用户名: 密码: 验证码:
有机电致发光器件制备工艺与高效磷光器件性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与液晶显示、无机发光二极管或等离子体显示技术相比,有机发光二极管(organic light-emitting diodes,OLED)亦称有机电致发光器件(organicelectroluminescence devices,OELD),具有自发光、响应快、全固态、制备工艺简单、高效率、宽视角、超薄、耐高低温、柔性等优点,可用作信息显示和照明的终端,被誉为最理想和潜力的下一代显示技术。但目前工艺不成熟导致器件制造成本较高,高性能发光材料缺乏导致器件性能待提高,发光和衰减机理认识不充分导致器件结构改善缺乏指导,这大大影响了OLED器件的产业化步伐,针对上述问题,本论文在高分辨率无源矩阵(passive matrix)器件的关键制备技术、开发新的高效磷光材料及器件性能优化、改善有机器件结构方面进行了一系列的探索性和创新性的工作,具体包括:
     1.直流磁控溅射系统制备用于OLED的低阻高透的氧化铟锡(ITO)薄膜,考查溅射压强、氩氧比例、退火温度、退火时间、靶基距离、溅射功率、沉积温度、退火氛围八个因素对ITO薄膜性能影响。用正交试验方法安排试验大大提高实验的效率。采用了方阻、透过率、XRD、SEM、AFM、均匀性等参数对ITO薄膜进行了详细的表征。制备ITO薄膜的优化工艺参数:溅射压强为2 mTorr、氩氧比例为16∶0.5、退火温度为427℃、基板与靶材距离为15、退火时间为1 h、溅射功率为300 W、退火氛围为真空、沉积温度为127℃。制备出的ITO薄膜方阻达到17Ω/□,在可见光区域的平均透过率为86.13%。
     2.光刻制备了用于高分辨率(1.8英寸,128×3×160个像素)无源矩阵驱动OLED的多层基板图案。设计和加工了四层光掩膜图案,包括铬层、ITO层、绝缘层和隔离层图案。铬层图案和ITO层图案通过普通光刻工艺流程(匀胶、前烘、曝光、显影、坚膜、腐蚀、去胶)完成。绝缘层材料使用ZKPI-305聚酰亚胺,显影出图案后需进行亚胺化过程。隔离层图案采用负性光敏聚酰亚胺ZKPI-530和正性AZ5214光刻胶两种方法实现。其中正胶试验采用图形反转工艺实现了断面呈现上宽下窄的倒梯形形状,符合自动隔离金属的要求。提出用双条隔离器来取代常用的单条隔离器,降低隔离器的制备难度,提高制备OLED的良品率。
     3.提出用线形蒸发源(线源)替代当前有机材料蒸发的点蒸发源,对相对基板静止线源和相对基板运动线源的蒸发膜厚进行数学计算,线源蒸镀薄膜的材料的利用率大大提高,膜厚度均匀性比点源有所改善。设计了线形蒸发源装置,此装置具有提高镀膜材料的有效利用率、增加蒸发速度和成膜均匀性、可实现多种材料的均匀掺杂等优点。
     4.合成了一种新型发出绿光的磷光材料(tpbi)_2Ir(acac)并对其进行了表征,将材料用于小分子和高分子OLED器件制备。小分子器件结构为:ITO/CuPc/NPB/CBP∶(tpbi)_2Ir(acac)/BCP/Alq/LiF∶Al,器件约4.4 V启亮,最高亮度为13500 cd/m~2,功率效率达12 lm/W,电流效率最高为22.9 cd/A,在5~40 V电压范围内稳定性良好,并且器件在低压下Ⅰ-Ⅴ特性符合热电子发射模型。制备的聚合物器件结构为:ITO/PEDOT∶PSS/PVK/PFO+30 wt%PBD∶(tpbi)_2Ir(acac)/Ba:Al,最高发光亮度为7841 cd/m~2,电流效率最高为9.95 cd/A,器件发出稳定的绿光。
     5.合成了一种新型发出黄光的磷光材料(t-bt)_2Ir(acac)并对其进行了表征,将(t-bt)_2Ir(acac)掺杂在CBP主体材料中,制备了4层有机层结构的磷光器件。器件的电压-电流特性随外加电压的增大,依次经过了欧姆电导区、陷阱电荷限制区和空间电荷限制区,电流机制与理论相符。质量掺杂浓度为5%的器件最高效率为9.3 lm/W,8%浓度掺杂的器件亮度最高为14360 cd/m~2。制备的非掺杂结构器件具有低的效率衰减特性。用NPB作为主体材料制备了超低启亮电压的磷光器件,器件在2.5 V启亮,在3.25 V时器件亮度达到100 cd/m~2,4.3 V时器件亮度为1000cd/m~2,6.8 V时亮度为10000 cd/m~2,掺杂材料的直接载流子捕获和主体材料的单电荷传输性是器件启亮电压降低的原因。
     6.采用蓝光荧光材料NPB结合发出黄光的磷光材料(t-bt)_2Ir(acac)制备白光OLED器件,结构为:ITO/NPB/CBP∶(t-bt)_2Ir(acac)/蓝色发光层/BCP/Alq/LiF∶Al。所作白光器件最高亮度为7430 cd/m~2,最高功率效率为9.93 lm/W,色坐标为(0.34,0.33),接近理想白光点。用蓝光材料GDI691代替NPB材料,器件最高亮度达到了15460 ed/m~2,功率效率最高为8.06 lm/W。器件在宽电压范围5~12V(亮度167~8150 cd/m~2)的发光光谱较稳定,色坐标始终处于CIE1931色坐标图的白光范围内。
Comparing with LCD,LED or PDP,organic light-emitting diodes(OLED) also named as organic electroluminescence devices(OELD),possess many advantages,e.g., self-emission,fast response,full solid device,easy abrication,high efficiency,wide view-angle,super-thin thickness,and are used as the illumination source and display,. OLED are considered as the most ideal and potential display technology in 21~(st) century. However,the un-consummate fabrication technology causes high device fabrication cost,shorting of high quality emission materials resulte in dissatisfactory device performance,and because of indistinct understanding about mechanism of device, improving about the device shructure and organic materials is uneasy.Aiming at those problems,some creative and systematic works have been performed in this dissert including the key fabrication technology about high resolution device with passive matrix driving method,synthesizing new emission materials to fabricate high efficiency phosphorescent OLED and designing new device structure.
     1.Indium tin oxide(ITO) thin film used as transparent anode for OLED was deposited on glass substrate with direct current magnetron sputtering system.There are eight parameters affecting the electrical and optical properties of ITO films and orthogonal test table L_(32)(4~8) was used to carried out the systematic study.Sheet resistance,transmissivity,atomic force microscope,X-ray diffraction and scanning electronic microscope were employed to characterize the ITO films.The optimum parameters for sputtering ITO are:deposition pressure 2 mTorr,flow ratio of argon to oxygen 16:0.5,annealing temperature 427℃,distance between target and substrate 15, annealing time 1 h,sputtering power 300 W,annealing atmosphere pure nitrogen and deposition temperature 127℃.Sheet resistance,transmittance in visible region of the film prepared with above parameters are 17Ω/□and 86.13%,respectively.
