用户名: 密码: 验证码:
数控微细铣削机床系统构建及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细切削加工技术在精密三维微小零件制造中的应用,引发了微细制造领域重大的技术变革。其区别于MEMS技术和超精密加工技术,是利用传统机加工方式并针对微米和中间尺度微小零件进行高效率、高精度微细制造的有效途径。超精密机床是实现微细切削加工技术的重要装备,目前国内在微细切削设备专用机床研发方面尚属初期,欠缺对从系统设计构建到性能评估的一系列深入研究,而国外虽已开发出实用系统,但多数仍处于试制阶段且对我国技术保密。本文针对微细铣削加工,对数控微细铣削机床系统设计过程中的关键技术进行深入的研究,并对影响加工精度的机床主要性能特点进行评估和验证,主要创新性成果如下:
     1)设计并构建了一台专用于微细铣削加工的小型三轴数控微细铣削机床系统。机床的本体尺寸为300mm×400mm×500mm,机床的工作空间尺寸为50mm×50mm×20mm,全闭环数控系统分辨率为0.05μm,能实现亚微米级加工精度。关键部件采用高速空气静压电主轴、精密滑台、直线电机以及基于IPC的多轴运动控制卡,结合优化的插补控制策略及误差补偿机制,能实现包括微直槽、微同心圆槽、薄壁、微齿轮及微球体的数控微细铣削加工,加工试验结果显示,该铣床已经具有加工三维大深宽比meso尺度三维零件的能力。
     2)对构建的微细铣削机床机械本体结构空间误差特性进行分析,运用多体系统运动学理论和齐次变换矩阵,根据微铣床误差特性,建立了微铣床空间综合误差模型。通过实际测量对微铣床空间误差参数进行辨识,并采用综合动态补偿方法进行误差补偿。
     3)提出了利用机床空间误差模型并基于损失模型的微铣床结构参数优化方法,为实现机床结构参数最优化设计提供了数学依据,运用该法实现了在机床设计阶段实现空间误差的最小化。
     4)对微细铣削系统直接驱动工作台微进给系统的伺服控制特性进行研究,建立了直线电机直接驱动伺服系统数学模型,并以此为基础分析了微细铣削系统单轴伺服控制特性,提出以PI控制算法为基础,结合速度、加速度前馈和陷波滤波器相结合的的控制策略,达到满意的控制性能。进一步分析多轴联动轮廓误差成因,提出采用交叉耦合轮廓控制方法提高直线电机驱动微进给工作台轮廓精度的控制策略,为微细铣削加工奠定了控制方面的基础。
     5)对微细铣削机床系统的切削加工性能进行研究,提出基于最小切削厚度理论的微细铣削加工机理分析过程。通过微细铣削表面粗糙度实验分析验证该机理分析过程的正确性,并考察了重要切削工艺参数对微细铣削零件表面粗糙度的影响规律,为后续生产奠定了工艺方面的基础。进一步通过一系列微小零件的铣削加工实验验证该微细铣削机床系统的切削加工性能。
The applications of micro-cutting processing technology to the machining of 3D precision micro components evoked the great technological revolution in the field of micro-manufacturing. Differed from the MEMS and ultraprecision machining processing, it is a novel effective way using traditional machining method to manufacture micro- and meso-scale components with efficiently and high precisely. The ultraprecision machine tool is fundamental equipment to fufill micro-cutting technology. At present, it is at the initial stage of the domestic study on the special micro-cutting equipments. It is deficient in comprehensive research from system project to performance evaluation on the development of micro-cutting machine tools. Furthmore, although many practical systems have been developed abroad, most of them are trial and keep technical secret to our country. In this dissertation, the key technologies for constructing a miniature CNC micro-milling machine tool are studied deeply and its main technical performance effectting the machining precision of the parts are evaluated systemically. The main creative achievements are as follows:
     1) A 3-axis linked miniature CNC milling machine tool system was successfully constructed for manufacturing of micro procucts. The machine has a base size of 300 mm×400 mm×500 mm and the size of XYZ workspace is 50mm×50mm×20mm. With a full closed loop numerical control system of 0.05μm resolution installed in feed axis, it bears the capability of submicro scale machining. The machine tool is equipped with available high speed air spindle, precision stages uphold by cross roller-bearings with each axis, PMLM(Permanent Magnet Linear Motor)and IPC-based multi-axis motion controller. Under the techniques of optimized path interpolation and error compensation, it performed the micro machining of components including the micro straight slots, micro concentric circle slots, thin walls, micro grars and micro sphere shapes. Test results indicate that the milling machine tool implements the capability of machining meso-scale 3D components of high-aspect-ratio.
