用户名: 密码: 验证码:
基于非结构网格方法的重叠网格算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多体间具有相对运动的非定常绕流问题是航空工程中一类常见的问题。在这类问题中,物体间存在着较强的气动干扰,而这种气动干扰常常是非线性和非定常的,并对飞行器的气动性能有较大的影响,甚至会对飞行安全构成威胁。近年来,随着数值方法的不断发展以及计算机软硬件的突飞猛进,采用计算流体力学方法模拟多体间具有相对运动的非定常绕流问题已成为可能。Nakahashi提出的基于非结构的重叠网格思想结合了非结构网格方法和结构重叠网格方法的优点,适合应用于多体间具有大幅相对运动的复杂外形非定常绕流问题模拟研究,具有较大的实际工程应用前景。但是,与非结构网格技术和结构重叠网格技术相比,基于非结构的重叠网格方法还处于起步发展阶段,其中的一些关键技术,如网格间插值边界定义方法、适用于非结构重叠网格的网格间插值方法、高效宿主单元搜索算法、向任意网格类型的推广、基于非结构重叠网格方法的分布式并行计算算法以及适用于多体相对运动非定常绕流流场模拟的动态非结构重叠网格算法等方面都需要进行深入研究。因此,本文的主要工作是开展基于非结构网格方法的重叠网格算法研究,其目的是发展出适合于多体相对运动非定常绕流问题模拟的高效计算算法,并开发出相应的非定常计算软件。
     本文首先讨论了所采用的流动控制方程以及数值求解方法。控制方程采用非定常可压缩Euler/N-S方程,空间离散采用有效体积方法,通量计算采用Jameson中心格式,时间离散采用双时间步长方法,在伪时间上采用多步Runge-Kutta迭代,湍流模拟中采用Spalart-Allmaras一方程湍流模型计算湍流粘性系数,其物面距计算采用了一种基于阵面推进的高效计算方法。
     其次,开展了非结构重叠网格的网格间边界定义方法研究,并在Nakahashi的网格间边界定义方法的基础上,提出了一种能够处理包含任意多块子网格、任意单元类型子网格的重叠网格系统的优化网格间边界定义算法;为提高非结构重叠网格系统的网格间边界定义效率,在宿主单元搜索中,发展了一种适合于非结构网格数据结构的基于阵面推进与ADT方法相结合的相邻单元搜索算法,大大提高了大型非结构重叠网格系统的网格间边界定义的速度;为适应混合非结构重叠网格的网格间信息交换,在进行非结构重叠网格的网格间插值方法研究中提出了适合于混合类型单元网格的网格间插值方法。
     然后,为把非结构重叠网格方法推广应用到多体间具有相对的非定常绕流问题模拟中,开展了基于动态非结构重叠网格的非定常Euler/N-S方程求解算法研究,提出了一种适合于多体相对运动模拟的动态非结构重叠网格算法,并且开展数值实验研究,表明该算法在非定常问题模拟中不但具有较高的计算效率和较强的鲁棒性,而且不需任何人工干预,具有很高的自动化程度。
     最后,开展了基于动态非结构重叠网格方法的非定常Euler/N-S方程分布式并行算法研究。在采用区域分裂算法并行求解Euler/N-S方程时,提出了一种子网格独立分区的非结构重叠网格分区策略,并在子网格分区时根据网格节点的性质(活动节点、非活动节点或者插值点)进行加权分区,使得每个进程上的计算负载达到平衡。进程间通信通过调用MPI标准库函数实现。为测试所发展的基于动态非结构重叠网格的并行计算算法的正确性和并行效率,开展了一系列的数值实验研究,结果表明该并行算法不但能够得到与串行一样的正确结果,而且具有较高的并行计算效率。
The unsteady flow field past multiple bodies in relative motion is a common-faced engineering problem, in which there is a strong aerodynamic interaction among bodies. The aerodynamic interaction which is, in nature, always unsteady and nonlinear can make a serious impact on aerodynamic characteristics of flying vehicle and sometimes can threaten the safety of flight. Recently, with the rapid development of numerical simulation methods and computer technologies, computational fluid dynamics (CFD) method has been used to handle these problems. Overset unstructured grids method which was introduced by Nakahashi has the advantages of unstructured grid method and Chimera grid method and is very suitable to deal with unsteady flow fields past complex geometries and/or multiple bodies in relatively moving. However, the overset unstructured grids method is relatively unexplored and it has many problems such as automatic inter-grid definition, efficient algorithm for donor searching, interpolation between subgrids, general type element overlapping grids, dynamic overset grids assembling, parallel computation algorithm, etc. In this thesis, a new efficient and reliable dynamic overset unstructured grids method is proposed and a distributed memory parallel unsteady solver based on the method is developed to predict unsteady flow fields with multiple bodies in relative motion.
