用户名: 密码: 验证码:
超低频信道噪声统计特性及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超低频(ELF)通信是指用频率为30~300Hz的电磁波作信号载体的通信。由于超低频电磁波在海水中具有传播衰减率较低的特性,因此超低频通信可以实现对全球范围、水下100米深潜艇的岸潜指挥通信,在军事领域具有重要的应用价值。
     受天线及发射机工程实现的制约,超低频通信接收机输入端信号电平很小,噪声是影响超低频通信的主要因素。超低频信道的噪声主要是大气噪声,其统计特性严重非高斯。众所周知,传统的对高斯噪声最优的接收机,在严重非高斯噪声的条件下性能将恶化,甚至不能正常工作。另一方面,如果能够辨识信道噪声的统计特性并加以有效利用,则可以大幅度地提高接收机的性能。
     本文围绕超低频信道噪声统计特性的辨识和工程应用问题,取得如下成果:
     1)为了对GSM-06测得的超低频大气噪声进行幅度统计分析,采用频域法对超低频信道电磁噪声数据进行预处理,抑制50Hz工频干扰。接着对处理过的超低频信道大气噪声数据进行Lilliefors假设检验,证明超低频信道大气噪声的非正态属性。最后在估计Class A瞬时幅度概率分布参数值的基础上,根据概率分布图和Q-Q图结果综合分析做出结论:采用Class A瞬时幅度概率模型,可以很好地描述宽带超低频信道大气噪声数据的幅度统计特性,而对于窄带超低频噪声数据适用于Class B模型描述。
     2)对Turbo码的译码算法在非高斯脉冲型噪声环境下的性能进行研究,提出一种新的基于噪声幅度统计特性服从Class A噪声模型的修正译码算法。该算法修正传统MAP算法的外部信息和信道信息计算公式,使之适应非高斯的Class A脉冲噪声环境从而改进了译码性能,计算机仿真证明新的译码算法在Class A噪声环境中比传统MAP算法具有更好的性能。
     3)针对经典Class A噪声模型的参数估计问题。提出二种参数估计算法,一种基于特征函数谱,而另一种基于参数的贝叶斯估计。贝叶斯估计器采用马氏链蒙特卡罗法(MCMC)求解,适用于较小的样本数,具有低复杂度和快速收敛的优点。基于特征函数谱参数估计算法适用于较大的样本数,对应于信道噪声统计特性较为平稳的情况,它的优点是运算量小,参数估计速度快。研究简化Class B噪声模型的参数估计问题。Class B噪声模型的概率密度函数非常复杂,它表示无限项合流超几何函数之和,很大程度上限制了Class B噪声模型参数估计的研究。为克服概率密度函数复杂的难题,提出了一种基于特征函数谱,采用最小均方梯度法求非线性代价函数解的参数估计算法,解决了Class B噪声模型应用中的核心难题。
     4)研究两维的M-Class A噪声模型的参数估计。为实现超低频信号的全向最佳接收必须研究多维噪声模型参数估计问题。提出一种二维M-Class A噪声模型的参数估计器,它基于参数最大后验概率的贝叶斯推理,采用马氏链蒙特卡罗法求非线性函数的解。该估计器对于较小的样本仍然具有快速收敛优点,尽管该估计器运算量很大,却是低复杂度的,其简洁的特征,可用于实时运算中。为未来具有全向接收能力的潜艇通信最佳接收确立理论和工程应用基础。
     5)研究超低频接收机的工程实现问题。对于超低频接收机信号结构设计中的编译码单元、调制解调单元和扩频抗干扰单元,结合设计目标分别给出了设计的理论依据,关键指标优化以及工程实现因素的考虑。对于信号处理单元,采用基于Class A模型的参数估计算法,有效地利用信道噪声的统计特性,解决非高斯脉冲噪声下最佳信号接收问题,大幅度地提高了接收机性能。
The Extremely Low Frequency(ELF) communication system is designed to operate in the frequency between 30 Hz and 300 Hz.Because the low attenuation rate in seawater and in the earth-ionospheric waveguide,the ELF communication can provide nearly global coverage and shore-to-submarine communication to submerged submarines below 100M seawater.So the ELF communication has extremely important value in military areas.
     Limited by the antennas and the transmitter of the ELF communication system,the available signal strength at the receiver is very small and the performance of the receiver system can have a significant rely on the ELF noise statistical characteristics.The ELF noise is known as atmospheric noise and its statistical characteristics is non-Gaussian. Conventional linear receivers which are effective and optimum for white Gaussian noise can drastically degrade the performance or even made ineffective when operating against the non-Gaussian noise.On the other hand,the performance of communications operating in such impulsive channels can be greatly enhanced if the true statistics of the channel are known and exploited.
     This dissertation focuses on the model of the ELF noise,verified noise model by real data,the parameters estimation of noise model and engineering application which implement the ELF receiver.The research fellow the method of combining theory with engineering application.The main contributions are as follow:
     1) For analyzing the Amplitude Probability Distribution(APD) of the noise from the device of GSM-06,the measured noise is processed by FFT filter which is used for suppressing the interfere of 50Hz.The Non-Gaussian property of ELF noise is testified by Lilliefors Hypothesis Testing.With considering the APD and the Q-Q plot(Quantile-Quantile Plot) of real ELF atmospheric noise based on the parameters estimation of Class A noise model,The conclusion is made by excellent agreement between the measured data and the theoretical curves which are provided by Class A.
