub-Rayleigh-to-super-shear transition, Science, 303, 1859- 1861.
    129. Xiaodong Song and Don V.Helmberger, 1992. Velocity Structure Near the Inner Core Boundary From Waveform Modeling, Geophys.Res.Lett., 97, 6573-6586.
    
    130. Y. Klinger, R. Michel et al, Evidence for an earthquake barrier model from Mw7.8 Kokoxili (Tibet) earthquake slip-distribution, Earth and Planetary Sci. Lett., 242:354-364.
    
    131. Young, C. J. and T. Lay, 1987, The core-mantle boundary, Ann. Rev. Earth. Planet. Sci.Lett., 15:25-46.
    
    132. Young, C. J. and T. Lay, 1987, Evidence for a shear velocity discontinuity in the lower mantle beneath India and the India Ocean, Phys. Earth. Planet. Inter., 49:37-53.
    
    133. Yumei He, L. Wen et al, 2006, Geographic boundary and shear wave velocity structure of the "Pacific anomaly" near the core-mantle boundary beneath western Pacific, Earth and Planetary Sci. Lett., 244:302-314.
    1.万柯松,傅容珊,倪四道,欧洲南部410km间断面的速度结构,中国科学D 辑,待刊
    2.Kesong Wan,Sidao Ni,Super-shear Rupture of the 2001 Kunlun Earthquake,Resolved from back-projection of P waves,Geophys.Res.Lett.,2007,投稿
    3.万柯松,倪四道,西太平洋下地幔的精细结构,中国地球物理年刊,359,2007
    4.万柯松,徐敏等,用震相分离方法研究苏门答腊地震的探讨,中国地球物理年刊,531,2006
    5.万柯松,万新,倪四道,欧洲南部410km间断面的精细结构,中国地球物理年刊,514,2005
    6.万柯松,宋晓东,傅容珊,西太平洋地幔底部CMB区域的S波速度异常及精细结构,中国地球物理年刊,373,2004
    7.万柯松,宋晓东,傅容珊,西太平洋地幔底部及核幔边界的S波速度异常,中国地球物理年刊,409,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700