     2) Combining the multi-body system theory and homogeneous transformation matrices, the analysis of volumetric errors was made on the built machine tool mechanical body. The synthetic volumetric error model of the machine tool was presented. Then the volumetric error parameters of machine tool were obtained by means of measurement and were compensated using synthesis dynamic compensation methodology.
     3) A method of robust parameter analysis based on loss model to the machine tool optimization of structural design was proposed. It provides a mathematical base of the machine tool structural optimization design. And using it, the minimization of the machine tool design errors was obtained.
     4) The direct drived characteristic of micro-feeding platform was studied. And the single axis servo control performance of the machine tool was analyzed based on the established mathematical model of linear actuator. A satisfying control strategy was proposed based on PI position controlling algorithm combining the speed and accelerated speed feedback controller and notch filter. Furthmore, based on analyzing the multi-axis contour error of machine tool, a cross-coupled controller which fits for the linear motor drived micro feeding platform was presented in the dissertation.
     5) The micro milling performance of the machine tool system was studied according to the analyzing of the micro milling mechanism based on the minimum cutting thickness theory. A series of experiments have been conducted in order to verify the proposed theory and characterize the key factors affecting surface roughness. Moveover, a lot of milling tests of micro parts on the machine tool proved its capability.
引文
[1] Chae J, Park S S, Freiheit T. Investigation of micro-cutting operations [J]. International Journal of Machine Tools and Manufacture, 2006, 46: 313-332
    [2] Ehmann K F, DeVor R E, Kapoor S G, et al. NSF workshop report [R]. Workshop on Micro/Meso-Mechanical Manufacturing, Northwestern University, Evanston, Illinois, USA, 2000
    [3] Lang W. Reflexions on the future of microsystems [J]. Sensor and Actuators, 1999, 72(1):1-15
    [4] Yamagata Y, Higuchi T, Takashima Y, et al. Fabrication of micro mechanical and optical components by ultra-precision cutting [C]. Proceedings of SPIE, 1996, 2881: 148-157
    [5] Kussul E M, Rachkovshij D A, Baidyk T N, et al. Micromechanical engineering: a basis for the low-cost manufacturing of mechanical microdevices using microequipment [J]. Journal of Micromechanics and Microengineering, 1996, 6: 410-425
    [6]孙雅洲,梁迎春,程凯.微型化制造设备与微型制造系统[J].中国机械工程,2002,13(7):592-596
    [7]苑伟政,马修德,张春江.微技术的研究现状与发展趋势[J].机械科学与技术,1995,(4):102-122
    [8]袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社,1999
    [9] Tanaka M. Development of desktop machining microfactory [J]. RIKEN Review, 2001, (34): 46-49
    [10]苑伟政,李晓莹.微机械及微细加工技术[J].机械科学与技术,1997,16(3):503-508
    [11]马炳和,苑伟政,李晓莹等.微机械与微/纳米科技的研究及其发展趋势[J].航空精密制造技术,1997,33(6):1-3
    [12]董海军,苑伟政,王西彬等.微机械用材料及其特征[J].航空精密制造技术,1996,32(3):1-4
    [13] Moronuki N, Furukawa Y. Microlinear motion bearing produced by anisotropic etching of silicon [J]. Annals of the CIRP, 1996, 46(1): 401-404
    [14] Ohlckers P, Hanneborg A, Nese M. Batch Processing for Micromachined Devices [J]. Journal of Micromechanics and Microengineering, 1995, 5(2): 47-56
    [15] Okano K. Micromachining of Micromachine Parts [J]. International Journal of the Japan Society for Precision Engineering, 1994, 28(3): 196-199
    [16]张之敬,金鑫,周敏.精密微小型制造理论、技术及其应用[J].机械工程学报,2007,43(1):49-61