     2) This dissertation addresses the loss performance of Turbo decode in No-Gaussian impulsive noise by computer simulation and proposes a new modified decoding algorithm for Turbo code by using Middleton's Class A impulsive noise model based on statistical nature of the amplitude.The decoding algorithm improved performance by modified extrinsic and channel information of traditional MAP for suiting additive white Class A noise,In addition,The results of computer simulation have shown that the proposed algorithm has better performance than traditional MAP decoding algorithm in Class A noise.
     3) Two estimations of parameters Class A noise model is provided,the one is based on Characteristic Function Method(CFM) and the other is based on Bayesian estimator, the Bayesian estimator of the Non-Gaussian model parameters is derived and calculated by the Markov Chain Monte Carlo(MCMC) procedure.The considered estimator provides a novel method for advantage of low-complexity,fast convergence with small sample sizes.The estimator of CFM is small computations,fast convergence with large sample sizes,especially suit for the case which the property of channel noise is stabilization.The estimation parameters of the simplified Class B noise model is derived. The simplified class B distribution is represented by a weighted sum of confluenthypergeometric function.The applicability of Class B noise model is limited because it's very complexity form.In this chapter,the efficient estimation of the Simplified Class B model parameters based on least square gradient method is derived.The considered estimator is fast converges and low-complexity with performance approaching theoretical optima for large data samples.The kernel difficulty of application for Class B model is solved.
     4) The estimation parameters of two-dimensional Class A model is derived,for the optima reception of ELF signal is implemented in every direction.An efficient estimation of two-dimensional version Class A noise model parameters based on Markov Chain Monte Carlo(MCMC) is derived.The estimator can estimate five-parameter and hidden states for two-dimensional Class A noise model simultaneously.Simulation of this estimator indicates that this considered estimator is converges rapidly and low-complexity with performance approaching theoretical optima for small data samples,although it has large computations.The foundation of optima reception theory and engineering of application is provided for the future ELF communications in every direction.
     5) This dissertation further addresses the engineering implementation of the ELF receiver.The block diagram of the principal components of the receiver,such as filter, MSK-demodulation,Antijamming,and decoding is given when considering the base of design theory,optimum performance and details of the design receiver.For the signal-processing component of the receiver,the estimation parameter of Class A noise model is adapted.The performance of the ELF receiver is improved mostly in the ELF non-Gaussian noise when the statistics of the channel noise are exploited.
引文
[1]Zabin S M,Poor H V.Parameter Estimation of Middleton Class A Interference Processes.IEEE Trans.Commun.,1989,37:1042-1051.
    [2]Ginsberg L H.Extremely Low Frequency(ELF) Atmospheric Noise Level Statistics For Project Sanguine.IEEE Trans.Commun.,1974,COM-22(4):555-561.
    [3]Bannister P R.Summary of ELF PVS Effective Noise Measurements.Technical report,Naval Underwater System Center,New London,Connecticut,1983.
    [4]梁高权.甚低频波和超低频波的辐射与传播.南京:海军电子工程学院,2002.
    [5]Achatz R J,Papazian L Y.Man-Made Noise in the 136 to 138-MHz VHF Meteorological Satellite.Band.NTIA Report,1998,pages 98-355.
    [6]Griffiths A.ELF noise processing.Lincoln Laboratory,M.I.T.,Lexington,MA,Tech.Rep.490,DDC AD-739907,1972.
    [7]Espeland L R,Spaulding A D.Amplitude and time statistics for atmospheric radio noise.ESSA Tech.Memo.ERL-TM-ITS 250,1970.U.S.Dep.Commerce,Boulder,CO.
    [8]Rangasway M,Ozturk A.Non-Gaussian Random Vector Identification Using Spherically Invariant Random Processes.IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):111-12.
