用户名: 密码: 验证码:
非规则碎片拼合关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实世界中存在着大量的碎片,碎片中有的极具价值,人们希望将它们拼合复原。采用计算机辅助技术进行碎片的拼合仿真能够大大提高碎片拼合复原的效率。本文对非规则碎片的拼合技术进行了深入研究,包括碎片数字化、全局和局部特征提取、碎片分类、碎片匹配和碎片拼接等关键技术,这些技术在计算机视觉、反求工程、临床医学等领域中也有重要应用。本文主要研究内容和成果如下:
     研究了三维碎片的数字化及碎片分类技术。使用光学扫描仪获取碎片点云数据,在数据测量和数据预处理的基础上,提出了基于STL文件建立碎片三角网格模型的算法。在基于碎片厚度分类的基础上,重点研究了旋转类碎片的分类算法,算法基于碎片的特征点和特征量,按照定义的分类规则将种子碎片归类,并使用母线匹配算法完成其它碎片的归类,形成碎片数据库作为后续拼合的基础。
     针对碎片拼合的共性基础——轮廓曲线匹配问题,提出了根据碎片轮廓曲线的形状特点分别匹配的策略,即基于特征点的匹配和基于轮廓分段的匹配。基于特征点的匹配算法首先通过样条拟合计算曲率,提取特征点,进行单个特征点匹配,然后构造相似矩阵,通过搜索相似矩阵得到满足相容性约束的多个特征点的匹配,提高匹配的可靠性。基于轮廓分段的匹配算法适用于具有角点而其它特征点较少的轮廓曲线,该算法在轮廓分段和粗匹配的基础上使用动态规划技术进行精匹配,在保证匹配效果的同时可提高匹配效率。
     针对薄壁类碎片(包括平面碎片和空间旋转类碎片),提出了基于轮廓曲线匹配与三元组融合的碎片整体拼合算法。该算法首先提取碎片边界轮廓曲线,使用轮廓曲线匹配算法进行碎片的两两匹配,使用基于三元组的整体拼合算法进行碎片的整体拼合。该算法的特点在于:在碎片两两匹配过程中自动判别轮廓曲线的走向,在整体拼合过程中综合运用整体配准、重叠检测和干涉检查剔除误匹配,以提高匹配可靠性。
     针对三维非薄壁类碎片,提出了基于曲面匹配和子图融合的多碎片整体拼合算法。该算法基于特征线进行区域分割提取拼合断面,基于snake模型对断面区域边界进行优化;基于最大权团的曲面匹配算法与遗传算法相结合的方法进行碎片初始匹配;基于子图融合法进行多碎片的整体拼合,在拼合过程中通过碰撞检测、位置一致性检测和跨界连续性检测排除误匹配,提高匹配可靠性。
     针对三维视图碎片,提出了一种不依赖于人工标记点的多视图整体拼合算法。该算法以视图碎片中高曲率点和平均采样点的自旋图作为局部形状标签进行初匹配,初匹配点对对集由最大权团搜索算法获得;基于最小生成树确定匹配视图对,采用改进的ICP算法获得视图对的精确匹配点对集;采用改进的基于奇异值分解的同时配准算法,根据精确匹配点对集进行多视图的全局拼合与优化。
Lots of irregular fragment examples have existed in real world, some of which has great value, so people hope to reassembly them. Introducing computer aided technique to the field of fragment assembly has greatly speeded the assembly working process. This thesis has studied deeply on irregular fragment assembly methods, which include key techniques such as fragment digitalization, global and local feature extraction, fragment classification, fragment matching, and fragment assembly, these techniques can be employed in some other fields such as computer vision, reverse engineering, clinic medicine. Its main contents and contributions are as follows:
     3D fragment digistization technique and classification technique have been researched. First of all, optical scanner is used to to acquire the fragments’3D point cloud data. After data preprocessing, triangle mesh models of the fragments are constructed from STL files. Based on the proposed fragment classification methodology by thickness, the classification techniques targeting on revolved fragments are furtherly researched. According to the priori classification rule, which is based on feature point and feature metric, seed fragments are classified firstly. All the remained non-seed fragments are classified with profile matching method. A fragment library then has been constructed and used as the basis of the succesive fragment assembly work.