    [17]孙雅洲,梁迎春.微米和中间尺度机械制造[J].机械工程学报,2004,40(5):163-168
    [18]贾宝贤,王振龙,赵万生.适用于微机械制造的常规加工方法[J].机械加工与自动化,2003,(8):19-22
    [19]周兆英,王晓浩,叶雄英.微型机电系统[J].中国机械工程,2000,11(1~2):163-168
    [20] Liu X, DeVor R E, Kapoor S G, et al. The mechanics of machining at the micro scale: assessment of the current state of the science [J]. Journal of Manufacturing Science and Engineering, 2004, 126(4):666-678
    [21] Masuzawa T. State of the art of micromachining [J]. Annals of the CIRP, 2000, 49(2): 473-488
    [22] Masuzawa T, Tonshoff H K. Three-dimensional micro-machining by machine tools [J]. Annals of the CIRP, 1997, 46(2): 621-628
    [23]黎明,雷源忠.国家基金委机械学科在微/纳米技术领域资助项目概况[J].机械强度,2001,23(4):548-551
    [24]李勇,郭旻,周兆英.特种微型机械加工技术[J].光学精密工程,2000,8(3):287-291
    [25] Vogler M P, Liu X, Kapoor S G, et al. Development of meso-scale machine tool (mMT) system [J]. Transaction of NAMRI/SME, 2002, 30: 653-661
    [26] Hesselbach J, Raatz A, Wreg J. International state of the art of micro production technology [J]. Production Engineering, 2004, 11(1):29-36
    [27] Alting L, Kimura F, Hansen H N, et al. Micro engineering. Annals of the CIRP. 2003,52(2): 635-657
    [28] Friedrich C R, Vasile M J. Development of the micromilling process for high-aspect-ratio microstructures [J]. Journal of Microelectromechanical Systems, 1996, 5 (1) :33-38
    [29] Lu Zinan, Takeshi Yoneyama. Micro cutting in the micro lathe turning system [J]. International Journal of Machine Tools and Manufacture, 1999, 39(7): 1171-1183
    [30] Robinson G M, Jackson M J. A review of micro and nanomachining from a materials perspective [J]. Journal of Materials Processing Technology, 2005, 167(2-3):316-337
    [31] Liu X, Jun M B, DeVor R E, Kappor S G. Cutting mechanisms and their influence on dynamic forces, vibrations and stability in micro-end milling proceedings [C]. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Anaheim California, 2004
    [32] Benavides G L. Meso-machining capabilities [R]. Workshop on Micro/Meso-Mechanical Manufacturing, Evanston, Illinois, USA, Northwestern University, 2000
    [33] Howe R T. Microsystems research in Japan [R]. World Technology EvaluationCenter(WTEC), 2003
    [34] Je T, Lee J, Choi D, Lee E, et al. Development of a micro machining technology for fabrication of micro parts [J]. Key Engineering Materials, 2003, 238-239: 383-388
    [35] Luo Xichun, Cheng Kai, Dave Webb, et al. Design of ultraprecision machine tools with applications to manufacture of miniature and micro components [J]. Journal of Materials Processing Technology, 2005, 167(2-3): 515-528
    [36] Weck M, Fischer S, Vos M. Fabrication of micro components using ultra precision machine tools [J]. Nanotechnology, 1997, 8(3): 145-148
    [37] Weck M. Ultraprecision machining of microcomponents [C]. Proceedings of the International Seminar on Precision Engineering and Micro Technology, Aachen, Germany, 2000: 113-122
    [38] Friedrich C R, Vaslle M J. The micromilling process for high aspect ratio microstructures [J]. Microsystem Technologies, 1996, 2(3): 144-148
    [39]沈连婠.超精密微细铣削加工技术[J].制造技术与机床,1996,(10):10-12
    [40] Mikrotool Pte LTD, Website: http://www.mikrotools.com/productDT110.htm
    [41] Willemin-Macodel SA, Website: http://www.willemin-macodel.com/
    [42] Makino, Website: http://www.makino.com/default.asp
    [43] Kugler of America, Website: www.kuglerofamerica.com/micro_m.htm
    [44] Kern Micro- und Feinwerktechnik, Website: www.kern-microtechnic.com
    [45] Mori Seiki, Website: www.moriseiki.com/english/index.html