    [9]Middleton D.Statistical-Physical Models of Electromagnetic Interference.IEEE Trans.Electromagn.Compat,1977,EMC-19(2):106-127.
    [10]Britton M S,Scholz M L.Modelling HF EMI Using Middleton Models:Results of Trials and Procedure for Simulation.Defence Science and Technology Organisation Technical Report DSTOTR-0235,1995.
    [11]Yang X,Petropulu A P.Co-Channel Interference Modeling and Analysis in a Poisson Field of Interferers in Wtreless Communications.IEEE Trans on Signal Processing.,2003,51(1):64-76.
    [12]Galejs J.Amplitude Distribution of Radio Noise at ELF and VLF.J.Geophys.Res.,1966,71:201-216.
    [13]Nakai T,Nagatani M.Synchronous Analysis of Statistical Parameters of the Atmosphereic Noise.Proc.Res.Inst.Atmos.(Japan),1970,17:29-41.
    [14]Ponhratov V S,Antonov O Y.Optimal Reception of Binary Signals in a Background of Non-Gaussian Noise.Telecommunications,1967,19:19-25.
    [15]Field E C,Lewinstein M.Amplitude-probability Distribution Model for VLF/ELF Atmosphereic Noise.IEEE Trans on Communication,1978,26(1):83-87.
    [16]Frederrick H R.Extraction of VLF-Noise Parameters.Proc.MILCOM'92,San Diego,CA,1992,3:1040-1045.
    [17]Schwartz M,Bennett W.Communication Systems and Techniques.New York:McGraw-Hill,1966.
    [18]Haykin S.Adaptive Filter Theory.3rd ed.Upper Saddle River,NJ:Prentice-Hall,1966.
    [19]Antonov.Optimal detection of signals in non-Gaussian noise.Radio Eng.Electron.Phys.(USSR),1967,12:541-548.
    [20]Snyder D.Optimum Binary Detection of Known Signals in Non-Gaussian Noise Resembling VLF Atmospheric Noise.in 1968 WESCON Conv.Rec,1968,4:1-8.
    [21]Eckberg T.Optimum Estimation of Lightning Induced VLF Noise.M.S.thesis(elec.eng.),Dep.Eiec.Eng.,Mass.Inst.Tech.,Cambridge,1970.
    [22]Stratonovich R L.Detection and Estimation of Signals in Noise When One or Both are Non-Gaussian.Proc.IEEE,1970,58:670-4579.
    [23]Mazo J E.Exact matched filter bound for two-beam Rayleigh fading.WEE Trans.Commun,1991,39:1027-1030.
    [24]Weidmann H L,Stear E B.Entropy analysis of estimating systems.IEEE Trans.Inform.Theory,1970,IT-16:264-270.
    [25]Halsted L.On binary data transmission error rates due to the combination of Gaussian and impulse noise.IEEE Trans.Commun.Syst,1963,CS-11:428-435.
    [26]Rappaport S S,Kurz L.An optimal nonlinear detector for digital data transmission through non-Gaussian channels.IEEE Trans.Commun.Technol,1966,COM-14:266-274.
    [27]Furutsu K,Ishida T.On The Theory of Amplitude Distribution of Impulsive Random Noise.J.Applied Physics,1961,32(7).
    [28]Hall H M.A New Model for impulsive Phenomena:Application to Atmospheric-Noise Communications Channels.Technical Report No.3412-8 and No,7050-7,Stanford University Electronics Laboratories Technical Report,SU-SEL-66-052,1966.
    [29]Gallager R G.Information Theory and Reliable Communication.New York:Wiley,1968.
    [30]Giordano A A,Haber F.Modeling of Atmosphereic noise.Radio Science,1972,7(11):1011-1023.
    [31]Middleton D.Statistical-Physical Models of Urban Radio-Noise Environments-Part Ⅰ:Foundations,IEEE Trans.Electromagn.Compat,1972,EMC-14(2):38-56.
    [32]Middleton D.Procedures for Determining the Parameters of the First-order Canonical Models of Class A and Classs B Electromagnetic Interference.IEEE Trans.Electromagn.Compat,1979,EMC-21(2):190-208.
    [33]Spaulding A D,Disney R T.Man-Made radio Noise,Part 1:Estimates for Business,Residential,and Rural Areas.Technical report,Office of Telecommunications Report,U.S.Government Printing Office,Washington,D.C.20402,1974.
    [34]Berry L A.Understanding Middleton's Canonical Formula for Class A Noise.IEEE Trans on Electromag Compat,1981,EMC-23(10):337-344.
    [35] Vastola K. Threshold Detection in Narrow-band Non-Gaussian Noise. IEEE Transaction on Communication, 1984,32(9): 134-139.
    