     First of all, the numerical methods which are used in this thesis are discussed. The unsteady compressible Euler/Navier-Stokes equations are solved using the finite volume method in spatial discretization and the explicit multistage dual time-stepping scheme in temporal discretization. The low speed preconditioning method is applied to inner iteration of the dual-time stepping to accelerate the solution of the governing equations. In the simulation of turbulence flows, the Spalart-Allmaras one-equation turbulence model is implemented to evaluate the turbulent viscosity and the wall distance of grid nodes is evaluated by an efficient advancing front method.
     Secondly, the inter-grid boundary definition method of overset unstructured grids is investigated. Nakahashi's method is extended to any type element and any number of overlapping grids. To improve the computational efficiency, a neighbour-to-neighbour searching algorithm coupled with advancing front method and ADT algorithm is used to search donor cells for all grid nodes in other component grids and as a consequence, the time used in inter-grid boundary definition is reduced. A general interpolation method which can deal with any element type is presented to realize information transfer between the overlapping grids. Many test cases were considered to validate the developed overset unstructured grids method and the numerical results indicate that the method is efficient and robust.
     Then, a new dynamic overset unstructured grids algorithm is proposed and by coupling the six degree of freedom motion equations, it can be used to handle the unsteady flow problems with multiple bodies in relatively moving. To evaluate the capability of the dynamic overset unstructured grids algorithm for these problems, it was applied to a number of numerical test cases (3D store separation, Caradonna rotor in hover and flight forward, and Robin helicopter with a four-blade rotor). The results show that the dynamic overset unstructured grids method developed in the thesis is not only efficient and reliable but also automatic.
     At last, a distributed memory parallel computation strategy for unsteady Euler/Navier-Stokes solver based on dynamic overset unstructured grids method is proposed and a parallel software was developed to predict unsteady flow fields with moving geometries. The parallel computation is based on the dynamic domain decomposition method which is performed by using METIS system at each physical time step. Load balance is achieved by respectively partitioning each component grid according to the number of CPUs and weighting the active nodes and inactive nodes. Communication between processors is implemented by calling MPI standard library. Numerical test results on the developed distributed memory parallel strategies indicate that a good parallel performance is achieved.
引文
[1]空气动力学外挂课题组.外挂对载机气动特性影响的计算方法[M].西安:陕西科学技术出版社, 2001.
    [2]杨明智.外挂物投放的数值模拟研究[D].中国空气动力研究与发展中心博士学位论文,绵阳,2005.
    [3]恽起麟.风洞实验[M].北京:国防工业出版社, 2000.
    [4] Robert L S, Bruce A J. Time-accurate numerical simulations of a GBU-38 separating from the B-1B aircraft[C]. AIAA-2007-1654, 2007.
    [5] Michael D W, Jolen F. Application of OVERFLOW-MLP to the analysis of 1303 UCAV[C]. AIAA 2006-2987, 2006.
    [6] Parthasarathy C, Yitung C. Application of computation fluid dynamics on smart wing design[C]. AIAA-2005-637, 2005.
    [7] Gortz S, Jirasek A. Steady and unsteady CFD analysis of the F-16XL using the unstructured edge code[C]. AIAA-2007-678, 2007.
    [8] Steger J L, Dougherty, F C and Benek J A. A Chimera Grid Scheme. Advances in Grid Generation, K. N. Ghia and U. Ghia, eds., ASME FED Vol. 5, June, 1983.
