用户名: 密码: 验证码:
不确定环境下研发项目的决策分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着市场竞争的日益激烈,研究与开发(简称为研发)逐渐成为企业保持竞争优势的源泉和动力。由于研发项目受到市场、技术、资金、原材料等不确定因素的影响,研发决策一般需要在具有高风险的不确定环境下作出。本文研究不确定环境下研发项目的选择、进度计划及投资决策问题。主要工作如下:
     提出了基于模糊模拟的研发项目多准则选择方法,并将企业的研发项目选择决策过程分为战略和战术两个阶段,分别采用模糊优选模型和模糊多准则评价模型对研发项目进行选择,以确定符合企业发展战略的最优研发项目。
     针对研发项目的活动工期为模糊变量的情况,提出了基于模糊模拟的研发项目计划评审技术,用来确定模糊环境下项目网络中的可能关键路径;针对研发项目过程中不确定事件的模糊属性,建立了基于模糊报酬更新过程的研发项目风险模型,并应用模糊模拟技术估计研发项目工期延迟时间的期望值和悲观值,为研发项目的进度管理提供决策依据。
     将停止时间和投资策略作为决策变量,技术突破的间隔时间分别假定为随机变量和随机模糊变量,建立了随机环境和随机模糊环境下基于报酬更新过程的研发项目最优停止决策模型,并设计了基于模拟技术的同步扰动随机逼近算法对模型求解,数值试验表明该方法的可行性。
     建立了模糊环境下基于动态规划的研发项目多阶段决策模型,其中每个阶段决策者都要面临三种决策选择:继续、改进和放弃,并分析了模糊环境下不确定因素的变化对研发项目的管理弹性价值的影响。
In the increasingly competitive market, research and development (R&D) has become a source or an impetus to maintaining the competitive advantage for many industries. The decision-makings of R&D projects are usually made under the uncertain conditions with high risk because the R&D projects are affected by many uncertain factors, such as market, technique, capital and material. This dissertation is to investigate the problems of selection, scheduling and investment decision of R&D projects under uncertainty. The detailed works are described as follows.
     The multi-criteria selection method of R&D projects is presented based on the fuzzy simulation. The selection decision process of R&D projects is divided into the strategic decision period and the tactical decision period. The fuzzy preference model and fuzzy multi-criteria evaluation model are applied to evaluate the candidate projects in the two periods, respectively. Finally, the optimal R&D project has to be selected in accord with the strategy of the firm.
     The program evaluation and review technique (PERT) based on the fuzzy simulation is developed to find the possible critical path of the R&D project network in which the activities durations times are assumed to be fuzzy variables. On the other hand, the contingency model is presented to consider the fuzzy nature of change orders and their impact on the schedule of an R&D project. The fuzzy simulation is employed to estimate the expected value and pessimistic value of the total project delay. It may be helpful to the project scheduling problem of R&D projects at the early stages of project planning and development.
     The optimal stopping decision models of R&D projects are constructed based on the renewal reward processes in the random and random fuzzy environments, respectively. The stopping time and investment strategy are considered as decision variables and the interarrival times between discoveries (jumps) are assumed to be random variables and random fuzzy variables, respectively. The simultaneous perturbation stochastic approximation (SPSA) algorithms based on simulation techniques are designed to solve the models. Finally, the numerical examples are presented to illustrate the effectiveness of these methods.
     The multi-period decision model of an R&D project is considered based on dynamic programming in a fuzzy environment. At each period, the decision maker can take any one of three possible actions: continue, improve, or abandon. The question on how the variances (increasing uncertainty) of these uncertain factors influence the value of managerial flexibility of an R&D project is analysed in a fuzzy environment.
引文
[1] Aldrich C. and Morton T., Optimal funding paths for a class of risky R&D projects, Management Science, 1975, 21(5): 491-500.
    [2] Asher D., A linear programming model for the allocation of R&D efforts, IEEE Transactions on Engineering Management, 1962, 9(4): 154-157.
    [3] Baker N., R&D project selection models: an assessment, IEEE Transactions on Engineering Management, 1974, 21(2): 165-171.