    [36] Wang X, Poor H V. Wireless Communication Systems: Advanced Techniques for Signal Reception. Prentice Hall PTR, 2004.
    
    [37] Seo J, Cho S, Feher K. Impact of non-Gaussian impulsive noise on the performance of high-level QAM. Electromagnetic Compatibility, IEEE Transactions on, 1989, 31(2): 177-180.
    
    [38] Middleton D. Canonical and Quasi-Canonical Probability Models of Class A Interference. IEEE Trans. Electromagn. Compat, 1983, EMC-25(2):76-106.
    
    [39] Middleton D, Spaulding A D. A Tutorial Review of Elements of Weak Signal Detection in Non-Gaussian EMI Environments. Technical report, NTIA Rep. 86-194, U.S. Dept. of Commerce, 1986.
    
    [40] Simon M, Omura J. Spread Spectrum Communications. Rockville, MD: Computer Science Press,1985.
    
    [41] Schlegel C, Costello D J. Bandwidth Efficient Coding for Fading Channels: Code Construction and Performance Analysis. IEEE J. Select. Areas Commun, 1989,7.
    
    [42] Prasad R, Kegel A. Performance of Microcellular Mobile Radio in a Cochannel Interference, Natural, and Man-Mande Noise Environment. IEEE Trans. Veh. Technol, 1993,42:33-39.
    
    [43] Venskauskas K. Simplified approximation of D. Middleton's non-Gaussian interference distributions. Electromagnetic Compatibility, 1990. Symposium Record., 1990 IEEE International Symposium on, 1990,21(23):202-206.
    
    [44] Hamza M, Huynh H T. Optimal detection of QAM in a man-made noise environment. Vehicular Technology Conference, 1999 IEEE 49th, 1999,2(16-20):1301-1306.
    
    [45] Kokkinos E, Maras A. Locally optimum Bayes detection in nonadditive first-order Markov noise. Communications, IEEE Transactions on, 1999,47(3):387-396.
    
    [46] Pham K, Conradi J, Cormack G. Impact of noise and nonlinear distortion due to clipping on the BER performance of a 64-QAM signal in hybrid AM-VSB/QAM optical fiber transmission system. Lightwave Technology, Journal of, 1995,13(11):2197-2201.
    