    [9]朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社, 1998.
    [10] Luo H, Baum J D, L?ner R. Computation of compressible flows using a two-equation turbulence model on unstructured grids[C]. AIAA-1997-0430, 1997.
    [11] Wang Q, Massey S J, and Abdol-Hamid K S. Solving Navier-Stokes equations on complex configurations[C]. 10th Int. Conf. on Finite Elements in Fluids, Tucson, USA, 1998.
    [12] Candler G V, Barnhardt M D, Drayna T W. Unstructured grid approaches for accurate aeroheating simulations[C]. AIAA-2007-3959, 2007.
    [13] Mohieldin T O, Abodel-salam T M, and Tiwari S N. Numerical study of supersonic mixing and combustion using unstructured grid[C]. AIAA-2000-0349, 2000.
    [14] Shin S, Ragab S A, DEvenport W J. Numerical simulation of highly staggered cascade flow using an unstructured grid[C]. AIAA-99-3713, 1999.
    [15] Nakahashi K, Gumiya T. An intergrid boundary definition method for overset unstructured grid approach[C]. AIAA-99-3304, 1999.
    [16] Buning P G, Chiu I T, Obayashi S, Rizk Y M, and Steger J L. Numerical simulation of the Integrated Space Shuttle Vehicle in ascent[C]. AIAA-88-4359, 1988.
    [17] Gemez R J, Ma E C. Validation of a large scale Chimera grid system for the Space Shuttle Launch Vehicle[C]. AIAA-94-1859, 1994.
    [18] Slotnick J P, Kandula M, and Buning P G. Navier-Stokes simulation of the Space Shuttle Launch Vehicle flight transonic flowfield using a large scale Chimera grid system[C]. AIAA-94-1860, 1994.
    [19] Chan W M, Gomez R J, Rogers S E, and Buning P G. Best practices in overset grid generation[C]. AIAA-2002-3191.
    [20] Rogers S E, Roth K. Computaion of viscous flow for a Boeing777 aircradt in landing configuration[C] AIAA-2000-4221,2000.
    [21] Rogers S E, Roth K, Nash S M, et al. Advances in overset CFD processes applied to subsonic high-lift aircraft. AIAA-2000-4216, 2000.
    [22] Chan W M, Buning P G. A hyperbolic surface grid generation scheme and its applications[C]. AIAA-94-2208, 1994.
    [23] Chan W M. Overset structured hyperbolic grid generation on triangulated surfaces[C] AIAA-2000-2245, 2000.
    [24] Chan W M. The OVERGRID interface for computational simulations on overset grids for flow solver[C] AIAA-2002-3188, 2002.
    [25] Rogers S E. Grid generation for complex high-lift configurations[C]. AIAA-98-3011, 1998.
    [26] Robert L M. Moving body overset grid methods for complete aircraft tiltrotor simulations[C]. AIAA-93-3350, 1993.
    [27] Robert L M. Unsteady simulation of the viscous flow about a V-22 rotor and wing in hover[C] AIAA-95-3463, 1995.
    [28] Benek J A, Steger J L, Dougherty F C. A flexible grid embedding technique[C]. AIAA-85-1523, 1985.
    [29] Slotnick J P, An M Y, et al. Navier-Stokes analysis of a high wing transport high-lift configuration with externally blown flaps[C]. AIAA-2000-4219, 2000.
    [30] Chiu I T, Meakin R L. On automating domain connectivity for overset grids[C]. AIAA-95-0854, 1995.
    [31] Wang Z J, Parthasarathy V, Hariharan N. A fully automated Chimera methodology for multiple moving body problems [C]. AIAA-98-0217, 1998.
    [32] Rock S G, Habchi S D. Validation of an automated Chimera methodology for aircraft escape systems analysis, CRD Research Corporation[C] AIAA-98-0767, 1998.
    [33] Hall L H, Parthasarathy V. Validation of an automated Chimera/6-DOF methodology for multiple moving body problems[C]. AIAA-98-0753, 1998.
    [34] Rober L M. Object X-rays for cutting holes in composite overset structured grids[C]. AIAA-2001-2537, 2001.