    [4] Baker N. and Pound W., R&D project selection: where we stand, IEEE Transactions on Engineering Management, 1964, 11(4): 124-134.
    [5] Balachandra B. and Friar J., Factors for success in R&D projects and new product innovation: a contextual framework, IEEE Transactions on Engineering Management, 1997, 44(3): 276-287.
    [6] Beaujon G., Marin S. and McDonald G., Balancing and optimizing a portfolio of R&D projects, Naval Research Logistics, 2001, 48(1): 18-40.
    [7] Berghammer R. and Hoffmann T., Relational depth-first-search with applications, Information Sciences, 2001, 139(3-4): 167-186.
    [8] Boschi R., Balthasar H. and Menke M., Quantifying and forecasting exploratory research success, Research Management, 1979, 22(5): 14-21.
    [9] Brealey R. and Myers S., Principles of Corporate Finance, McGraw-Hill, New York, 1992.
    [10] Büyükozkan G. and Feyzioglu O., A fuzzy-logic-based decision-making approach for new product development, International Journal of Production Economics, 2004, 90(1): 27-45.
    [11] Carlsson C., Fuller R., Heikkila, M. and Majlender P., A fuzzy approach to R&D project portfolio selection, International Journal of Approximate Reasoning, 2007, 44(2): 93-105.
    [12] Chanas S. and Zielinski P., Critical path analysis in the network with fuzzy activity times, Fuzzy Sets and Systems, 2001, 122(2): 195-204.
    [13] Chen S. and Chang T., Finding multiple possible critical paths using fuzzy PERT, IEEE Transactions on Systems, Man, and Cybernetics, 2001, 31(6): 930-937.
    [14] Chi T., Liu J. and Chen H., Optimal stopping rule for a project with uncertain completion time and partial salvageability, IEEE Transactions on Engineering Management, 1997, 44(1): 54-66.
    [15] Childs P., Ott S. and Triantis A., Capital budgeting for interrelated projects: a Real Options approach, Journal of Financial and Quantitative Analysis, 1998, 33(3): 305-334.
    
    [16] Childs P. and Triantis A., Dynamic R&D investment policies, Management Science, 1999, 45(10): 1359-1377.
    [17] Coldrick S., Longhurst P., Ivey P. and Hannis J., An R&D options selection model for investment decisions, Technovation, 2005, 25(3): 185-193.
    [18] Cooper R., Edgett S. and Kleinschmidt E., Best practices for managing R&D portfolios, Research Technology Management, 1998, 41(4): 20-33.
    [19] Crama P., Reyck B., Degraeve Z. and Leus R., Managing technology risk in R&D project planning: optimal timing and parallelization of R&D activities, Working Paper Series, London Business School, 2005, http://papers.ssrn.com/.
    [20] Danila N., Strategic evaluation and selection of R&D project, R&D Management, 1989, 19(1): 47-62.
    [21] Davila T., An empirical study on the drivers of management control systems' design in new product development, Accounting, Organizations and Society, 2000, 25(4): 383-409.
    [22] Dickinson M., Thornton A. and Graves S., Technology portfolio management: optimizing interdependent projects over multiple time periods, IEEE Transactions on Engineering Management, 2001, 48(4): 518-27.
    [23] DiMasi J., Hansen R. and Grabowski H., The price of innovation: new estimates of drug development costs, Journal of Health Economics, 2003, 22(2): 151-185.
    [24] Dixit A. and Pindyck R., Investment under Uncertainty, Princeton University Press, Princeton, NJ., 1994.
    [25] Doctor R., Newton D. and Pearson A., Managing uncertainty in research and development, Technovation, 2001, 21(2): 79-90.
    
    [26] Dubois D., Fargier H. and Fortemps P., Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge, European Journal of Operational Research, 2003, 147(2): 231-252.
    [27] Fahrni P. and Spatig M., An application oriented guide to R&D selection and evaluation methods, R&D Management, 1990, 20(2): 155-171.
    [28] Feller M., An Introduction to Probability Theory and Its Applications, John Wiley & Sons, New York, 1971.
    [29] Gabow H., Path-based depth-first search for strong and biconnected components, Information Processing Letters, 2000, 74(3-4): 107-114.