     2.High resolution substrate pattern(1.8inch,128~*3~*160 pixels) used for passive matrix OLED were fabricated by wet photolithography process.Four photomasks were designed and prepared for chromium(Cr) pattern,ITO pattern,insulator pattem and separator pattern.Cr and ITO pattem recurred on substrate by normal photolithography process(photoresist coating,soft-baking,exposuring,developing,etching,photoresist stripping).Polyimide ZKPI-305 was used as the insulator layer material after high temperature baking process.The separator layer pattern is very hard to achieve by normal process because of its reverse trapeziform shape section.Both negtive photosensitive photoresist(PR) ZKPI530 and positive PR AZ5214 were used for fabricating separator pattern.The pattern can be successfully obtained with AZ5214 using an image reverse technique process,including PR coating,soft-baking,exposing with photomask,reverse baking,flood exposing,and developing.And double separators technology instead of one was used to reduce the difficulty of fabrication process and increase the eligibility rate of separators.
     3.Line shape evaporation source(line source) can replace the normal dot shape evaporation source(dot source) in the organic material deposition process.The simulation results show that more uniformity thickness of organic thin films and higher utilizable rate of organic material can be obtained with still or relative kinetic line source than dot source.Also an equipment with the line source was designed,which shows some advantages including enhancing the utilizable rate of organic materials, increasing the deposition rate and co-evaporated organic films.
     4.Novel phosphorescent material(tpbi)_2Ir(acac) with green light emission was synthesized and doped in small molecular OLED with the structure ITO/CuPc/NPB/ CBP:(tpbi)_2Ir(aeac)/BCP/Alq/LiF:Al.The device shows a maximum luminance of 13500 cd/m~2,a maximum power efficiency of 12 lm/W and a current efficiency of 22.9 ed/A.The turn-on voltage of the device is about 4.4 V and the current-voltage characteristic of the device is according with Richardon-Schottky emission model under low voltage.Polymer organic device with the phosphor doped also were fabricated with the structure ITO/PEDOT:PSS/PVK/PFO+30 wt%PBD:(tpbi)_2Ir(acac)/Ba:Al.Green light stably emit from the device at different voltages.A maximum luminance of 7841 cd/m~2 and current efficiency of 9.95 cd/A were obtained.
     5.Novel phosphorescent material(t-bt)_21r(acac) with yellow light emission was doped in CBP host to achieve small molecular OLED with four organic layers structure. As the driving bias increasing,the current-voltage characteristic of device matches with ohm current transporting,trapped charge limited current(TCLC) and space charge limited current(SCLC) theory,respectively.The device with 5 wt%doping concentration shows a maximum power efficiency of 9.3 lm/W and a luminance of 14360 cd/m~2 can be attained by the device with 8 wt%doping concentration.By using ultrathin undoped layer structure,the efficiency of OLED rolls off slowly as the driving voltage increasing.When the phosphor doped in NPB host,the device has a very low turn-on voltage of 2.5 V,and shows a luminance of 100 cd/m~2 at 3.25 V,1000 cd/m~2 at 4.3 V,10000 cd/m~2 at 6.8 V,respectively.Charge carriers directly trapped by the doped phosphor and hole only transporting property are the main reason why the turn-on voltage became lower.
     6.White light emission organic devices were prepared with the yellow light emission phosphorescent material(t-bt)_2Ir(acac) combining with blue light emission fluorescent material NPB.The device with the structure of ITO/NPB/CBP: (t-bt)_2Ir(acac)/blue light emission layer/BCP/Alq/LiF:A1,shows a maximum luminance of 7430 cd/m~2,a maximum power efficiency of 9.93 lm/W and Commission International de l'Eclairage(CIE) coordinate of(0.34,0.33),which is very near to ideal white point.Using GDI691 as the blue light material instead of NPB,the device shows a max luminance of 15460 cd/m~2,and power efficiency of 8.06 lm/W.The coordinates of the device emission locate at white light area of CIE chromaticity diagram under broad driving voltages of 5~12 V,corresponding to the luminance ranging from 167 to 8150 cd/m~2.
引文
[1] A. Bernanose, F. D. Pharmacie, U. D. Nancy. Electroluminescence of organic compounds. British Journal Applied Physics, 1955,6:S54-S55
    [2] M. Pope, H. P. Kallmann, P. J. Magnante. Electroluminescence in organic crystals. Journal of Chemical Physics, 1963, 38:2042-2049
    [3] W. Helfrich, W. G. Schneider. Recombination radiation in athracene crystals. Physics Review Letter, 1965, 14:229-231
    [4] W. Helfrich, W. G. Schneider. Transient of volume-controlled current and recombination radiation in anthracene. Journal of Chemical Physics, 1966,44:2902-2909
    [5] J. Dresner. Double injection electroluminescence in anthracene. RCA Review, 1969,30:322-334
    [6] P. S. Vincett, W. A. Barlow, R. A. Hann, et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films, 1982,94:171-183
    [7] C. W. Tang, S. A. VanSlyke. Organic electroluminescent diodes. Applied Physics Letter, 1987, 51:913-915
    [8] C. Adachi, S. Tokito, T. Tsutsui, et al. Electroluminescence in organic films with three-layer structure. Japanese Journal of Applied physics, 1988,27: L269-L271
    [9] C. Adachi, T. Tsutsui, S. Saito. Blue light-emitting organic electroluminescent devices. Appl. Phys. Lett., 1990,56:779-781