    [47] Weng J, Leung S. Analysis of selection diversity combiner in Rician fading channels with Class A impulse noise. Global Telecommunications Conference, 1997. GLOBECOM '97., IEEE, 1997, 3(8):1183-1187.
    [48] Felix V, Chander V. Bispectrum based estimation of parameters of Middleton Class A noise. Statistical Signal and Array Processing, 1992. Conference Proceedings., IEEE Sixth SP Workshop on, 1992,7(9):160-163.
    [49] Miyamoto S, Katayama M. Performance Analysis of QAM Systems under Class A Impulsive Noise Environment. IEEE Trans. Electromagn. Compat, 1995,37:260-267.
    
    [50] Proakis J. Digital Communications. 3rd ed. New York: McGraw-Hill, 1995.
    [51] Delaney P A. Signal Detection in Multivariate Class-A Interference. IEEE Transactions on Communications, 1995,43(2):365-373.
    [52] Zabin S M, S. Furbeck D. Efficient Identification of Non-Gaussian Mixtures. IEEE Trans. Commun.,2000,48(1):106-117.
    
    [53] Zabin S M. Optimum and Efficient Algorithms for Impulsive Channel Identification. IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP-92, 1992,4:697-700.
    
    [54] Zabin S M. Efficient Estimation of Class A Noise Parameters via EM Algorithms. IEEE Trans. Inform. Theory, 1991, 37:60-72.
    
    [55] Zabin S M. Recursive Algorithms for Identification of Impulsive Noise channels. IEEE Trans. Inform. Theory, 1990,36:559-578.
    
    [56] Zabin S M, A. Wright G. Nonparametric Density Estimation and Detection in Impulsive Interference Channels, Part Ⅰ: Estimators. IEEE Trans. Commun., 1994,42(2): 1684-1697.
    
    [57] Stein D, Bond J W. Adaptive Locally Optimal Detection of Narrowband Signals in the Presence of Narrowband Interference. NCCOSC (San Diego, CA) Tech. Rep. TR 1566, 1993.
    
    [58] Stein D. Detection of Random Signals in Gaussian mixture noise. IEEE Trans. Inform. Theory, 1995,41(9):1788-1801.
    
    [59] Yamauchi K, Takahashi N. Parameter Measurement of Class A Interference on Power Line. Trans. IEICE, 1989,E 72(1):7-9.
    
    [60] Sousa E S. Performance of a Spread Spectrum Packet Radio Network Link in a Poisson Field of Interferers. IEEE Trans. on Info. Theo, 1992,38(6).
    
    [61] Nikias C L, Shao M. Signal Processing with Alpha-Stable Distributions and Applications. New York: Wiley, 1995.
    
    [62] Dow J, Hatzinakos D. Analytic Alpha-stable Noise Modeling in a Poisson Field of Interferers or Scatters. IEEE Transactions on Signal Processing, 1998,46(6).
    
    [63] Yang X, Petropulu A. Modeling of the LAN Traffic Microstructure Based on the Class A Noise Model. IS1T 2000, Sorrento. Italy, 2000, pages 25-30.
    
    [64] Ishikawa H, Itami M, Itoh K. A Study on Adaptive Modulation of OFDM under Middleton's Class-A Impulsive Noise Model. Consumer Electronics, 2007. ICCE 2007. Digest of Technical Papers. International Conference on, 2007,10-14:1-2.
    
    [65] Roy A, Doherty J. Signal Detection in an Impulsive Noise Environment Using Locally Optimum Detection. Vehicular Technology Conference, 2007. VTC-2007 Fall. 2007 IEEE 66th, 2007, pages 1022-1026.
    
    [66] Ali S, Ince E. Performance analysis of turbo codes over Rician fading channels with impulsive noise. Telecommunications and Malaysia International Conference on Communications, 2007. ICT-MICC 2007. IEEE International Conference on, 2007, 14-17:102-106.
    