    [30] Gao J. and Feng X., A hybrid intelligent algorithm for fuzzy dynamic inventory system, Journal of Information and Computer Sciences, 2006, 3(4): 41-49.
    [31] Gao J. and Liu B., New primitive chance measures of fuzzy random event, International Journal of Fuzzy Systems, 2001, 3(4): 527-531.
    [32] Gao J. and Liu B., Fuzzy multilevel programming with a hybrid intelligent algorithm, Computer & Mathematics with Applications, 2005, 49(9-10): 1539-1548.
    [33] Ghasemzadeh F. and Archer N., Project portfolio selection through decision support, Decision Support Systems, 2000, 29(1): 73-88.
    [34] Granot D. and Zuckerman D., Optimal sequencing and resource allocation in research and development projects, Management Science, 1991, 37(2): 140-156.
    [35] Güngor Z. and Arikan F., A fuzzy outranking method in energy policy planning, Fuzzy Sets and Systems, 2000, 114(1): 115-122.
    [36] Heidenberger K. and Stummer C, Research and development project selection and resource allocation: a review of quantitative modelling approaches, International Journal of Management Review, 1999, 1(2): 197-224.
    [37] Henriksen A. and Traynor A., A practical R&D project selection scoring tool, IEEE Transactions on Engineering Management, 1999, 46(2): 158-170.
    [38] Herroelen W. and Leus R., Project scheduling under uncertainty: survey and research potentials, European Journal of Operational Research, 2005, 165(2): 289-306.
    [39] Hsu Y., Tzeng G. and Shyu J., Fuzzy multiple criteria selection of government-sponsored frontier technology R&D projects, R&D Management, 2003, 33(5): 539-551.
    [40] Huchzermeier A. and Loch C, Project management under risk: using the real options approach to evaluate flexibility in R&D, Management Science, 2001, 47(1): 85-101.
    [41] Infanger G., Planning Under Uncertainty, International Thomson Publishing, MA, 1994.
    [42] Kamien M. and Schwartz N., Expenditure patterns for risky R&D projects, Journal of Applied Probability, 1971, 8(1): 60-73.
    [43] Kamien M. and Schwartz N., Timing of innovation under rivalry, Econometrica, 1972, 40(1): 43-60.
    [44] Kaufmann A., Introduction to the Theory of Fuzzy Subsets, Academic Press, New York, 1975.
    [45] Kelley J., Critical path planning and scheduling: mathematical basis, Operations Research, 1961, 9(3): 296-320.
    [46] Krishnan V. and Ulrich K., Product development decisions: a review of the literature, Management Science, 2001, 47(1): 1-21.
    [47] Kwakernaak H., Fuzzy random variables-1, Information Sciences, 1978, 15(2): 1-29.
    [48] Kwakernaak H., Fuzzy random variables-2, Information Sciences, 1979, 17(3): 153-178.
    [49] Li S., The development of a hybrid intelligent system for developing marketing strategy, Decision Support Systems, 2000, 27(4): 395-409.
    [50] Liberatore M. and Stylianou A., Expert support systems for new product development decision-making: a modeling framework and applications, Management Science, 1995, 41(8): 1296-1316.
    [51] Liu B., Theory and Practice of Uncertain Programming, Phisica-Verlag, Heidelberg, 2002.
    [52] Liu B., Toward fuzzy optimization without mathematical ambiguity, Fuzzy Optimization and Decision Making, 2002, 1(1): 43-63.
    [53] Liu B., Random fuzzy dependent-chance programming and its hybrid intelligent algorithm, Information Sciences, 2002, 141(3-4): 259-271.
    [54] Liu B., Inequalities and convergence concepts of fuzzy and rough variables, Fuzzy Optimization and Decision Making, 2003, 2(2): 87-100.
    [55] Liu B., Uncertainty Theory: An Introduction to Its Axiomatic Foundations, Springer-Verlag, Berlin, 2004.
    [56] Liu B., A survey of credibility theory, Fuzzy Optimization and Decision Making, 2006, 5(4): 387-408.