    [46] Kurita T, Hattori M. Development of new-concept desktop size machine tool [J]. International Journal of Machine Tools and Manufacture, 2005, 45:959-965
    [47] Yuichi Okazaki, Nozomu Mishima, Kiwamu Ashida. Microfactory-concept, history and developments [J]. Journal of Manufacturing Science and Engineering, 2004, 126(4): 837-844
    [48] Dutta K, Dev P, Dewlde P, et al. Integrated micromotor concepts [C]. Proceedings of the IEEE International Conference on Microelectronics, Circuits and System Theory, Sydney, Australia, 1970: 36-37
    [49] Kawahara N, Suto T, Hirano T, et al. Microfactories: New applications of micromachine technology to the manufacture of small products [J]. Microsystem Technologies, 1997, 3(2): 37-41
    [50] Shikawa Y, Kitahara T. Present and future of micromechatronics [C]. IEEE International Symposium on Micromechatronics and Human Science, 1997
    [51] Kitahara T, Ishikawa Y, Terada T, et al. Development of micro-lathe [J]. Journal ofMechanical Engineering Laboratory, 1996, 50(5): 117-123
    [52] Bang Y B, Lee K, Oh S. 5-Axis micro milling machine for machining micro parts [J]. Advanced Manufacturing Technology, 2005, 25: 888-894
    [53] Lee J H, Park S R, Yang S H, et al. Fabrication of a V-groove on the optical fiber connector using a miniaturized machine tool [J]. Journal of Materials Processing Technology, 2004, 155-156: 1716-1722
    [54] Beltrami I, Joseph C, Clavel R, et al. Micro- and nanoelectric-discharge machining [J]. Journal of Materials Processing Technology, 2004, 149: 263-265
    [55] Lee J H, Liu Y, Kweon S H, et al. A measurement system based on capacitance sensors for geometric errors of a miniaturized machine tool [C]. Proceeding of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, USA, 2005: 1114-1119
    [56] Wang W, Kweon S H, Yang S H. A Study on roughness of the micro-end-milled surface produced by a miniatured machine tool [J]. Journal of Materials Processing Technology, 2005, 162-163: 702-708
    [57] Filiz S, Conley C M, Wasserman M B, et al. An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills [J]. International Journal of Machine Tools and Manufacture, 2007, 47(7-8): 1088-1100
    [58]孙雅洲,梁迎春,董申.微小型化机床的研制[J].哈尔滨工业大学学报,2005,37(5):591-593
    [59]王波,梁迎春,孙雅洲等.带三维结构的惯性MEMS器件的微细铣削加工[J].传感技术学报,2006,19(5):1474-1476
    [60]李红涛,来新民,李成锋等.介观尺度微型铣床开发及性能试验[J] .机械工程学报,2006,42(11):162-167
    [61]刘克非,张之敬,周敏等.微细轴切削加工特性分析[J] .中国机械工程,2005,16(22): 1987-1990
    [62]贾宝贤,王振龙,赵万生.微细切削加工与微机械制造[J] .机械制造,2003,41(468): 7-9
    [63]刘志兵,王西彬,解丽静等.微细切削刀具的特征及其制备技术[J] .工具技术,2006,40(10):16-19
    [64] Ikawa N, Shimada S, Donaldson R R, et al. Chip morphology and minimum thickness of cut in micromachining [J]. Journal of the Japan Society for Precision Engineering, 1993,59: 141-147
    [65]黄燕华,董申,袁光辉等.微细电极精密车削技术[J].电加工与模具,2003,(4):14-16
    [66] Shabouk S, Nakamoto T. Micro machining of single crystal diamond by utilization of tool wear during cutting process of ferrous material [J]. Journal of Micromechatronics, 2003, 2(1): 13-26
    [67] Kalpakjian S, Schmid S R. Manufacturing processes for engineering materials(4th Edition) [M]. Prentice Hall, New Jesey, 2002
    [68]刘战强,雷原忠.微切削加工技术[J].工具技术,2006,40(3):28-34
    [69]童利东,白清顺,赵岩等.微径铣刀及微细铣削技术的研究进展[J].工具技术,2006,40(12):3-7
    [70] Onikura H, Ohnishi O, Take Y. Fabrication of micro carbide tools by ultrasonic vibration grinding [J]. Annals of CIRP, 2000, 49(1): 257-260
    [71] Adams D P, Vasile M J, Benavides G, et al. Micromilling of metal alloy with focused ion beam-fabricated tools. International Societies of Precision Engineering and Nanotechnology, 2001, 25(2): 107-113