    [67] Nosrati M, Amindavar H. Application of Zernike Moments as Features in KNN and SVM as Semi-Blind Detectors for STBC MIMO-OFDM Systems in Impulsive Noise Environments. Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, 2007, 3(15-20):321-324.
    [68]Yuanfei N,Jianhua G,Yong W.Suboptimum Demodulator for BICM-ID Receivers in Impulsive Noise.Wireless Communications,Networking and Mobile Computing,2007.WiCom 2007.International Conference on,2007,21(25):1316-1319.
    [69]Dhibi Y,Kaiser T.On the impulsiveness of multiuser interferences in TH-PPM-UWB systems.Signal Processing,IEEE Transactions on,2006,54(7):2853-2857.
    [70]Hsu C,Wang N,Chan W Y.Improving HomePlug Power Line Communications with LDPC Coded OFDM.Telecommunications Energy Conference,2006.INTELEC '06.28th Annual International,2006,pages 1-7.
    [71]El-Mahdy A.Classification of MFSK signals over time-varying flat correlated fading channels under class-A impulsive noise environment.Communications,IEE Proceedings-,2004,151(6):619-626.
    [72]Maras A.Adaptive nonparametric locally optimum Bayes detection in additive non-Gaussian noise.Information Theory,IEEE Transactions on,2003,49(1):204-220.
    [73]Vesellnovic N,Juntti M.Turbo-coded type-based detection in man-made noise.Spread Spectrum Techniques and Applications,2002 IEEE SeventhInternational Symposium on,2002,2(5):460-464.
    [74]Nakagawa H,Umehara D,Denno S.A decoding for low density parity check codes over impulsive noise channels.Power Line Communications and Its Applications,2005 International Symposium on,2005,6(8):85-89.
    [75]Tepedelenlioglu C,Gao P.On diversity reception over fading channels with impulsive noise.Global Telecommunications Conference,2004.GLOBECOM'04.IEEE,2004,6(29):3676-3680.
    [76]Weng J F,Leung S H.On the performance of DPSK in Rician fading channels with Class A noise.Vehicular Technology,IEEE Transactions on,2000,49(5):1934-1949.
    [77]Wang X,Chen R.Blind Turbo Equalization in Gaussian and Impulsive Noise.IEEE Trans.Veh.Technol,2001,50:1092-1105.
    [78]Luschi C,Mulgrew B.Nonparametric Trellis Equalization in the Presence of non-Gaussian Interference.IEEE Trans.Commun,2003,51:229-239.
    [79]Xue Y,Zhu X.The minimum error entropy-based robust wireless channel tracking in impulsive noise.IEEE Commun.Lett,2002,6:228-230.
    [80]Chert Y,Blum R S.IEEE Trans.Commun.Proc.IEEE Int.Conf.Systems Engineering in,Kobe,Japan,2000,48:1249-1252.
    [81]Petropulu A P,Yang X.Power-law Shot Noise and Relationship to Long-Memory Processes.IEEE Transactions on Signal Processing,2000,48(7).
    [82]Hating J,Vinck A J.Performance Bounds for Optimum and Suboptimum Reception Under Class-A Impulsive Noise.IEEE Trans on Communication,2002,59(7):1130-1136.
    [83]El-Sayed A,El-Malady.Adaptive Signal Detection Over Fast Frequency Selective Fading Channels Under Class-A Impulsive Noise.IEEE Trans on Communication,2005,53(7):1110-1113.
    [84]McDonald K F,Blum R.A Statistical and Physical Mechanisms-Based Interference and Noise Model for Array Observations.IEEE Transactions on Signal Processing,2000,48(7):2044-2056.
    [85]Shepherd R A.Measurements of Amplitude Probability Distributions and Power of Automobile Ignition Noise at HF.IEEE Trans.Vehic.Technol.,1974,VT-23(3):72-82.
    [86]Egidi C,Nano E.Measurement and Suppression of VI-IF Radio Interference Caused by Motorcycles and Motor Cars.IRE Trans.Radio.Freq.Interfer.,1961,pages 2-10.
    [87]Blackard K L,Rappaport T S.Measurements and Models of Radio Frequency Impulsive Noise for Indoor Wireless Communications.IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,1993,11(7):991-1001.