    [57] Liu B. and Liu Y., Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 2002, 10(4): 445-450.
    [58] Liu Y. and Liu B., Expected value operator of random fuzzy variable and random fuzzy expected value models, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2003, 11(2): 195-215.
    [59] Lockett G., Hetherington B. and Yallup P., Modeling a research portfolio using AHP: a group decision process, R&D Management, 1986, 16(2): 151-160.
    [60] Lootsma F., Stochastic and fuzzy PERT, European Journal of Operational Research, 1989, 43(2): 174-183.
    [61] Lucas R., Optimal management of a research and development project, Management Science, 1971, 17(1): 679-697.
    [62] Mak S., Wong J. and Picken D., Effect on contingency allowances of using risk analysis in capital cost estimating: a Hong Kong case study, Construction Management and Economics, 1998, 16(6): 615-619.
    [63] Malcolm D., Roseboom J., Clark C. and Fazar W., Application of a technique for research and development project evaluation, Operations Research, 1959, 7(5): 646-669.
    [64] Martino J., Research and Development Project Selection, John Wiley & Sons, New York, 1995.
    [65] Matheson D. and Matheson J., The Smart Organization Creating Value Through Strategic R&D, Harvard Business School Press, Boston, MA, 1998.
    [66] Meade L. and Presley A., R&D project selection using the analytic network process, IEEE Transactions on Engineering Management, 2002, 49(1): 59-66.
    [67] Mehrez A., Two managerial economics applications to the R&D decision process, Managerial and Decision Economics, 1988, 9: 163-172.
    [68] Merton R., Applications of options pricing theory: twenty-five years later, American Economic Review, 1998, 88(3): 323-349.
    [69] Messica A. and David I., Optimal expenditure patterns for risky R&D projects with time-dependent returns, R&D Management, 2000, 30(3): 247-253.
    [70] Messica A., Mehrez A. and David I., Optimal expenditure patterns of a double path engineering project, Journal of Optimization Theory and Applications, 2000, 105(2): 441-455.
    [71] Moon J. and Kang C, Use of fuzzy set theory in the aggregation of expert judgments, Annals of Nuclear Energy, 1999, 26(6): 461-469.
    [72] Nahmias S., Fuzzy variables, Fuzzy Sets and Systems, 1978, 1(2): 97-110.
    [73] Nelson B., Stochastic simulation research in management science, Management Science, 2004, 50(7): 855-868.
    [74] Oral M., Kettani O. and Lang P., A methodology for collective evaluation and selection of industrial R&D projects, Management Science, 1991, 37(7): 871-885.
    [75] Partovi F. and Burton J., Timing of monitoring and control of CPM projects, IEEE Transactions on Engineering Management, 1993, 40(1): 68-75.
    [76] Pennings E. and Lint O., The option value of advanced R&D, European Journal of Operational Research, 1997, 103(1): 83-94.
    [77] Posner M. and Zuckerman D., Optimal R&D programs in a random environment, Journal of Applied Probability, 1990, 27(2): 343-350.
    [78] Prade H., Using fuzzy sets theory in a scheduling problem: a case study, Fuzzy Sets and Systems, 1979, 2(2): 153-165.
    [79] Ranasinghe M., Contingency allocation and management for building projects, Construction Management and Economics, 1994, 12: 233-243.
    [80] Ringuest J., Graves S. and Case R., Conditional stochastic dominance in R&D portfolio selection, IEEE Transactions on Engineering Management, 2000, 47(4): 478-484.
    
    [81] Ross S., Stochastic Processes, 2nd Edition, John Wiley & Sons, New York, 1996.
    [82] Roussel P., Saad K. and Erickson T., Third Generation R&D: Managing the Link to Corporate Strategy, Harvard Business School Press, Boston, MA, 1991.
    [83] Roy B. and Vincke P., Relational systems of preference with one or more pseudo-criteria: some new concepts and results, Management Science, 1984, 30(11): 1323- 1335.
    [84] Rubenstein A. and Schroder H., Managerial differences in assessing probabilities of technical success for R&D projects, Management Science, 1977, 24(2): 137-148.
    [85] Saaty T., The Analytic Hierarchy Process, McGraw Hill, New York, 1980.