    [72] Schaller T, Bohn L, Mayer J, et al. Microstructure grooves with a width of less than 50μm cut with ground hard metal micro end mills [J]. Precision Engineering, 1999, 23: 229-235
    [73] Fang F Z, Wu H, Liu X D, et al. Tool geometry study in micromachining [J]. Journal of Micromechanics and Microengineering, 2003, 13(5): 726-731
    [74]赵炳桢译.微细切削加工的应用前景[J].工具展望,2002,219(5):11-13
    [75] Bao W Y, Tansel I N. Modeling micro-end-milling operations, Part I: Analytial cutting force model [J]. International Journal of Machine Tool and Manufacture, 2000, 40(15): 2155-2173
    [76] Damazo B N, Davies M A, Dutterer B S, et al. A summary of micro-milling studies [C]. Proceeding of 1st International Conference and General Meeting of EUSPEN, Bremen, Germany, 1999: 322-325
    [77] Damazo B N, Davies M A, Dutterer B S, et al. Experiences in micro-milling and micro-drilling [C]. Proceedings of the 13st ASPE Annual Meeting, St. Louis, MO, 1998: 65-68
    [78] Je T, Lee J, Choi D, et al. A study of the micro pole structure fabrication and application technology by micro end-milling process [J]. Key Engineering Materials, 2004, 257-258: 453-458
    [79] Kim C J, Mayor J R. A static model of chip formation in microscale milling [J]. Journal of Manufacturing Science and Engineering, 2004, 126(4):710-718
    [80] Takacs M, Vero B, Meszaros I. Micromilling of metallic materials [J]. Journal of Materials Processing Technology, 2003, 138(1): 152-155
    [81] Lee K H, Ahn S H, Dornfeld D A, et al. The effect of run-out on design for manufacturing in micro-machining process [C]. Proceedings of the ASME IMECE, New York, 2001, 12: 11-17
    [82] Vogler M P, DeVor R E, Kapoor S G. Microstructure-level force prediction model for micro-milling of multi-phase materials [J]. Journal of Manufacturing Science and Engineering, 2003, 125(2): 202-209
    [83] Rahman M, Kumar A S, Prakash J R S. Micro milling of pure copper [J]. Journal of Materials Processing Technology, 2001, 116:39-43
    [84] Lee K, Dornfeld D A. An experimental study on burr formation in micro milling aluminum and copper [J]. Transactions of the NAMRI/SME, 2002, 30: 255-262
    [85] Weule H, Hüntrup V, Tritschler H. Micro-cutting of steel to meet new requirements in miniaturization [J]. Annals of CIRP, 2001, 50(1): 61-64
    [86] Spath D, Hüntrup V. Micro-milling of steel for mold manufacturing-Influences of material, tools and process parameters [C]. Proceedings of the 1st European International Conference, Bremen, Germany, 1999: 203-206
    [87] Schmidt J, Spath D, Elsner J, et al. Requirements of an industrially applicable microcutting process for steel micro-structures [J]. Microsystem Technologies, 2002, 8(6): 402-408
    [88] Schmidt J, Tritschler H, Haberer H. Cutting tools and material conditioning for micro end milling of tool steel [C]. Proceedings of the 2nd EUSPEN International Conference, Turin, Italy, 2001:624-627
    [89] Schmidt J, Tritschler H. Tool design for end milling of micro structures in steel [C]. Proceedings of the EUSPEN International Topical Conference, Aachen, Germany, 2003:209-211
    [90]孙雅洲.微小型机床及微细铣削加工技术的研究[D].哈尔滨:哈尔滨工业大学,2005
    [91]刘战强,艾兴,宋世学.高速切削技术的发展与展望[J].制造技术与机床,2001, (7):5-7
    [92]张伯霖,张志润,肖曙红.超高速加工与机床的零传动[J].中国机械工程,1996,7(5):37-41
    [93]左敦稳.现代加工技术[M].北京:北京航空航天大学出版社,2005,34-46
    [94]盖玉先,董申.超精密加工机床的关键部件技术[J].制造技术与机床,2000,(1):7-10
    [95]王云飞.气体润滑理论与气体轴承设计[M].北京:机械工业出版社,1999(02)
    [96]张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002