     Aiming at contour curve, a contour cuve matching strategy is proposed, which adopted two different matching methods according to the curve shape characteristic, namely, feature-based matching algorithm and segmentation-based matching algorithm. The feature-based matching algorithm estimates curvature by spline fitting, extracts the feature points, and obtain single-feature-point match, then constructed the similarity matrix, and searched the similarity matrix to obtain the multiple-feature-point match satisfying compability constraint. The algorithm improved the matching reliability. The segmentation-based matching algorithm has been used to contour curve with distinct corner point and obscured feature point. After contour segmentation and coarse matching, a dynamic algorithm is used to improve matching quality. The algorithm speeded the matching process and assured the matching quality.
     Aiming at thin walled fragment, a reassembly algorithm based on contour curve matching and triplet merging technique is proposed. Thin walled fragments included planar fragments and space revolving fragment. Firstly, the algorithm extracted boundary curve, used curve matching algorithm to do piecewise matching. Fragment assembly is completed based on triplets. The algorithm is characteristic of improving the reliability by auto-decision of curve direction and removal of fasle maching via simultaneous registration, overlapping detection and interference detection.
     Aiming at 3d non-thin walled fragments, a multiple-piece reassembly algorithm based on surface matching and sub-graph merging technique is proposed. The algorithm extracted the fracture region using feature-line-based segmentation method and optimized the frature region’s boundary by snake model. A piecewise matching algorithm is proposed, which is the combination of maximum-clique surface matching and genetic algorithm. A multiple-piece assembly is proposed based on sub-graph merging technique. Bumping detection, global consistant detection and cross-boundary continuity dectection in the assembly process are used to romove the false matching.
     Aiming at 3d view pieces, a reference-point-independant multi-view reassembly algorithm is proposed. The algorithm uses the spin-image of high curvature point and uniform sampling point to do initial piecewise matching. Based on maximum weight clique, the initial matching point set is determined. Base on the minmum spanning tree, an enhanced ICP registration algorithm is proposed to do view pair’s registration optimization and obtain the accurate matching point set. According to the accurate matching point set, an advanced SVD-based simultaneous registration method is proposed to minimize all the view-pair accumulated registration error.
引文
[1]潘荣江.计算机辅助文物复原中的若干问题研究[博士学位论文].济南:山东大学, 2005
    [2] Levoy M. The digital Forma Urbis Romae project. http://www.graphics.stanford.edu/projects/forma -urbis.
    [3] Simon D A. Fast and Accurate Shape-Based Registration[doctoral dissertation]. Pennsylvania: Carnegie Mellon University, 1996
    [4] Livyatan H, Yaniv Z. Gradient-based 2-D/3-D Rigid Registration of Fluoroscopic X-Ray to CT. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22(11): 1395~1406
    [5] Inbar Y, Wolfson H J. Multiple Docking for Protein structure prediction. the International Journal of Robotics Research, 2005, 24(2-3): 131~150