    [86] Santiago L. and Vakili P., On the value of flexibility in R&D projects, Management Science, 2005, 51(8): 1206-1218.
    [87] Schmidt R. and Freeland J., Recent progress in modeling R&D project-selection processes, IEEE Transactions on Engineering Management, 1992, 39(2): 189-201.
    [88] Slyeptsov A. and Tyshchuk T., Fuzzy temporal characteristics of operations for project management on the network models basis, European Journal of Operational Research, 2003, 147(2): 253-265.
    [89] Smith J. and Nau R., Valuing risky projects: option pricing theory and decision analysis, Management Science, 1995, 41(5): 795-816.
    [90] Smith P. and Reinertsen D., Developing Products in Half the Time: New Rules, New Tools, 2nd Edition, John Wiley & Sons, New York, 1998.
    [91] Spall J., Multivariate stochastic approximation using a simultaneous perturbation gradient approximation, IEEE Transactions on Automation Control, 1992, 37(3): 332-341.
    [92] Spall J., A one-measurement form of simultaneous perturbation stochastic approximation, Automatica, 1997, 33(1): 109-112.
    [93] Spall J., An overview of the simultaneous perturbation method for efficient optimization, Johns Hopkins APL Technical Digest, 1998, 19(4): 482-492.
    [94] Spall J., Implementation of the simultaneous perturbation algorithm for stochastic optimization, IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 817-823.
    [95] Spector Y. and Zuckerman D., Expenditure patterns and timing of patent protection in a competitive R&D environment, Operations Research Letters, 1997, 20(5): 237-242.
    [96] Sun H. and Ma T., A packing-multiple-boxes model for R&D project selection and scheduling, Technovation, 2005, 25(11): 1355-1361.
    [97] Tereso A., Araújo M. and Elmaghraby S., Adaptive resource allocation in multimodal activity networks, International Journal of Production Economics, 2004, 92(1): 1-10.
    [98] Tian Q., Ma J., Liang J., Kwok R. and Liu O., An organizational decision support system for effective R&D project selection, Decision Support Systems, 2005, 39(3): 403-413.
    [99] Tian Q., Ma J. and Liu O., A hybrid knowledge and model system for R&D project selection, Expert Systems with Applications, 2002, 23(3): 265-271.
    [100] Touran A., Calculation of contingency in construction projects, IEEE Transactions on Engineering Management, 2003, 50(2): 135-140.
    [101] Trigeorgis L., Real Options, MIT Press, Cambridge, MA, 1997.
    [102] Tsur Y. and Zemel A., Long-term perspective on the development of solar energy, Solar Energy, 2000, 68(5): 379-392.
    [103] Urban G. and Hauser J., Design and Marketing of New Product, Prentice-Hall Inc., Englewood Cliffs, NJ, 1993.
    [104] Wang J., A fuzzy outranking method for conceptual design evaluation, Interna- tional Journal of Production Research, 1997, 35(4): 995-1010.
    
    [105] Wang J., A fuzzy set approach to activity scheduling for product development, Journal of the Operational Research Society, 1999, 50(12): 1217-1228.
    
    [106] Wang J., A fuzzy project scheduling approach to minimize schedule risk for product development, Fuzzy Sets and Systems, 2002, 127(2): 99-116.
    [107] Wang J., A fuzzy robust scheduling approach for product development projects, European Journal of Operational Research, 2004, 152(1): 180-194.
    [108] Wang J. and Hwang W., A fuzzy set approach for R&D portfolio selection using a real options valuation model, Omega, 2007, 35(3): 247-257.
    [109] Xu Y., Song J., Nechyba M. and Yam Y., Performance evaluation and optimization of human control strategy, Robotics and Autonomous Systems, 2002, 39(1): 19-36.
    [110] Zadeh L., Fuzzy sets, Information and Control, 1965, 8(3): 338-353.
    [111] Zadeh L., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1978, 1(1): 3-28.
    [112] Zadeh L., A theory of approximate reasoning, Machine Intelligence, J. E. Hayes, D. Michie, and L. I. Mikulich, Eds., Elsevier, New York, 1979, 9: 149-194.