    [10] J. H. Burroughes, D. D. C. Bardley, A. R. Brown, et al. Light emitting diodes based on conjugated polymers. Nature, 1990,347:539-541
    
    [11] D. Braun, A. J. Heeger. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett., 1991, 58:1982-1984
    
    [12] M. A. Baldo, D. F. O'Brien, Y. You, et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395:151-154
    [13] C. Adachi, M. A. Baldo, M. E. Thompson, et al. Nearly 100% internal phosphorescence efficiency in an organiclight emitting device. Journal of Applied Physics, 2001,90:5048-5051
    [14] S. Chew, C. S. Lee, S. T. Lee, et al. Photoluminescence and electroluminescence of a new blue-emitting homoleptic iridium complex. Appl. Phys. Lett., 2006, 88:093510 1-3
    [15] M. Ikai, S. Tokito, Y. Sakamoto, et al. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Appl. Phys. Lett., 2001, 79:156-158
    [16] R. J. Holmes, B. W. D'Andrade, S. R. Forrest, et al. Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Appl. Phys. Lett., 2003, 83:3818-3820
    [17] S. Lamansky, P. Djurovich, D. Murphy, et al. Highly Phosphorescent Bis-Cyclometalated Indium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J. Am. Chem. Soc. 2001,123:4304-4312
    [18] A. Tsuboyama, H. Iwawaki, M. Furugori, et al. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode. J. Am. Chem. Soc., 2003,125:12971-12979
    [19] M. Cocchi, D. Virgili, C. Sabatini, et al. Highly efficient organic electroluminescent devices based on cyclometallated platinum complexes as new phosphorescent emitters. Synthetic Metals, 2004,147:253-256
    [20] G. Y. Park, Y. S. Kim, Y. K. Ha. Efficient red-emitting phosphorescent iridium(III) complexes of fluorinated 2,4-diphenylquinolines. Thin Solid Films, 2007, 51:5090-5094
    [21] M. Ikai, F. Ishikawa, N. Aratani, et al. Enhancement of External Quantum Efficiency of Red Phosphorescent Organic Light-Emitting Devices with Facially Encumbered and Bulky PtII Porphyrin Complexes. Adv. Funct. Mater., 2006,16:515-519
    [22] S. J. Yen, M. F. Wu, C. T. Chen, et al. New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices. Adv. Mater., 2005,17:285-289
    [23] B. M. J. S. Paulose, D. K. Rayabarapu, J. P. Duan, et al. First examples of alkenyl pyridines as organic ligands for phosphorescent iridium complexes. Adv. Mater. 2004,16:2003-2007
    [24] C. L. Li, Y. J. Su, Y. T. Tao, et al. Yellow and red electrophosphors based on linkage isomers of phenylisoquinolinyliridium complexes: distinct differences in photophysical and electroluminescence properties. Adv. Funct. Mater., 2005,15:387-395
    [25] H. Kanno, R. J. Holmes, Y. Sun, et al. White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer. Adv. Mater., 2006, 18:339-342
    [26] U. Takayuki, I. Masahiro, T.Tohru, et al. Full color pixel with vertical stack of individual red, green, and blue transparent organic light-emitting devices based on dye-dispersed poly(N-vinylcarbazole). Japanese Journal of Applied Physics, 2006,45:7126-7128
    [27] J. X. Sun, X. L. Zhu, H. J. Peng, et al. Bright and efficient stacked white organic light-emitting diodes. Proceedings of the Second Americas Display Engineering and Applications Conference,2005,397-399
    [28] H. Kanno, N. C. Giebink, Y. Sun, et al. Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters. Appl. Phys. Lett., 2006, 89:0235031-3
    [29] J. X. Sun, X. L. Zhu, H. J. Peng, et al. Effective intermediate layers for highly efficient stacked organic light-emitting devices. Appl. Phys. Lett., 2005, 87:093504 1-3
    [30] G. He, O. Schneider, D.n Qin, et al. Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction. J. Appl. Phys., 2004, 95:5773-5777
    [31] M. Pfeiffer, S. R. Forrest, X. Zhou, et al. A low drive voltage, transparent, metal-free n-i-p electrophosphorescent light emitting diode. Organic Electronics, 2003,4:21-26
    [32] G. He, D. Gebeyehu, A. Werner, et al. High efficiency and low voltage p-i-n electrophosphorescent OLED with double-doping emission layers. Proceedings of SPIE, Vol. 5464,26-31
    [33] S. Murano, M. Burghart, J. Birnstock, et al. Highly efficient white OLED for lighting applications. Proc. of SPIE Vol. 5937,59370H:1-8
    [34] B. W. D'Andrade, S, R. Forrest. Effects of exciton and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices. J. Appl. Phys., 2003, 94:3101-3109
    [35] M. Pfeiffer, S. R. Forrest, K. Leo, et al. Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays. Adv. Mater., 2002, 14:1633-1636
    [36] R. Meerheim, K. Walzer, M. Pfeiffer, et al. Ultrastable and efficient red organic light emitting diodes with doped transport layers. Appl. Phys. Lett., 2006, 89:061 111 1-3
    [37] T. Y. Cho, C. L. Lin, C. C. Wu, et al. Microcavity two-unit tandem organic light-emitting devices having a high efficiency. Appl. Phys. Lett., 2006, 88:111106 1-3
    [38] H. J. Peng, X. L. Zhu, J. X. Sun, et al. High Efficiency Electrophosphorescent Organic Light Emitting Diodes using Semitransparent Ag as Anode. SID 2005,1066-1069
    [39] H. Peng, J. Sun, X. Zhu, et al. High-efficiency microcavity top-emitting organic light-emitting diodes using silver anode. Appl. Phys. Lett., 2006, 88:073517 1-3
    [40] V. Bulovic, V. B. Khalfin, G. Gu, et al. Weak microcavity effects in organic light-emitting devices. Phys. Rev. B, 1998, 58:3730-3740
    [41]X.Liu,D.Poitras,Y.Tao,et al.Microcavity organic light emitting diodes with double sided light emission of different colors.Journal of Vacuum Science and Technology A,2004,22:764-767