    [35]李亭鹤,阎超.一种新的分区重叠网格动点搜索方法-感染免疫法[J].空气动力学学报,2001, 19(2): 156-160.
    [36]李亭鹤,阎超,李跃军.重叠网格技术中割补法的研究与改进[J].北京航空航天大学学报,2005,31(4): 402-406.
    [37]庞宇飞,洪俊武,孙俊峰.交点判别法-一种新型重叠网格洞点搜索方法[C].第四届海峡两岸计算流体力学学术研讨会论文集, 2004.
    [38]刘鑫,陆林生.重叠网格预处理技术研究[J].计算机工程与应用, 2006, 1:23-27.
    [39] Hariharan N, Wang Z J, Buning P. Application of conservative chimera methodology in finite difference settings[C]. AIAA-97-0627, 1997.
    [40] Wang Z J, Hariharan N, Chen R F. Recent developments on the conservation property of Chimera grid methods for flow problems[C]. AIAA-98-0261, 1997.
    [41] Wang Z J. A fully conservative structured/unstructured Chimera grid scheme[C]. AIAA-95-0671, 1995.
    [42] Wang Z J, Hariharan N, Chen R F, et al. A fully conservative Chimera approach for structured/unstructured grids in computational fluid dynamics[R]. Phase II Final Report, 4361/1, CFD Research Corporation, 1997.
    [43] Rober L M. On the spatial a temporal accuracy of overset grid methods for moving body problems[C]. AIAA-94-1925, 1994.
    [44] Suhs N E, Rogers S E. PEGASUS 5, an automated pre-processor for overset-grid CFD[C]. AIAA-2002-3186, 2002.
    [45] Sherer S E, Visbal M R. Computational study of acoustic scattering from multiple bodies using a high order overset grid approach[C]. AIAA-2003-3203, 2003.
    [46] Alabi K, Ladeinde F. Parallel and high-order overset grid implementation for supersonic flow[C]. AIAA-2004-0437, 2004
    [47] Alabi K, Ladeinde F. Treatment of Blank Nodes in a High-Order Overset Procedure[C]. AIAA 2005-1269, 2005.
    [48] Sherer S E, Miguel R V, and Marshall C G. Automated preprocessing tools for usewith a high-order overset-grid algorithm[C]. AIAA-2006-1147, 2006.
    [49] Rober L M. Moving body overset grid methods for complete aircraft tiltrotor simulations[C]. AIAA-93-3350, 1993.
    [50] Duque E P N,Pupak B, Roger C. A solution adaptive structured or unstructured overset grid flow solver with applications to helicopter rotor flows[C]. AIAA-95-1766, 1995.
    [51] Hariharan N,Sankar L N. Numerical Simulation of Rotor Airframe Interaction[C]. AIAA-95-0194, 1995.
    [52] Buning P G, Gomez R J, and Scallion W I. CFD approaches for simulation of wing-body stage separation[C]. AIAA-2004-4838, 2004.
    [53] Pomin H, Wanner S. Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight[C]. AIAA-2001-0998, 2001.
    [54] Rodriguez B, Benoit C, and Gardarein P. Unsteady computations of the flowfield around a helicopter rotor with model support[C]. AIAA-2005-466, 2005.
    [55]江雄.直升机旋翼/机身干扰流场数值模拟方法研究[D].中国空气动力研究与发展中博士论文,绵阳, 2001.
    [56]龙尧松,涂正光,李亭鹤,阎超.高超音速导弹壳片分离的CFD计算研究[C].第十二届全国计算流体力学会议论文,2004.
    [57]李孝伟,范绪箕.基于动态嵌套网格的飞行器外挂物投放的数值模拟[J].空气动力学学报, 2004, 22(1): 114-118.
    [58]杨爱明,乔志德.基于运动嵌套网格的前飞旋翼绕流N-S方程数值计算[J].航空学报,2001, 22(5):434-435.
    [59]杨爱明,乔志德.用运动嵌套网格方法数值模拟旋翼前飞非定常流场[J].空气动力学学报,2000 , 18(4): 427-433.