    [6] Cosmas J, Itegaki T, Green D, et al. 3D MURALE: A Multimedia System for Archaeology. Proc. of Archaeology and Cultural Heritage (VAST), European Association for Computer Graphics Conference Proceedings on Virtual Reality, Greece,2001:297~306
    [7] Canny J. A Computational Approach to Edge Detection. IEEE Transactions On Pattern Analysis and Machine Intelligence, 1986, 8(6): 679~698
    [8]朱延娟.非规则碎片匹配的关键技术研究[博士学位论文].南京:南京航空航天大学, 2005
    [9]潘云鹤,鲁东明.古代敦煌壁画的数字化保护与修复.系统仿真学报, 2003, 15(3): 310~314
    [10]张丽艳.逆向工程中模型重建关键技术研究[博士学位论文].南京:南京航空航天大学, 2001
    [11] Gu P, Yan X. Neural network approach to the reconstruction of freeform surface for reverse engineering. Computer-Aided Design, 1995, 27(1): 59~64
    [12]孙玉文,王晓明,刘健.三维面形测量中的基于神经网络的数据修补技术.计量学报, 2001, 22(1): 7~11
    [13]王宏涛.径向基函数和神经网络技术在逆向工程中的应用研究[博士学位论文].南京:南京航空航天大学, 2006
    [14] Szilvasi-NAGY M, MATYASI G Y. Analysis of STL Files. Mathematical and Computer Modelling, 2003, 38(7-9): 945~960
    [15] Hayong Shin, Joon C.Park, Byoung k, et al. Efficient Topology Construction from Triangle Soup. Proc. of the Geometric Modeling and Processing 2004: 359~364
    [16] Sara M, Joseph M H, Carlo H S. Out-of-Core Build of a Topological Data Structure from Polygon Soup. Proc. of 6th ACM Symposium on Solid Modeling and Applications, china, Beijing,2001: 171~182
    [17]张必强,邢渊,阮雪榆.面向网格简化的STL拓扑信息快速重建算法.上海交通大学学报,2004, 38(1): 39~42
    [18]戴宁,廖文和,陈春美. STL数据快速拓扑重建关键算法.计算机辅助设计与图形学学报, 2005, 17(11): 2447~2452
    [19]边肇祺,张学工.模式识别.北京:清华大学出版社, 2000
    [20] Kampel M, 3D Mosaicing of Fractured Surfaces[Technical Report], Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation,Vienna University of Technology, 2003
    [21] Napoli L D. A semi-automatic procedure for the recognition and classification of pieces of archaeological artifacts. Proc. of XII ADM international conference, Rimini, Italy, 2001
    [22] Ucoluk G, Toroslu I H. Automatic reconstruction of broken 3-d surface objects. Computer Graphics, 1999, (23): 573~582
    [23] Piegl L A, Tiller W. Least-Squares B-Spline Curve Approximation with Arbitrary End Derivatives. Engineering with Computers, 2000, (16): 109~116
    [24] Harten A, Osher S, Engquist B, et al. Uniformly high order accurate essentially non-oscillatory schemes,III. Journal of Computational Physics, 1987, (71): 231~303
    [25] Asada I, Brady M. The Curvature Primal Sketch. Proc.2nd IEEE Workshop Computer Vision:Representation and Control, 1984, 8(1): 2~14
    [26]刘胜兰.逆向工程中自由曲面与规则曲面重建关键技术研究[博士学位论文].南京:南京航空航天大学, 2004
    [27] Hamann B. Curvature approximation for triangulated surfaces. Geometric Modelling, Springer Verlag, 1993: 139~153
    [28] Milroy M J, Bradley C, Vickers G W. Segmentation of a wrap-around model using an active contour. Computer Aided Design, 1997, 29(4): 299~320
    [29] Goldfeather J, EInterrante V. A Novel Cubic-Order Algorithm for Approximating Principal Direction Vectors. ACM Trans. on Graphics, 2004, 23(1): 45~63
    [30] Pottmann H, Wallner J, Yang Y L. Principal curvatures from the integral invariant viewpoint. 2006:
    [31] Huang Q X, Fl?ry S, Gelfand N, et al. Reassembling Fractured Objects by Geometric Matching. Siggaph'06, 2006: 569~578
    [32] Pottmann H, Wallner J, Huang Q X, et al., Integral Invariants for Robust Geometry Processing, Geometry Preprint Series, Vienna Univ. of Technology, 2005