    [42]Cho Ting-Yi,Lin Chun-Liang,Wu Chung-Chih.Microcavity two-unit tandem organic light-emitting devices having a high efficiency.Appl.Phys.Lett.,2006,88:111106 1-3
    [43]H.Kanno,Y.Sun,S.R.Forrest.High-efficiency top-emissive white-light-emitting organic electrophosphorescent devices.Appl.Phys.Lett.,2005,86:263502 1-3
    [44]S.Chen,Y.Zhao,G.Cheng,et al.Improved light outcoupling for phosphorescent top-emitting organic light-emitting devices.Appl.Phys.Lett.,2006,88:153517 1-3
    [45]D.G.Moon,R.B.Pode,C.J.Lee,et al.Efficient red electrophosphorescent top-emitting organic light-emitting devices.Materials Science and Engineering B,2005,121:232-237
    [46]L.Shin-Ju,U.Han-Yi,J.Fuh-Shyang.Effects of thickness of organic and multilayer anode on luminance efficiency in top-emission organic light emitting diodes.Japanese Journal of Applied Physics,2006,45:3717-3720
    [47]C.J.Lee,R.B.Pode,J.I.Han,et al.Red electrophosphorescent top emission organic light-emitting device with Ca/Ag semitransparent cathode.Appl.Phys.Lett.,2006,89:2535081-3
    [48]S.K.Lee,D.H.Hwang,B.J.Jung,et al.The fabrication and characterization of single-component polymeric white-light-emitting diodes.Adv.Funct.Mater.,2005,15:1647-1655
    [49]B.W.D'Andrade,J.Brooks,V.Adamovich,et al.White light emission using triplet excimers in electrophosphorescent organic light-emitting devices.Adv.Mater.,2002,14:1032-1036
    [50]B.W.D'Andrade,J.J.Brown.Organic light-emitting device luminaire for illumination applications.Appl.Phys.Lett.,2006,88:192908 1-3
    [51]Y.Sun,N.C.Giebink,H.Kanno,et al.Management of singlet and triplet excitons for efficient white organic light-emitting devices.Nature,2006,440:908-912
    [52]Dipti Gupta,M.Katiyar,Deepak.Various approaches to white organic light emitting diodes and their recent advancements.Optical Materials,2006,28:295-301
    [53]V.Maiorano,E.Perrone,S.Carallo,et al.White,phosphorescent,wet-processed,organic light-emitting diode,on a window-glass substrate.Synthetic Metals,2005,151:147-151
    [54]G.Cheng,Y.Zhang,Y.Zhao,et al.Improved efficiency for white organic light-emitting devices based on phosphor sensitized fluorescence.Appl.Phys.Lett.,2006,88:083512 1-3
    [55]G.Schwartz,K.Fehse,M.Pfeiffer,et al.Highly efficient white organic light emitting diodes comprising an interlayer to separate fluorescent and phosphorescent regions.Appl.Phys.Lett.,2006,89:083509 1-3
    [56]D.Qin,Y.Tao.White organic light-emitting diode comprising of blue fluorescence and red phosphorescence.Appl.Phys.Lett.,2005,86:113507 1-3
    [57]A.Nakamura,T.Tada,M.Mizukami,et al.Efficient electrophosphorescent polymer light-emitting devices using a Cs/Al cathode.Appl.Phys.Lett.,2004,84:130-132
    [58]I.M.Chan,F.C.Hong.Improved performance of the single-layer and double-layer organic light emitting diodes by nickel oxide coated indium tin oxide anode.Thin Solid Films,2004,450:304-311
    [59]X.Xu,G.Yu,Y.Liu,et al.Electrode modification in organic light-emitting diodes.Displays,2006,27:24-34
    [60]J.Bisquert,G.Gareia-Belmonte,(?).Pitarch,et al.Negative capacitance caused by electron injection through interfacial states in organic light-emitting diodes.Chemical Physics Letters,2006,422:184-191
    [61]P.E.Burrows,S.R.Forrest.Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices.Appl.Phys.Lett.,1994,64:2285-2287
    [62]W.Br(u|¨)tting,E.Buchwald,G.Egerer,et al.Charge carder injection and transport in PPV light emitting devices.Synthetic Metals,1997,84:677-678
    [63]J.Chen,D.Ma.Investigation of charge-cartier injection characteristics in NPB/Alq_3heterojunetion devices.Chemical Physics,2006,325:225-230
    [64]T.Ogawa,D.Cho,K.Kaneko,et al.Numerical analysis of the carrier behavior of organic light-emitting diode:comparing a hopping conduction model with a SCLC model.Thin Solid Films,2003,438-439:171-176
    [65]H.Houili,E.Tutis,L.Zuppiroli,et al.Charge transport across organic-organic interfaces in organic light-emitting diodes.Synthetic Metals,2006,156:1256-1261
    [66]曲喜新,杨邦朝,姜节俭.电子薄膜材料.北京:科学出版社.1996,48-95
    [67]I.Hamberg,C.G.Granqvist.Evaporated Sn-doped In2O3 films:Basic optical properities and applications to energy-efficient window.J Appl phys.,1986,60:123-159
    [68]T.J.Vink,W.walrave,J.L.C.Daams,et al.On the homogeneity of sputter-deposited ITO films stress and microstructure.Thin Solid Films,1995,266:145-151
    [69]孟扬,杨锡良.新型透明导电薄膜In2O3:Mo.真空科学与技术,2000,20:331-335
    [70]彭栋梁,蒋生蕊,李斌.射频反应溅射沉积透明导电CdIn2O4薄膜.薄膜科学与技术,1993,6:28-31
    [71]赵谢群.透明导电氧化物薄膜研究现状与产业化进展.电子元件与材料,2000,2:40-41
    [72]G.Frank,H.Kostlin.Electrical properties and defect model of tin-doped indium oxide layers.Appl.Phys.,1982,A27:197-206
    [73]T.Maruyama,K.FukuiK.Indium-tin oxide thin films prepared by chemical vapor deposition.J.Appl.Phys.,1991,70:3848-3851
    [74]Y.R.Cui,X.H.Xu,Z.T.Jin,et al.Deposition of transparent conducting indium tin oxide thin films by reactive ion plating.Thin Solid Films,1984,115:195-201
    [75]C.H.L.Weijtens,P.A.C.Van Loon.Influence of annealing on the optical properties of indium tin oxide.Thin Solid Films,1991,196:1-10
    [76]B.S.Chiou,S.T.Hsieh,R.f.magnetron-sputtered indium tin oxide film on a reactively ion-etched acrylic substrate.Thin Solid Films,1993,229:146-155
    [77]赵化侨.等离子体化学.合肥:中国科学技术大学出版社,1993,42-65
    [78]杨邦朝,王文生.薄膜物理与技术.成都:电子科技大学出版社,1993,60-103
    [79]殷景华,王雅珍等.功能材料概论.哈尔滨:哈尔滨工业大学出版社,1999,88-151
    [80]T.Maruyama,K.Fukui.Indium-tin oxide thin films prepared by chemical vapor deposition.J.Appl.Phys.,1991,70:3848-3851