    [60]肖中云.旋翼流场数值模拟方法研究[D].中国空气动力研究与发展中心博士论文,2007.
    [61] Murayama M, Togashi F, and Nakahashi K. Simulation of aircraft response to control surface deflection using unstructured dynamic grids[C]. AIAA-2002-2940, 2002.
    [62] Hassan O, Morgan K, and Weatherill N P. Unstructured mesh methods for the solution of the unsteady compressible flow equations with moving boundary components[J]. Phil. Trans. R. Soc. A, 2007, 365: 2531-2552.
    [63] Hassan O, Probert E J, Morgan K, and Weatherill N P. Unsteady flow simulation using unstructured meshes[J]. Comput. Methods Appl. Mech. Eng., 2000, 198: 1247-1275.
    [64] Stokes S, Chappell J A, and Leatham M. Efficient numerical store trajectory prediction for complex aircraft/store configurations[C]. AIAA-99-3712, 1999.
    [65] Cavallo P A, Lee Rober A, and Hosangadi A. Simulation of weapons bay store separation flowfields using unstructured grids[C]. AIAA-99-3188, 1999.
    [66] Batina J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[C]. AIAA-89-0115, 1989.
    [67] Liu X Q, Qin N, and Xia H. Fast dynamic grid deformation based on Delaunay graph mapping[J]. J. Comput. Phys., 2006, 211(2): 405-423.
    [68] Formaggia L, Peraire J, Morgan K. Simulation of a store separation using the finite element method[J]. Appl. Math. Modeling, 1988, 12: 175-181.
    [69] Baum J D, L?ner R, Marquette T J, and Luo H. Numerical simulation of aircraft canopy trajectory[C]. AIAA-97-1885, 1997.
    [70] Baum J D, L?ner R. Numerical simulation of pilot/seat ejection from an F-16[C]. AIAA-93-0783, 1993.
    [71]郭正.包含运动边界的多体非定常流场数值方法研究[D].国防科学技术大学博士学位论文,长沙, 2002.
    [72]肖涵山.自适应笛卡尔网格在三维复杂外形流场及机弹分离数值模拟中的应用[D].中国空气动力研究与发展中心博士学位论文,绵阳,2003.
    [73]王俊杰.基于Euler方程的三维自适应笛卡尔网格在复杂外形上的应用研究[D].西北工业大学硕士学位论文,西安,2005.
    [74]肖涵山,陈作斌,刘刚,江雄.基于Euler方程的三维自适应笛卡尔网格应用研究.空气动力学学报,2003, 21(2): 202-210.
    [75] Lee J D, Ruffin S M. Application of a turbulent viscous cartesian-grid methodology to flowfields with rotor-fuselage interaction[C]. AIAA-2007-1280, 2007.
    [76]黄明恪.直升机全机气动参数计算[C].第十二届全国计算流体力学会议论文,2004.
    [77] Togashi F, Nakahashi K, Ito Y, et al. Flow simulation of NAL experimental supersonic airplane/booster separation using overset unstructured grids[J]. computers & Fluids, 2001, 30: 673-688.
    [78] Togashi F, Ito Y, Murayama M, et al. Flow simulation of flapping wings of an insect using overset unstructured grid[C]. AIAA-2001-2619, 2001.
    [79] Togashi F, Ito Y. Extensions of overset unstructured grids to multiple bodies in contact [C]. AIAA-2002-2809, 2002.
    [80] Togashi F, Ito Y. Overset unstructured grids method for viscous flow computations[C]. AIAA-2003-3405, 2003.
    [81] Loner R, Sharov D, Luo H. Overlapping unstructured grids [C]. AIAA-2001-0439, 2001.
    [82] Noack R W. Resolution appropriate overset grid assembly for structured and unstructured grids[C]. AIAA-2003-4123, 2003.
    [83] Luo H. An Overlapping unstructured grid method for viscous flows [C]. AIAA-2001-2603, 2001.
    [84] Zhang S J, Liu J, and Chen Y S. Numerical simulation of stage separation with an unstructured Chimera grid method[C]. AIAA-2004-4723, 2004.