    [33] Papaioannou G, Karabassi E A, Theoharis T. Segmentation and Surface Characterization of Arbitrary 3D Meshes for Object Reconstruction and Recognition. Proc. of the International Conference on Pattern Recognition, 2000: 734~737
    [34] Burdea G C, Wolfson H J. Solving Jigsaw Puzzles by a Robot. IEEE Trans. on Robotics andAutomation, 1989, 5(6): 752~764
    [35] Webster R, LaFollette P S, Stafford R L. Isthmus Critical Points for Solving Jigsaw Puzzles in Computer Vision. IEEE Transactions on Systems Man and Cybernetics, 1991, 21(5): 1271~1278
    [36] Goldberg D, Malon C, Bern M W. A global approach to automatic solution of jigsaw puzzles. Symposium on Computational Geometry 2002: 82~87
    [37] Kong W X, Kimia B B. On solving 2d and 3d puzzles using curve matching. Proc. of Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recgnition, Hawaii, 2001,(2): 583~590
    [38] Leit?ao H C G, Stolfi J. A multi-scale method for the reassembly of two-dimensional fragmented objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1239~1251
    [39] Leit?ao H C G, Stolfi J, Information Contents of Fracture Lines[Technical Report], University of Campinas, 1999
    [40] Wolfson H J. On Curve Matching. IEEE Transactions On Pattern Analysis and Machine Intelligence, 2005, 12(5): 483~489
    [41] Brown University. Brown University SHAPE center for digital shape-archaeology photogrammetry-entropy, http://www.lems.brown.edu/shape/
    [42] Andrew E J. Surface Landmark Selection and Matching in Natural Terrain. Proc. of IEEE Conference on Computer Vision and Pattern Recognition, SC,2000,(2): 413~420
    [43] Johnson A E, Hebert M. Surface registration by matching oriented points. Proc. of Proceedings International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, Canada, 1997:121~128
    [44] Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239 ~256
    [45] Papaioannou G, Karabassi E A, Theoharis T. Reconstruction of Three-Dimensional Objects through Matching of Their Parts. IEEE Transactions On Pattern Analysis and Machine Intelligence, 2002, 24(1): 184~187
    [46] Papaioannou G, Karabassi E A, Theoharis T. Virtual Archaeologist: Assembling the Past. IEEE Computer Graphics and Applications, 2001, 21(2): 53~59
    [47] Papaioannou G, Karabassi E A. On the Automatic Assemblage of Arbitrary Broken Solid Artefacts. Elsevier, 2003, 21(5): 401~412
    [48] Papaioannou G, Theoharis T. Fast Fragment Assemblage Using Boundary Line and Surface Matching. Proc. of IEEE ICPR/ACVA ,2003
    [49] Papaioannou G, Karabassi E A, Theoharis T. Reconstruction of three-dimensional objects throughmatching of their parts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 114~124
    [50] Papaioannou G, karabassi E A, Theoharis T. Automatic Reconstruction of Archaeological Finds-A Graphics Approach. Proc. of the 4th International Conference on Computer Graphics and Artificial Intelligence, Limoges, France,2000: 117~125
    [51] Benjernaa R, Schmitt F. A Solution for the Registration of Multiple 3D Point Sets Using Unit Quaternions. Proc. of the Fifth European Conference on Computer Vision, Freiburg, Germany, 1998, (2):34~50
    [52] Sebastian T B, Klein P N, Kimia B B. Alignment-based recognition of shape outlines. Proc. of 4th International Workshop on Visual Form, Capri, Italy,2001: 606~618
    [53]王小平,曹立明.遗传算法--理论、应用与软件实现.西安:西安交通大学出版社, 2002
    [54] Toyama F, Shoji K, Miyamochi J. Model-based Pose Estimation Using Genetic Algorithm. Proc. of International Conference on Pattern Recognition, Brisbane, 1998,(3):198~201