    [81]P.K.Song,Y.Shigesato,M.Kamei,et al.Electrical and structural properties of tin-doped indium oxide films deposited by DC sputtering at room temperature.Jpn.J.Appl.Phys.,1999,38:2921
    [82]正交试验设计法编写组著.正交试验设计法.上海:上海科技出版社,1975,15-35
    [83]北京大学数学系试验设计组.正交试验法.北京:科学普及出版社,1979,30-52
    [84]J.Wang,J.Cheng,H.Lin,et al.Optimization method for transparent conducting oxide films prepared by DC magnetron sputtering.Proc.of SPIE Vol.6149,2006,614928 1-5
    [85]王军,林慧,杨刚,等.直流磁控溅射ITO薄膜的正交试验分析.半导体光电,2007,129:68-71
    [86]王军,成建波,饶海波,等.磁控溅射低阻ITO薄膜的气体参数优化.压电与声光,2007,171:115-117
    [87]V.Teixeira,H.N.Cui.Amorphous.ITO thin films prepared by DCsputtering for electrochromic applications,Thin Solid Films,2002,420-421:70-75
    [88]A.N.H.Ajili,S.C.Bayliss.A study of the optical,electrical and structural properities of reactively sputtered InOx and ITOx thin films,Thin Solid Films,1997,305:116-123
    [89]D.Vaufrey,M.B.Khalifa,M.P.Besland,et al.Electrical and optical characteristics of indium tin oxide thin films deposited by cathodic sputtering for top emitting organic electroluminescent devices.Mater.Sci.Eng.C,2002,21:265-271
    [90]王德苗,黄士勇.真空和大气退火对ITO膜特性的影响,浙江大学学报,1997,31:533-538
    [91]K.Utsumi,H.Iigusa,R.Tokumaru,et al.Study on In_2O_3-SnO_2 transparent and conductive films prepared by d.c.sputtering using high density ceramic targets.Thin Solid Films,2003,445:229-234
    [92]宋登元,王小平.光学光刻技术的研究进展.半导体技术,1998,23:2-10
    [93]王相森.光学光刻技术的发展历程及趋势.微处理机,2002,4:1-2
    [94]高晓萍.刻蚀技术的进展.光机电世界,1994,3:17-20
    [95]M.Quirk J.Serda.半导体制造技术.韩郑生等译.北京:电子工业出版社,2004,310-437
    [96]M.Schaer,F.Niiesch,D.Berner,et al.Water vapor and oxygen degradation mechanisms in organic light emitting diodes.Advanced Functional Materials,2001,11:116-121
    [97]C.Py,M.D'Iorio,Y.Tao,et al.A passive matrix addressed organic electrolumineseent display using a stack of insulators as row separators.Synthetic Metals,2000,113:155-159
    [98]C.Py,D.Roth,I.Lévesque,et al.An integrated shadow-mask based on a stack of inorganic insulators for high-resolution OLED using evaporated or spun-on materials.Synthetic Metals,2001,122:225-227
    [99]邱勇,杨萍,邵玉暄,等.一种有机电致发光器件及其制备方法.中国,专利号CN1416300A,2002.11.12
    [100]J.Rhee,J.Park,S.Kwon,et al.Fabrication of reversely tapered three-dimensional structures and their application to organic light-emitting diodes.Advanced Materials,2003,15:1075-1078
    [101]G.Chen,Y.Yu,Z.Luo,et al.Study the performance of AZ5214E image-reversal photoresist and its uses in lift-off technics.Journal of Functional Materials,2005,36:431-433
    [102]B.Zhou,Z.Cui.Expeimental investigation of imagine reversal in AZ5214.Microfabrication Technology,1999,2:23-37
    [103]F.H.Dill.Optical lithography.IEEE Trans Elect ron Devices,1996,ED222:440-444
    [104]F.H.Dill,A.R.Neureuther,J.A.Tuttle,et al.Modeling projection printing of positive photoresist.IEEE Trans Electron Devices,1975,ED222:456-464
    [105]C.A.Mack.Development of Positive Photoresist.Journal of Electrochemical Society,1987,134:148-152
    [106]成建波,王军,饶海波.一种有机电致发光器件隔离柱的制备方法.中国专利,CN1942031,2005-09-30
    [107]J.Wang,J.Shao,K.Yi,et al.Layer uniformity of glancing angle deposition.Vacuum,2005,78:107-111
    [108]成建波,张磊,祁康成.有机材料蒸发源.中国专利,CN 1421542A,2003-06-04
    [109]侯晶莹,刘立宁,赵毅,等.用于有机电致发光镀膜机的坩锅式蒸发源.中国专利,CN 1431339A,2003-07-23
    [110]U.Hoffmann,P.Netuschil,M.Bender,et al.OLED Manufacturing Using Vertical In-Line Machine Concept.SID Symposium Digest of Technical Papers,2003,34:1410-1413
    [111]成建波,陈森洁,陈文彬,等.真空线源蒸发镀膜方法及其装置.中国专利,CN1598042A,2005-03-23
    [112]M.A.Baldo,D.F.O' Brien,M.E.Thompson,et al.Exeitonic singlet-triplet ratio in a semicondueting organic thin film.Phys.Rev.B,1999,60:14422-14428
    [113]M.A.Baldo,S.Lamansky,P.E.Burrows,et al.Very high-efficiency green organic light-emitting devices based on electrophosphorescence.Appl.Phys.Lett.,1999,75:4-6
    [114]W.Zhu,Y.Mo,M.Yuan,et al.Highly efficient electrophosphorescent devices based on conjugated polymersdoped with iridium complexes.Appl.Phys.Lett.,2002,80:2045-2047
    [115]P.Sun,C.Li,Y.Pan,et al.Synthesis of novel Ir complexes and their application in organic light emitting diodes.Synthetic Metals,2006,156:525-528
    [116]M.Xu,T.Li,W.Li,et al.Optical and electroluminescent properties of a new Ir(Ⅲ) complex -fac-tris[2,5-di(4-methoxyphenyl)pyridinato-C,N]iridium(Ⅲ).Thin Solid Films,2006,497:239-242
    [117]S.C.Lo,T.D.Anthopoulos,E.B.Namdas,et al.Encapsulated cores:host-free organic light-emitting diodes based on solution-processible electrophosphorescent dendrimers.Adv.Mater.,2005,15:1945-1948
    [118]S.C.Lo,N.A.H.Male,J.P.J.Markham,et al.Green phosphorescent dendrimer for light-emitting diodes.Adv.Mater.,2002,14:975-979
    [119]J.Ding,J.Gao,Y.Cheng,et al.Highly efficient green-emitting phosphorescent iridium dendrimers based on earbazole dendrons.Adv.Funct.Mater.,2006,16:575-581
    [120]Y.G.Ma,C.M.Che,H.Y.Chao,et al.High luminescence gold(Ⅰ) and copper(Ⅰ) complexes with a triplet excited state for use in light-emitting diodes.Adv.Mater.,1999,11:852-857
    [121]Q.Zhang,Q.Zhou,Y.Cheng,et al.High efficient green phosphorescent organic light-emitting diodes based on Cul complex.Adv.Mater.2004,16:432-436
    [122]Y.Q.Li,Y.Liu,J.H.Guo,et al.Photoluminescent and electroluminescent properties of phenol-pyridine beryllium and carbonyl polypyridyl Re(Ⅰ) complexes codeposited films.Synthetic Metals,2001,118:175-179
    [123]F.Li,M.Zhang,G.Cheng,et al.Highly efficient electrophosphorescence decices based on rhenium complexes.Appl.Phys.Lett.,2004,84:148-150