    [85] Zhang S J, Liu J, and Chen Y S. An unstructured Chimera grid method for moving geometries[C]. AIAA-2005-0323, 2005.
    [86] Noack R W. SUGGAR: a general capability for moving body overset grid assembly[C]. AIAA-2005-5117, 2005.
    [87] Noack R W. DiRTlib: a library to add an overset capability to your flow solver[C]. AIAA-2005-5116, 2005.
    [88] Pandya M J, Frink N T, Noack R W. Progress toward overset-grid moving body capability for USM3D unstructured flow solver[C]. AIAA-2005-5118, 2005.
    [89] Hooker J R, Gudenkauf J A. Application of the unstructured Chimera method for rapid weapons trajectory simulations[C]. AIAA-2007-75, 2007.
    [90] Morton S A, Tomaro R F, and Noack R W. An overset unstructured grid methodology applied to a C-130 with a cargo pallet and extraction parachute[C]. AIAA-2006-461, 2006.
    [91] Stuemer A W. Validation of an unstructured Chimera grid approach for the simulation of propeller flows[C]. AIAA-2004-5289, 2004.
    [92] S?rensen K A, Tremel U. Simulation of manoeuvring fighter aircraft with the unstructured Chimera approach[C]. AIAA-2007-123, 2007.
    [93]王力强.基于动态非结构重叠网格的有限体积算法研究[D].南京航空航天大学硕士学位论文,南京, 2006.
    [94]许和勇,叶正寅,王刚,史爱明.基于非结构嵌套网格的旋翼前飞流场计算[J].西北工业大学学报,2006, 24(6): 763-767.
    [95] Blazek J. Computational fluid dynamics: principles and applications[M]. Oxford : Elsevier Science Ltd, 2001.
    [96]陈再新,刘福长,鲍国华.空气动力学[M].北京:航空工业出版社,1993.
    [97]刘学强.基于混和网格和多重网格上的N-S方程的求解及应用研究[D].南京航空航天大学,南京, 2001.
    [98] Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume method using Runge-Kutta time-stepping schemes[C]. AIAA- 81-1259, 1981.
    [99] Jameson A, Baker T J, Weatherill N P. Calculation of inviscid transonic flow over a complete aircraft[C]. AIAA-86-0103, 1986.
    [100] Barth T J, Jespersen D C. The design and application of upwind schemes on unstructured meshes[C]. AIAA-89-0366, 1989.
    [101] Barth T J. Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations[R]. AGARD R-787, Special Course on Unstructured Grid Methods for Advection Dominated Flows, Brussels, Belgium, 18-22 May,1992.
    [102] Barth T J. A 3-D upwind Euler solver for unstructured meshes[C]. AIAA-91-1548, 1991.
    [103] Jameson A. Time-dependent calculations using multigrid with application to unsteady flows past airfoils and wings[C]. AIAA-91-1596, 1991.
    [104] Guillard H, Farhat C. On the significance of the GCL for flow computations on moving meshes[C]. AIAA-99-0793, 1999.
    [105] Arnone A, Liou M S, Povinelli L A. Multigrid time-accurate integration of Navier-Stokes Equations[C]. AIAA-93-3361, 1993.
    [106] Melson N D, Sanetrik, M D, Atkins H L. Time-accurate Navier-Stokes calculations with multigrid acceleration[R]. Proc. 6th Copper Mountain Conf. on Multigrid Methods, 1993.
    [107] Venkatakrishnan V, Mavriplis D J. Implicit method for the computation of unsteady flows on unstructured grids[J]. J. Computational Physics, 1996, 127:380-397.
    [108] Venkatakrishnan V. Implicit schemes and parallel computing in unstructured grid CFD[R]. ICASE Report, No.95-28, 1995.
    [109]周春华.跨声速欧拉方程有限元解法的研究[D].南京航空航天大学博士学位论文,南京, 1993.
    [110] Spalart P R, Allmaras S R. A One-equation turbulence model for aerodynamic flows[C]. AIAA-92-0439, 1992.
    [111] Tucker P G. Transport equation based wall distance computations aimed at flows with time-dependent geometry[R]. NSSA/TM-2003-212680, 2003.