    [55] Hati S, Sengupta S. Robust Camera Parameter Estimation Using Genetic Algorithm. IEEE, SMC Conference Proceedings, 1999, (4): 943~947
    [56] Silva L, Bellon O R P. Enhanced, Robust Genetic Algorithms for Multiview Range Image Registration. Proc. of Proceedings of the Fourth International Conference on 3-D Digital Imaging and Modeling 2003: 268~275
    [57] Greenspan M, Godin G. A Nearest Neighbor Method for Efficient ICP. Third International Conference on 3-D Digital Imaging and Modeling, 2001: 161~168
    [58] Chen Y, Medioni G. Object Modeling by Registration of Multiple Range Images. Image and Vision Computing, 1992, 10(3): 145~155
    [59] Gruen A, Akca D. Least squares 3D surface and curve matching. ISPRS Journal of Photogrammetry and Remote Sensing, 2005, 59(3): 151~174
    [60] Klosowski J T. efficient collision detection for interactive 3d graphics and virtual environments OBB tree[doctoral dissertation]. NY: State University of New York, 1998
    [61] Freeman H, Gardner L. Apictorial jigsaw puzzles:the computer solution of a problem in pattern recognition. IEEE Transactions on Electronic Computer, 1964, 13(2): 118~127
    [62]潘小林.三维曲面匹配技术研究[硕士学位论文].南京:南京航空航天大学, 2003
    [63]刘爽.三维曲线匹配技术研究[硕士学位论文].南京:南京航空航天大学, 2004
    [64] Iyer N, Jayanti S, Lou K. Three-dimensional shape searching:state-of-the-art review and future trends. Computer Aided Design, 2005, 37(5): 509~530
    [65]刘玉杰.用于3D模型检索的扩展距离球面调和表达.计算机辅助设计与图形学学报, 2006,18(11): 1671~1676
    [66] Liu Xinguo. Directional Histogram Model for Three-Dimensional Shape Similarity. Proc. of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003. 1: 813~820
    [67] Osada R, Funkhouser T, Chazelle B, et al. Matching 3D Models with Shape Distributions. Proc. of International Conference on Shape Modeling and Applications, Genova,Italy, 2001:154~166
    [68] Kampel M, Sablatnig R. Rule based system for archaeological pottery classification. Pattern Recognition Letters, 2007, 28: 740~747
    [69] Razdan A. Using Geometric Modeling for Archiving and Searching 3D Archaeological Vessels. Proc. of CISST, Las Vegas, 2001: 451~457
    [70] Liu D Z, Razdan A, Simon A, et al. An XML-based information model for archaeological pottery. Journal of Zhejiang University SCIENCE, 2005, 6(5): 447~453
    [71]杨承磊,张宗霞,潘荣江, et al.计算机辅助文物修复系统架构及关键技术研究.系统仿真学报, 2006, 18(7): 2003~2006
    [72]丁险峰,吴洪,张宏江, et al.形状匹配综述.自动化学报, 2001, 27(5): 678~694
    [73] Sebastian T B, Klein P N, Kimia B B, et al. Constructing 2D Curve Atlases. Proc. of Proceedings of the Mathematical Methods in Biomedical Image Analysis ,South Carolina 2000: 70~77
    [74]潘荣江,孟祥旭,屠长河.一种基于LCS的物体碎片自动拼接方法.计算机学报, 2005, 28(3): 350~356
    [75]茹少峰,王晓强,周明全.基于连接点的3-D多角弧匹配.中国图象图形学报, 2004, 9(5): 584~588
    [76]吕科,耿国华,周明全, et al.基于傅立叶变换的三维轮廓线快速匹配算法.西北大学学报(自然科学版), 2003, 33(2): 151~154
    [77] Li S Z. Invariant Representation, Matching and Pose Estimation of 3D Space Curves Under Similarity Transformations. Pattern Recognition, 1997, 30(3): 447~458
    [78] Li S Z. Bayesian Object Matching. Journal of Applied Statistics, 1998, 25(3): 425~443
    [79] Li S Z. Minimization of MRF Energy with Relaxation Labeling. Journal of Mathematical Imaging and Vision, 1997, 7(2): 149~161
    [80] Suganthan P N. Solving jigsaw puzzles using Hopfield neural networks. Internat. Conf. on Neural Networks, Washington, DC, USA, 1999