    [124]S.C.Chan,M.C.W.Chan,Y.Wang,et al.Organic light-emitting materials based on bis(arylacetylide)platinum(Ⅱ) complexes beating substituted bipyridine and phenanthroline ligands:Photo-and electroluminescence from(MLCT) -M-3 excited states.Chem.Eur.J.,2001,7:4180-4190
    [125]E.Wigner,E.E.Witmer.Molecular spectra of diatomic molecules in modern quantum-mechanics.Z.Phys.,1928,51:859-886
    [126]T.F(o|¨)rster.Mechanisms of energy transfer.Comprehensive Biochemistry,1967,22:61-80
    [127]M.Born,J.R.Oppenheimer.Quantum theory of molecules.Ann.Phys.,1927,84:457-484
    [128]T.F(o|¨)rster.Zwischenmolekular energiewanderung und fluoreszenze.Ann.Phys.(Leipzip),1948,2:55-75
    [129]T.F(o|¨)rster.Transfer mechanisms of electronic excitation.Discuss Faraday Soc,1959,27:7-17
    [130]G.W.Robinson.Excited States.New York:Academic press,1974,1-31
    [131]S.H.Lin.Isotope effect energy gap law and temperature effect in resonance energy transfer.Mol.Phys.,1971,2:853-863
    [132]S.Speiser.Photophysics and mechanisms of intramolencular electronic energy transfer in bichromophoric molecular systems solution and supersonic jet studies.Chem.Rev.,1996,96:1953-1976
    [133]D.L.Dexter.A theory of sensitized luminescence in solids.J Chem Phys,1953,21:836-850
    [14]M.Inokuti,F.Hirayama.Influence of energy transfer by the exchange mechanism on donor luminescence.J.Chem.Phys.,1965,43:1978-1989
    [135]樊美公.光化学基本原理与光子学材料科学.北京:科学出版社,2001,29-37
    [136]M.Thelakkat,J.Hagen,D.Haarer,et al.Poly(triarylamine)s-synthesis and application in electroluminescent devices and photovoltaics.Synth.Met.,1999,102:1125-1129
    [137]T.J.Dingemans,A.Bacher,M.thelakkat,et al.Spectral tuning of light emitting diodes with phenyl-thophenes.Synth.Met.,1999,105:171-176
    [138]宋文波,陈旭,吴芳等.有机/聚合物材料体系能带结构的表征-电化学方法研究.高等学校化学学报,2000,21:1422-1426
    [139]张志明,李国文,马放光等.含噻吩环噁二唑衍生物的合成及电化学性能研究.高等学校化学学报,2000,21:1719-1724
    [140]M.R.Andersson,M.Bnygren,O.Ingnaes,et al.Electroluminescence from Substituted Poly(thiophenes):from blue to near-infrard.Macromolecules,1995,28:7525-7530
    [141]L.Qian,F.Teng,Z.Xu,et al.Influence of doping with titania nanotubes on performance of polymer light-emitting diodes.Acta Phys.Siniea.2006,55:929-934
    [142]I.H.Campbell,P.S.Davids,D.L.Smith,et al.The Schottky Energy Barrier Dependence of Charge Injection in Organic Light-Emitting Diodes.Appl.Phys.Lett.,1998,72:1863-1865
    [143]H.Vestweber,J.Pommerehne,R.Sander,et al.Majority carrier injection from ITO anodes into organic light emitting diodes based upon polymer blends.Synthetic Metals,1995,68:263-268
    [144]J.Feng,F.Li,W.Gao,et al.White light emission from exciplex using tds-(8-hydroxyquinoline)aluminum as chromaticitytuning laye.Appl.Phys.Lett.,2001,78:3947-3949
    [145]王军,魏孝强,饶海波,等.基于铱配合物材料的高效高稳定性有机发光二极管.物理学报,2007,56:1156-1161
    [146]J.Huang,T.Watanabe,K.Ueno,et al.Highly efficient red-emission polymer phosphorescent light-emitting diodes based on two novel tris(1-phenylisoquinolinato-c2,n) iridium(Ⅲ)derivatives.Adv.Mater.,2007,19:739-743
    [147]X.Wang,K.Ogino,K.Tanaka,et al.Novel iridium complex and its copolymer with N-vinyl carbazole for electroluminescent devices.IEEE Journal of Selected Topics in Quantum Electronics,2004,10:121-126
    [148]T.Taiju,T,Masayuki,K.Shin,et al.New emission band of PtOEP phosphor in organic LED devices.Current Applied Physics,2005,5:47-54
    [149]J.A.Hagen,W.Li,A.J.Steckl.Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer.Appl.Phys.Lett.,2006,88:171109 1-3
    [150]C.Qiu,H.Chen,M.Wong,et al.Dependence of the current and power efficiencies of organic light-emitting diode on the thickness of the constituent organic layers.IEEE transactions on electron devices,2001,48:2131-2137
    [151]J.S.Kim,P.K.H.Ho,N.C.Greenham,et al.Electroluminescence emission pattern of organic light-emitting diodes implications for device efficiency calculations.J.Appl.Phys.,2000,88:1073-1081
    [152]C.Adachi,M.A.Baldo,S.R.Forrest,et al.High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials.Appl.Phys.Lett.,2000,77:904-906
    [153]G.He,M.Pfeiffer,K.Leo,et al.High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers.Appl.Phys.Lett.,2004,85:3911-3913
    [154]C.Adachi,M.A.Baldo,S.R.Forrest.Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host.J.Appl.Phys.,2000,87:8049-8055
    [155]M.A.Baldo,C.Adachi,S.R.Forrest.Transient analysis of organic electrophosphoreseence Ⅱ.Transient analysis of triplet-triplet annihilation.Phys.Rev.B,2000,62:10967-10977
    [156]J.Kalinowski,W.Stampor,J.Mezyk,et al.Quenching effects in organic electrophosphorescence.Phys.Rev.B,2002,66:235321 1-15
    [157]S.Reineke,K.Walzer,K.Leo.Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters.Phys.Rev.B 2007,75:125328 1-13
    [158]J.Hao,Z.Deng,S.Yang.Relationship between exciton recombination zone and applied voltage in organic light-emitting diodes.Display,2006,27:108-111
    [159]G.Lei,L.Wang,Y.Qiu.Multilayer organic electrophosphorescent white light-emitting diodes without,exciton-blocking layer.Appl.Phys.Lett.2006,88:103508-103511
    [160]X.Gong,J.C.Ostrowski,D.Moses,et al.High-Performance Polymer-Based Electrophosphoreseent Light Emitting Diodes.Journal of Polymer Science,2003,41:2691-2705
    [161]W.Chang,A.T.Hu,D.K.Rayabarapu,et al.Color tunable phosphorescent light-emitting diodes based on iridium complexes with substituted 2-phenylbenzothiozoles as the cyclometalated ligands.Journal of Organometallic Chemistry,2004,689:4882-4888
    [162]C.L.Li,Y.J.Su,Y.T.Tao,et al.Yellow and red electrophophors based on linkage isomers of pheylisoquinolinyliridium complexes:distinct differences in photophysical and electroluminescence properties.Advanced Functional Materials,2005,15:387-395