    [88]Powell D,Wilson G.Class A Modeling of Ocean Noise Processes.in Topics in Non-Gaussian Signal Processing.Eds.E.J.Wegrnan,S.C.Schwartz,and J.B.Thomas,Springer-Verlag,New York,1989,1:7-28.
    [89]Axelrod M.Class A modeling of narrowband ocean acoustic noise:Theory,parameter estimation and data analysis.J.Underwater Acoust,1994,Lawrence Livermore Nat.Lab.(Univ.Calif.),Reprint UCRLJC- 118261.
    [90]Middleton D.Non-Gaussian Noise Models in Signal Processing for Telecommunications:New Methods and Results for Class A and Class B Noise Models.IEEE Trans.Inform.Theory,1999,45:1129-1149.
    [91]王连祥.数学手册.北京市,China:高等教育出版社.1979.
    [92]Berrou C,Glavieux A.Near Shannon Limit Error Correcting Coding and Decoding:Turbo-Codes.in:Proceedings of Proc.ICC'93.Geneva,Switzerland,May,1993,1064-1070.
    [93]Huang X,Phamdo N.Turbo Decoders Which Adapt to Noise Distribution Mismatch.IEEE Communications Letters,1998,12(2):321-323.
    [94]Hagenauer.J,Offer E.Iterative decoding of binary block and convolutional codes.IEEE Trans Inform.Theory,1996,42(2):429-445.
    [95]Robertson.P,Hoeher P.Optimal and Sub-Optimal Maximum A Posteriori Algorithms Suitable for Turbo Decoding.European Transactions on Telecommunications,1997,8(2):119-125.
    [96]Schober R.Sequence Detection and Adaptive Channel Estimation for ISI Channel under Class-A Impulsive Noise.IEEE Trans on Communications,2004,52(9):1523-1531.
    [97]Hyvarinen A,Karhunen J.Independent Component Analysis.New York:Wiley.,March,2001.
    [98]Blum R S,Kozick R J.An Adaptive Spatial Diversity Receiver for Non-Gaussian Interference and Noise.IEEE Trans on Signal Processing.,1999,47(8):2100-2111.
    [99]Evans J E,Griffiths A S.Design of a Sanguine Noise Processor Based Upon World-Wide Extremely Low Frequency(ELF) Recordings.IEEE Transactions on Communications,1974,22(4):528-539.
    [100]Metropolis N,Rosenbluth A W,Teller A H,et al.Equations of State Calculations by Fast Computing Machines.J.Chem.Phys,1953,21:1087-1091.
    [101]Hastings W K.Monte Carlo Sampling Methods Using Markov Chains and Their Applications.Biometrika,1970.
    [102]Doucet A,Wang X.Monte Carlo Methods for Signal Processing.IEEE Signal Processing Magazine.,2005,pages 152-170.
    [103]Martinez W L,Martinez A R.Computational Statistics Handbook with Matlab.New York:Chapman,2002.
    [104]Jacobs I.Sequential Decoding for Efficient Communication from Deep Space.IEEE Transactions on Communications,1967,COM-15(4).
    [105]Jordan K L.The Performance of Sequential Decoding in Conjunction with Efficient Modulation.IEEE Transactions on Communications,1966,COM-14(3).
    [106]Larsen K J.Short Convolutional codes with Maximum Free Distance for rate 1/2,1/3,and 1/4.IEEE Trans Inform.Theory,1973,IT-19(5):371-372.
    [107]Paaske E.Short Binary Convolutional Codee with Maximal Free Distance for Rate 2/3 and 3/4.IEEE Trans Inform.Theory,1974,IT-20(9):683-689.
    [108]Johannesson R,Paaske E.Further Result on Binary Convolutional Codes with an Optimum Distance Profile.IEEE Trans Inform.Theory,1978,IT-24(5):264-268.
    [109]Forney G D.Use of a Sequential Decoder to Analyze Convolutional Code Structure.IEEE Trans Inform.Theory,1970,1T-16(11):793-795.
    [110]Chevillat P R.Fast Sequential decoding and a New complete Decoding Algorithm:[PhD Dissertation].I.I.T,1976.
    [111]Wozencraft J M,Jacobs I M.Principles of Communication Engineering.Wiley,New York,1965.
    [112]王士林.现代数字调制技术.人民邮电出版社,北京,1987.
    [113]Kim Y,Zhou G.Representation of the Middleton Class B Model by Symmetric Alpha-stable Processes and Chi-distributions.Proceeding of ICSP'98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700