    [81]茹少峰,周明全,耿国华.基于遗传算法的多边形逼近3D数字曲线.计算机辅助设计与图形学学报, 2004, 16(4): 503~507
    [82] Rosin P L, West A W. Nonparametric segmentation of curves into various representations. IEEETransactions on Pattern Analysis and Machine Intelligence, 1995, 17(12): 1140~1152
    [83] Birchfield S, Tomasi C. Depth Discontinuities by Pixel-to-Pixel Stereo. International Journal of Computer Vision, 1999, 35(3): 269~293
    [84] Yao F H, Shao G F. A shape and image merging technique to solve jigsaw puzzles. Pattern Recognition Letters, 2003, 24(12): 1819~1835
    [85] Kosiba D A, Devaux P M, Balasubramanian S, et al. An Automatic Jigsaw Puzzle Solver. Proc. of of the 12th IAPR International Conference on Pattern Recognition,Jerusalem,Israel, 1994,1: 616~618
    [86] Chung M G, Fleck M M, Forsyth D A. Jigsaw puzzle solver using shape and color. Proc. of ICSP'98 Fourth Internat.Conf.on Signal Processing, Beijing,China, 1998: 877~880
    [87] Willis A R, Cooper D B. Bayesian Assembly of 3D Axially Symmetric Shapes from Fragments. Proc. of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D.C., USA, 2004. (1): 82~89
    [88] Willis A R. Stochastic 3D Geometric Models for Classification,Deformation,and Estimation[doctoral dissertation]. Philadelphia: Brown University, 2004
    [89] Pottmann H, Peternell M, Ravani B. An introduction to line geometry with applications. Computer-Aided Design, 1999, 31(1): 3~16
    [90] Halir R. An automatic estimation of the axis of rotation of fragments of archaeological pottery:a multi-step model-based approach. Proc. of the 7th International Conference in Central Europe on Computer Graphics,1999
    [91] Tamas Varady, Ralph R Martin. Reverse Engineering of Geometric Models-An Introduction. Computer-Aided Design, 1997, 29(4): 255~268
    [92]金涛,童水光.逆向工程技术.北京:机械工业出版社, 2003
    [93] Razdan A, Bae M. A hybrid approach to feature segmentation of triangle meshes. Computer-aided Design, 2003,(35): 783~789
    [94] Lavoue G, Dupont F, Baskurt A. A new CAD mesh segmentation method, based on curvature tensor analysis computer-aided Design, 2005, (37): 975~987
    [95] Hoffman R, Jain A K. Segmentation and classification of range images. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1987, 9(5): 608~620
    [96] Leonardis A, Jaklic A, Solina F. Superquadrics for segmenting and modeling range data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(11): 1289~1295
    [97] Chevalier L, Jaillet F, Baskurt A. A segmentation superquadric modelling of 3D objects. WSCG, Plzen-Bory, Czech Republic, 2003, 11(2): 232~240
    [98] Liu S, Martin R R, Langbein F C, et al. Segmenting Geometric Reliefs from Textured Background Surfaces. Computer-Aided Design and Applications, 2007, 4(5): To appear
    [99] Liu S, Martin R R, Langbein F C, et al. Segmenting Reliefs on Triangular Meshes. Proc. of ACM Symposiam Solid and Physical Modeling, 2006: 7~16
    [100] Liu S, Martin R R, Langbein F C, et al. Segmenting Periodic Reliefs on Triangle Meshes. 2007: 290~306
    [101]刘胜兰,周儒荣,张丽艳.三角网格模型的特征线提取.计算机辅助设计与图形学学报, 2003, 15(4): 444~453
    [102]刘胜兰,周儒荣,张丽艳.用主动轮廓模型优化网格曲面上的特征线.计算机辅助设计与图形学学报, 2004, 16(4): 439~448
    [103] Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models. Internation Journal of Computer Vision, 1988, 1(4): 321~331
    [104] Barequet G, Sharir M. Partial surface and volume match in three dimension. IEEE Transactions on pattern analysis and Machine Intelligence, 1997, 19(9): 929~948