    [163]G.Zhang,H.Guo,Y.Chuai,et al.Synthesis and luminescence of a new phosphorescent iridium(Ⅲ) pyrazine complex.Materials Letters,2005,59:3002-3006
    [164]H.W.Hong,T.M.Chen.Effect of substituents on the photoluminescent and electroluminescent properties of substituted cyclometalated iridium(Ⅲ) complexes.Materials Chemistry and Physics,2007,101:170-176
    [165]W.Wong,G.Zhou,X.Yu,et al.Amorphous diphenylaminofluorene -functionalized iridium complexes for high-efficiency electrophosphorescent light-emitting diodes.Advanced functional materials,2006,16:838-846
    [166]H.Xia,L.He,M.Zhang,et al.Efficient electrophosphorescence from low-cost copper(Ⅰ)complex.Optical Materials,2007,29:667-671
    [167]P.E.Burrows,Z.Shen,V.Bulovic,et al.Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices.Journal of Applied Physics,1996,79:7991-8006
    [168]J.Shen,J.Yang,Physical mechanisms in double-carrier trap-charge limited transport processes in organic electroluminescent devices:A numerical study.Journal of Applied Physics,1998,83:7706-7714
    [169]J.Yang.J.Shen,Effects of discrete trap levels on organic light emitting diodes.Journal of Applied Physics,1999,85:2699-2705
    [170]M.St(o|¨)βel,J.Staudigei,F.teuber,et al.Space-charge-limited electron currents in 8-hydroxyquinoline aluminum.Appl.Phys.Lett.,2000,76:115-117
    [171]S.Berleb,A.G.M(u|¨)ckl,W.Br(u|¨)tting,et al.Temperature dependent device characteristics of organic light-emitting devices.Synthetic Metal,2000,111-112:91-94
    [172]L.B.Schein,A.Peled,D.Glatz.The electric field dependence of the mobility in molecularly doped polymer.Journal of Applied Physics,1989,66:686-692
    [173]Y.N.Gartstein,E.M.Conwell.High-field hopping mobility in molecular systems with spatially correlated energetic disorder.1995,245:351-358
    [174]D.H.Dunlap,P.E.Parris,V.M.Kenkre.Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers.Phys.Rev.Lett.,1996,77:542-545
    [175]S.Barth,U.Wolf,H.Bassler.Current injection from a metal to a disordered hopping system.Ⅲ.Comparison between experiment and Monte Carlo simulation.Physics Review B,1999,60:8791-8797
    [176]I.H.Campbell,D.L.Smith.Schottky energy barriers and charge injection in metal/Alq/metal structures.Appl.Phys.Lett.,1999,74:561-563
    [177]R.H.Fowler,L.Nordheim.Electron mission in intense electric fields.Proc.R.Soc.London Ser.A,1928,119:173-181
    [178]黎威志.有机电致发光器件性能优化及影响因素的研究:[博士学位论文].成都:电子科技大学,2007,34-41
    [179]M.A.Lampert.Simplified theory of space-charge-limited currents in an insulator with traps.Physics Review,1956,103:1648-1656
    [180]L.Friedman.Electron-phonon interaction in organic molecular crystals.Physics Review,1965,140:A1649-A1667
    [181]I.H.Campbell,P.S.Davids,D.L.Smith,et al.The Sehottky energy barrier dependence of charge in organic light-ediodes.Appl.Phys.Lett.,1998,72:1863-1965
    [182]T.Tsuji,S.Naka,H.Okada,H.Onnagawa.Nondoped-type white organic electroluminescent devices utilizing complementary color and exciton diffusion.Appl.Phys.Lett.,2002,81:3329-3331
    [183]S.Toyoshima,K.Kuwabara,T.Sakurai,et al.Electronic structure of bathocuproine on metal studied by ultraviolet photoemission spectroscopy.Jpn.J.Appl.Phys.,2006,45:L995-L997
    [184]B.P.Rand,J.Li,J.Xue,et al.Organic double-heterostrueture photovoltaic cells employing thick tris(acetylacctonato)ruthenium(Ⅲ) exciton-bloeking layers.Adv.Mater.,2005,17:2714-2718.
    [185]H.Yeh,L.Chan,W.Wu,et al.Non-doped red organic light-emitting diodes.J.Mater.Chem.,2004,14:1293-1298
    [186]M.Cocehi,V.Fattori,D.Virgili,et al.Efficient organic electrophosphorescent light-emitting diodes with a reduced quantum efficiency roll off at larger current densities.Appl.Phys.Lett.,2004,84:1052-1054
    [187]J.Kang,S.Lee,H.Park,et al.Low roll-off of efficiency at high current density in phosphorescent organic light emitting diodes.Appl.Phys.Lett.,2007,90:223508 1-3
    [188]J.Jou,Y.Chiu,R.Wang,et al.Efficient,color-stable fluorescent white organic light-emitting diodes with an effective exeiton-confining device architecture.Organic Electronics,2006,7:8-15
    [189]P.P.Sun,J.P.Duan,J.J.Lih,et al.Synthesis of new europium complexes and their application in electroluminescent devices.Adv.Func.Mater.,2003,13:683-691
    [190]K.Tani,H.Fujii,L.Mao,et al.Iridium(Ⅲ) complexes bearing quinoxaline ligands with efficient red luminescence properties.Bulletin of the Chemical Society of Japan,2007,80:783-788
    [191]C.Liao,M.Lee,C.Tsai,et al.Highly efficient blue organic light-emitting devices incorporating a composite hole transport layer.Appl.Phys.Lett.,2005,86:203507-203509
    [192]Y.Wang.Dramatic effects of hole transport layer on the efficiency of iridium-based organic light-emitting diodes.Appl.Phys.Lett.,2004,85:4848-4850
    [193]J.Wang,J.Yu,H.Lin,et al.High efficiency organic light-emitting diodes with yellow phosphorescent emission based on a novel iridium complex.Semicond.Sci.Technol.,2007,22:25-28
    [194]J.Kido,K.Hongawa,K.Okuyama,et al.White light-emitting organicelectroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with threefluorescent dyes.Appl.Phys.Lett.,1994,64:815-817
    [195]J.Kido,H.Shionoya,K.Nagai.Single-layer white light-emitting organicelectroluminescent devices based on dye-dispersed poly(N-vinylcarhazole).Appl.Phys.Lett.,1995,67:2281-2283
    [196]S.Naka,K.Shinno,H.Okada,et al.White organic electroluminescent devices with mixed single layer,IEICE Transactions on Electronics,1997,8:1114-1116.