    [113] Zemel A., David I. and Mehrez A., On conducting simultaneous versus sequential engineering activities in risky R&D, International Transactions in Operational Research, 2001, 8(5): 585-601.
    [114] Zhao R. and Liu B., Renewal process with fuzzy interarrival times and rewards, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2003, 11(5): 573-586.
    [115] Zhao R. and Liu B., Redundancy optimization problems with uncertainty of combining randomness and fuzziness, European Journal of Operational Research, 2004, 157(3): 716-735.
    [116] Zhao R. and Tang W., Some properties of fuzzy random processes, IEEE Transactions on Fuzzy Systems, 2006, 14(2): 173-179.
    [117] Zhao R., Tang W. and Yun H., Random fuzzy renewal process, European Journal of Operational Research, 2006, 169(1): 189-201.
    [118] Zhu Y. and Liu B., Continuity theorems and chance distribution of random fuzzy variable, Proceedings of the Royal Society of London Series A, 2004, 460: 2505-2519.
    [119]保罗·罗伯特著,吴东等译,创新管理和新产品开发,北京:中国人民大学出版社,2005.
    [120]陈劲,研发项目管理,北京:机械工业出版社,2004.
    [121]董景荣,R&D项目中止决策的小波网络模式识别,管理科学学报,2001,4(2):67-73.
    [122]冯俊文,多目标随机决策方法研究及其在R&D项目选择中的应用,系统工程理论与实践,1991,11(6):60-66.
    [123]复旦大学,概率论,北京:人民教育出版社,1981.
    [124]胡劲松,模糊环境下大型工程项目网络计划方法研究,管理工程学报,2002,16(1):15-18.
    [125]李春阳,周国华,李春光,模糊网络计划技术发展综述,工程建设与设计,2004,(2):52-54.
    [126]李若刚,王国祥,李跃等,关于网络计划模型中的时间不确定性的讨论,系统工程与电子技术,1997,19(8):40-45.
    [127]李文华,孟文清,赵汝峰,建筑工程中的模糊网络计划优化方法,数量经济技术经济研究,2000,(2):63-65.
    [128]刘宝碇,赵瑞清,王纲,不确定规划及应用,北京:清华大学出版社,2003.
    [129]刘宝碇,彭锦,不确定理论教程,北京:清华大学出版社,2005.
    [130]刘建秋,R&D投资系统管理,研究与发展管理,2003,15(1):56-65.
    [131]卢向南,项目计划与控制,北京:机械工业出版社,2005.
    [132]骆品亮,向盛斌,R&D的外部性及内化机制研究,科研管理,2001,(9):55-62.
    [133]马克思.怀德曼著,项目管理志愿者团队译,怀德曼项目管理词汇手册,北京:清华大学出版社,2003.
    [134]尼古拉斯著,蔚林巍译,面向商务和技术的项目管理:原理与实践,北京:清华大学出版社,2003.
    [135]汤佐群,R&D项目的期权价值:基于流程的规范化分析,科学学研究,2005,23(1):76-81.
    [136]汪涛,有资源约束的R&D项目选择模型的决策方法,华中理工大学学报,2000,28(5):72-74.
    [137]许庆瑞,赵建,科研项目评价的专家系统,科研管理,1991,(4):23-29.
    [138]许庆瑞,郑刚,徐操志等,研究与开发绩效评价在中国:实践与趋势,科研管理,2002,23(1):46-53.
    [139]许庆瑞,研究、发展与技术创新管理,北京:高等教育出版社,2000.
    [140]薛明皋,李楚霖,具有不确定性的R&D项目退出策略,华中科技大学学报(自然科学版),2002,30(9):54-56.
    [141]杨耀红,汪应洛,王能民,工程项目工期成本质量模糊均衡优化研究,系统工程理论与实践,2006,26(7):112-117.
    [142]张清华,田增瑞,毛水荣,R&D项目实物期权关联性分析,研究与发展管理,2004,16(4):45-51.
    [143]周勇,周寄中,R&D项目的期权性特征分析与期权性价值的估算,管理科学学报,2002,5(1):19-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700