    [112] Wigton L. Research in computational aeroscience applications implemented on advanced parallel computing systems[R]. Final Report of NAS2-1490, 1996.
    [113] Loner R. Applied computational fluid dynamics techniques[M]. Sussex: John Wiley & sons Ltd, 2001.
    [114] Choi Y H, Merkle C L. The application of preconditioning in viscous flows[J]. Journal of Computational Physics, 1993, 105: 207-223.
    [115] Turkel E, Vatsa V N, Radespiel R. Preconditioning methods for low-speed flows[C]. AIAA-96-2460, 1996.
    [116] Luo H, Joseph D. Extension of Harten-Lax-van-Leer scheme for flows at all speeds[J]. AIAA Journal,2005,43(6): 1160-1166.
    [117] Weiss J M, Smith W A. Preconditioning applied to variable and constant density flows[J]. AIAA Journal, 1995, 33(11): 2050-2057.
    [118] Unrau D, Zingg D W. Viscous airfoil computations using local preconditioning[C]. AIAA-97-2027, 1997.
    [119] L?ner R. Robust, vectorized search algorithms for interpolation on unstructured grids[J]. Journal of Computational Physics, 1995, 118: 380-387.
    [120] Bonet J, Peraire J. An alternating digital tree algorithm for 3D geometric searching and intersection problems[J]. International Journal For Numerical Methods In Engineering, 1991, 31:1-17.
    [121]张本照.流体力学数值方法[M].北京:工业机械出版社,2003.
    [122] Cook P H, Mcdonald M C P. Aerofoil RAE2822 pressure distributions, and boundary layer and wake measurements[R] Experimental Data Base for Computer Program Assessment, AGARD Report AR-138, 1979.
    [123]万铮.基于直角坐标网格和多重网格的Euler方程求解及应用研究[D].南京航空航天大学硕士学位论文,南京, 2005.
    [124] Schmitt V, Charpin F. Pressure distributions on the ONERA-M6-Wing at transonic mach numbers[R]. Experimental Data Base for Computer Program Assessment. Report of the Fluid Dynamics Panel Working Group 04, AGARD AR 138, 1979.
    [125] Murman S M, Aftosmis M J. Simulations of 6-DOF motion with a cartesina method[C]. AIAA-2003-1246, 2003.
    [126]田书玲,伍贻兆,夏健.用动态非结构重叠网格法模拟三维多体相对运动绕流.航空学报,2007, 28(1): 46-50.
    [127] Caradonna F X, Tung C. Experimental and analytical studies of a model helicopter rotor in hover[R]. NASA TM-81232, 1981.
    [128] Sheffer S G, Alonso J J, Martinelli, L, and Jameson A. Time-accurate simulation of helicopter rotor flows including aeroelastic effects[C]. AIAA-97-0399, 1997.
    [129] Xu H, Mamou M, Khalid M. Numerical simulation of turbulent flows past the RoBin helicopter with a four-bladed rotor using k-w SST model[C]. The 10th Annual Conference of CFD Society of Canada, 2002.
    [130] Schweitzer S. Computational simulation of flow around helicopter fuselages [D]. Pennsylvania State University, 1999.
    [131]夏健,伍贻兆.基于混合网格的三维Navier-Stokes方程并行算法.航空学报,2005,26(3):290-293.
    [132]王学德.高超声速稀薄气体非结构网格DSMC及并行算法研究[D].南京航空航天大学博士学位论文,南京, 2006.
    [133]潘勇.高超声速流场磁场干扰效应数值模拟方法研究[D].南京航空航天大学博士学位论文,南京, 2007.
    [134] William G, Ewing L, and Anthony S. Using MPI[M]. London: The MIT Press, 1994.
    [135]余奇华.三维高超声速绕流流场并行算法研究[D].南京航空航天大学硕士学位论文,南京, 2006
    [136]陈国良.并行计算[M].北京:高等教育出版社, 1999.
    [137] Zhang S J, Owens S F. A parallel unstructured Chimera grid method[C]. AIAA-2005-4877, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700