    [197]B.Hu,F.E.Karasz.Blue,green,red,and white electroluminescence from multichromophore polymer blends.J.Appl.Phys.,2003,93:1995-2001
    [198]J.Kido,M.Kimura,K.Nagai.Multilayer white light-emitting organic electroluminescent devices.Science,1995,267:1332-1334
    [199]R.H.Jordan,A.Dodabalapur,M.Strukelj,et al.White organic electroluminescence devices.Appl.Phys.Lett.,1996,68:1192-1194
    [200]Y.Jiang,J.Wang,J.Yu,et al.High Efficient White Organic Light-Emitting Diodes Based on Phosphorescent Iridium Complex and 4,4'-bis[N-1-napthyl-N-phenyl-amino]biphenyl Emitters.Jpn.J.Appl.Phys.,2007,46:523-528
    [201]H.Kusano,S.Hosaka,N.Shiraishi,et al.Multi-color emission of PVCz-based multi-layered lectroluminescent devices.Synthetic Metals,1997,91:337-339
    [202]J.Jido,W.Ikeda,M.Kimura,et al.White-light-emitting organic electroluminescent device using lanthanide complexes.Jpn.J.Appl.Phys.,1996,35:L394-L396
    [203]R.S.Deshpande,V.Bulovic,S.R.Forrest.White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer.Appl.Phys.Lett.,1999,75:888-890
    [204]M.Strukelj,R.H.Jordan,A.Dodabalapur.Organic multilayer white light emitting diodes.J.Am.Chem.Soc.,1996,118:1213-1214
    [205]B.W.D'Andrade,M.E.Thompson,S.R.Forrest.Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices.Adv.Mater.,2002,14:147-151
    [206]C.H.Kim,J.Shinar.Bright small molecular white organic light-emitting devices with two emission zones.Appl.Phys.Lett.,2002,80:2201-2203
    [206]K.O.Cheon,J.Shinar.Bright white small molecular organic light-emitting devices based on a red-emitting guest-host layer and blue-emitting 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl.Appl.Phys.Lett.,2002,81:1738-1740
    [207]Y.S.Huang,J.H.Jou,W.K.Weng,et al.High-efficiency white organic light-emitting devices with dual doped structure.Appl.Phys.Lett.,2002,80:2782-2784
    [208]G.Li,J.Shinar.Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4 -bis(2,2-diphenylvinyl)-1,1-biphenyl.Appl.Phys.Lett.,2003,83:5359-5361
    [209]S.Tokito,T.Lijima,T.Tsuzuki,et al.High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers.Appl.Phys.Lett.,2003,83:2459-2461
    [210]B.W.D'Andrade,R.J.Holmes,S.R.Forrest.Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer,Advanced Materials,2004,16:624-628
    [211]M.Granstrom,O.Inganas.White light emission from a polymer blend light emitting diode.Appl.Phys.Lett.,1996,68:147-148
    [212]S.Tasch,E.J.W.List,O.Ekstrom,et al.Efficient white light-emitting diodes realized with new processable blends of conjugated polymers.Appl.Phys.Lett.,1997,71:2883-2885
    [213]M.Berggren,O.Inganas,G.Gustafsson,et al.Light-emitting-diodes with variable colors from polymer blends.Nature,1994,372:444-446
    [214]Y.Yang,Q.Pei.Efficient blue-green and white light-emitting electrochemical cells based on poly[9,9-bis(3,6-dioxaheptyl)-fluorene-2,7-diyl].J.Appl.Phys.,1997,81:3294-3298
    [215]D.Pisignano,M.Mazzeo,G.Gigli,et al.Controlling non-radiative energy transfer in organic binary blends:a route towards colour tunability and white emission from single-active-layer light-emitting devices.J.Phys.D:Appl.Phys.,2003,36:2483-2486
    [216]M.Suzuki,T.Hatakeyama,S.Tokito,et al.High-efficiency white phosphorescent polymer light-emitting devices.IEEE Journal of Selected Topics in Quantum Electronics,2004,10:115-120
    [217]M.Mazzeo,J.Thompson,R.I.R.Blyth,et al.White light from blue:white emitting organic LEDs based on spin coated blends of blue-emitting molecules.Physia E,2002,13:1243-1246
    [218]M.Mazzeo,D.Pisignano,F.D.Salla,et al.Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules.Appl.Phys.Lett.,2003,82:334-336
    [219]C.I.Chao,S.A.Chen.White light emission from exciplex in a bilayer device with two blue light-emitting polymers.Appl.Phys.Lett.,1998,73:426-428
    [220]Y.Liu,J.Guo,H.Zhang,et al.Highly efficient white organic electroluminescence from a double-layer device based on a boron hydroxyphenylpyridine complex.Angew.Chem.Int.Ed.,2002,41:182-184
    [221]A.Dodabalapur,L.Rothberg,T.Miller.Color variation with electroluminescent organic semiconductors in multimode resonant cavities.Appl.Phys.Lett.,1994,65:2308-2310
    [222]A.Dodabalapur,L.Rothberg,T.Miller,et al.Microcavity effects in organic semiconductors.Appl.Phys.Lett.,1994,64:2486-2488
    [223]A.Dodabalapur,L.Rothberg,T.Miller.Electroluminescence from organic semiconductors in patterned microcavities.Electronics Lett.,1994,30:1000-1002
    [224]T.Shiga,H.Fujikawa,Y.Taga.Design of multi-wavelength resonant cavities for white organic light-emitting diodes.Journal of Applied Physics,2003,93:19-22
    [225]A.Mikami,T.Tsubokawa,T.Koshiyama.High-efficiency color and white organic light-emitting devices prepared on flexible plastic substrates.Jpn.J.Appl.Phys.,2005,44:608-612
    [226]A.Mikami.High efficiency white-light-emitting organic devices coupled with lateral color conversion layer,Lasers & Electro-Optics Society,IEEE,2006,P498-499
    [227]Y.Hamada,T.Sano,H.Fujii,et al.White-light-emitting material for organic electroluminescent devices.Jpn.J.Appl.Phys.,1996,35:L1339-L1341
    [228]H.Kanno,Y.Hamada,H.Takahashi.Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays.IEEE Journal of selected topics in quantum electronics,2004,10:30-36
    [229]X.Y.Jiang,Z.L.Zhang,B.X.Zhang,et al.Stable and current independent white-emitting organic diode.Synthetic Metals,2002,129:9-13
    [230]薛朝华.颜色科学与计算机测色配色实用技术.北京:化学工业出版社,2004,27-51
    [231]H.S.Fairman.On analytical versus numerical intergration in tristimulus calculation.Color Research & Application,1983,8:245-246
    [232]段羽.新结构高性能有机电致发光器件的研究:[博士学位论文].吉林:吉林大学,2006,100-104
    [233]C.Lee,R.R.Das,J.Kim.Polymer based blue electrophosphorescent light emitting devices.Current Applied Physics,2005,5:309-313
    [234]M.E.Thompson,A.Tamayo,T.Sajoto,et al.Color tuning dopants for electrophosphorescent devices:efficient blue phosphorescence pyrrazole and carbene complexes.IEEE 2004,559-562
    [235]R.J.Holmes,S.R.Forrest,T.Sajoto,et al.Saturated deep blue organic electrophosphorescence using a fluorine-free emitter.Appl.Phys.Lett.,2005,87:243507 1-3
    [236]J.Wang,G.Yu.Performance simulation of active-matrix OLED displays.Proe.of SPIE Vol.5632,2005,32-44
    [237]G.Schwartz,K.Walzer,M.Pfeiffer,et al.High efficiency white organic light emitting diodes combining fluorescent and phosphorescent emitter systems.Proc.of SPIE Vol.6192,2006,61920Q-1
    [238]D.Qin,Y.Tao.White organic light-emitting diode comprising of blue fluorescence and red phosphorescence.Appl.Phys.Lett.,2005,86:113507 1-3
    [239]G.Schwartz,K.Fehse,M.Pfeiffer,et al.Highly efficient white organic light emitting diodes comprising an interlayer to separate fluorescent and phosphorescent regions.Appl.Phys.Lett.,2006,89:083509
    [240]S.Okamoto,K.Tanaka,Y.Izumi,et al.Simple measurement of quantum efficiency in organic electroluminescent devices.Jpn.J.Appl.Phys.,2001,40:L783-L784
    [241]H.Li,C.Zhang,D.Li,et al.Simulation of transform for external quantum efficiency and power efficiency of electroluminescent devices.Journal of Luminescence,2007,122-123:626-628

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700