    [105] Barequet G, Sharir M. Partial surface matching by using directed footprints. Computational Geometry:Theory and Applications, 1999, 12(1-2): 45~62
    [106] Zhang D M, Hebert M. Harmonic maps and their applications in surface matching. Proc. of IEEE Conference of Computer Vision and Pattern Recognition 1999, New York,USA: 524~530
    [107]潘小林,张丽艳,揭裕文, et al.三维曲面部分匹配的算法研究.南京航空航天大学学报, 2004, 36(5): 544~549
    [108] Dave S. OpenGL参考手册.北京:机械工业出版社, 2001
    [109] Huber D. Automatic Three-dimensional Modeling from Reality[doctoral dissertation], Pennsylvania: Carnegie Mellon University, 2002
    [110]施法中.计算机辅助几何设计与非均匀B样条曲线.北京:北京航空航天大学出版社, 1994
    [111]王国瑾,汪国昭,郑建民.计算机辅助几何设计.北京:高等教育出版社,施普林格出版社, 2001
    [112]朱心雄.自由曲线曲面造型技术.北京:科学出版社, 2000
    [113]吴敏,周来水,王占东.测量点云数据的多视拼合技术研究.南京航空航天大学学报, 2003, 35(5): 552~557
    [114] Xiao G, Ong S H, Foong K W C. Efficient Partial-surface registration for 3D objects. Computer Vision and Image Understanding 2005, 98(2): 271~294
    [115] Xiao G, Ong S H, Foong K W C. Registration of partially overlapping surfaces by rejection of false point correspondences Pattern Recognition, 2006, 39(3): 373~383
    [116] Strickland D M, Barnes E, Sokol J S. Optimal Protein Structure Alignment Using Maximum Cliques. Operations Research, 2005, 53(3): 389~402
    [117] Horaud R, Skordas T. Stereo Correspondence Through Feature Grouping and Maximal Cliques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(11): 1168~1180
    [118] Meyer M, Desbrun M, Schroder P, et al. Discrete differential-geometry opertor for triangulated 2-manifolds. Proc. of Proceedings of Visual Mathematics,Berlin 2002:35~57
    [119] Taubin G. Estimating the tensor of curvature of a surface from a polyhedral approximation. Proc. the fifth international conference on computer vision, Boston, MA,1995: 902~907
    [120] Coen B, Joep K. Finding All cliques of an Undirected Graph. Communications of the ACM, 1973, 16(9): 575~577
    [121] Pauly M, Mitra N J, Giesen J, et al. Example-based 3D scan completion. Proc. of Symposium on Geometry Processing, 2005: 23~32
    [122] Benjemaa R, Schmitt F. A Solution for the Registration of Multiple 3D Point Sets Using Unit Quaternions Proc. of ECCV, 1998,(2): 34~50
    [123] Williams J A, Bennamoun M. Simultaneous Registration of Multiple Point Sets Using Orthonormal Matrices. Proc. of IEEE International Conference On Acoustics, Speech, and Signal Processing, 2000: 2199~2202
    [124] Sharp G C, Lee S W, Wehe D K. ICP registration using invariant features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 90~102
    [125] Sharp G C, Lee S W, Wehe D K. Multiview Registration of 3D Scenes by Minimizing Error between Coordinate Frames. IEEE Transactions On Pattern Analysis and Machine Intelligence, 2004, 26(8): 1037~1050
    [126] Lee P Y. Geometric Optimization for Computer Vision[doctoral dissertation]. Canberra: Research School of Information Sciences and Engineering Australian National University, 2005
    [127] Lee P Y, Moore J B. Geometric Optimization for 3D Pose Estimation of Quadratic Surfaces, Proc. of the Thirty-Eighth Asilomar Conference on Signals,Systems and Computers Pacific Grove, California, USA, 2004:131~135
    [128] Lee P Y, Moore J B. Pose Estimation via Gauss-Newton-on-manifold Approach. Proc. of the 16th International Symposium on Mathematical Theory of Networks and Systems,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700