    [97]张伯霖,夏红梅,黄晓明.数控机床高速电主轴的性能研究[J].沈阳建筑工程学院学报,2002,18(4):321-322
    [98]王先逵,钱磊.高频响大行程微位移机构的研究[J].中国机械工程,1999,10(9):1005-1007
    [99]王先逵,刘金凌,吴丹等.直线电机微进给机构的研究[J].中国机械工程,1997,8(3):79-81
    [100] Rooks B. The shrinking sizes in micro manufacturing [J]. Assembly Automation, 2004, 24(4): 352-356
    [101] Brückl S. Feed-drive system with a permanent magnet linear motor for ultra precision machine tool [C]. IEEE 1999 International Conference on Power Electronics and Drive Systems, 1999, Hong Kong: 821-826
    [102] Brandenburg G, Brückl S, Dormann J, et al. Comparative investigation of rotary and linear motor feed drive systems for high precision machine tool [C]. IEEE AMC2000-NAGOYA, 2000: 384-389
    [103]普爱纳米位移技术(上海)有限公司,网址:http://www.pi-china.cn/
    [104]罗克韦尔自动化(北京)有限公司,网址:http://www.rockwellautomation.com.cn/
    [105] Kollmorgen Corporation, Website: http://www.danahermotion.com/
    [106] Lee M E. X-Y stage with movable magnet plate [P]. US Patent, 6130490
    [107] Holmes M, Hocken R, Trumper D. The long-range scanning stage: a novel platform for scanned-probe microscopy [J]. Precision Engineering, 2000, 24(3): 191-209
    [108] Yang S, Yuan J, Ni J. Accuracy enhancement of a horizontal machining center by real-time error compensation [J]. Journal of Manufacturing System, 1996, 15(2): 113-124
    [109] Yi B J, Chung G B, Na H Y, et al. Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges [J]. IEEE Transactions on Robotics and Automation, 2003, 19(4): 604-612
    [110]孙希威.磁流变抛光机床数控系统关键技术研究[D].哈尔滨:哈尔滨工业大学,2006
    [111]廖德岗.开放式数控系统的研究及其发展现状[J].机械,1999,(3):35-39
    [112] Mintchell G A. CNC technology another weapon in integrated manufacturing’s arsenal [J]. Control Engineering, 2000, 47(12): 62-70
    [113]王军平,王安,敬忠良等.高性能运动控制在数控系统中的应用综述[J].信息与控制,2003,32(3):245-250
    [114]解旭辉.超精密机床数控系统与伺服控制技术研究[D].长沙:国防科技大学,1997
    [115]李宏胜.轮廓跟踪运动控制系统关键技术的研究[D].南京:东南大学,2005
    [116] Wu S M, Ni J. Precision machining without precise machinery. Annals of CIRP, 1989, 38(1): 533-536
    [117]倪军.数控机床误差补偿研究的回顾与展望[J].中国机械工程,1997,8(1):29-32
    [118] Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools-a review, Part I: geometric, cutting-force induced and fixture-dependent errors [J]. International Journal of Machine Tools and Manufacture, 2000, 40(2): 1235-1256
    [119]刘焕牢.数控机床几何误差测量及误差补偿技术的研究[D].武汉:华中科技大学,2005
    [120] Rahman M, Heikkala J, Lappalainen K. Modeling, measurement and error compension of multi-axis machine tools, Part I: theory [J]. International Journal of Machine Tools and Manufacture, 2000, 40(10): 1535-1546
    [121] Eman K F, Wu B T. A generalized geometric error model for multi-axis machines [J]. Annals of CIRP, 1987, 36(1): 253-256
    [122] Lo C H, Yuang J X, Ni J. An application of real-time error compensation on a turning center [J]. International Journal of Machine Tools and Manufacture, 1995, 35 (12): 1669-1682
    [123] Lee H S, Kim S W. Real-time correction of movement errors of a machine axis by multiple null-balancing using Twyman-Green interferometry [J]. International Journal of Machine Tools and Manufacture, 1995, 35(3): 477-486
    [124]任永强,杨建国.五轴数控机床综合误差补偿解耦研究[J].机械工程学报,2004,40(2):55-59
    [125]杨建国,张宏韬.数控机床热误差实时补偿应用[J].上海交通大学学报,2005,39(9):1389-1392
    [126]杜正春,杨建国,姚振强等.主轴回转误差补偿机理和动力学模型研究[J].机械工程学报,2003,39(3):48-53
    [127]章青,张海根,刘又午.数控机床误差补偿技术及应用-载荷误差补偿技术[J].制造技术与机床,1999,(2):8-10
    [128]章青,王国锋,刘又午.数控机床误差补偿技术及应用-几何误差补偿技术[J].制造技术与机床,1999,(1):30-32
    [129]刘又午,章青,赵小松,张志飞.基于多体理论模型的加工中心热误差补偿技术[J].机械工程学报,2002,38(1):127-130
    [130]游有朋,董伟杰,张晓峰等.开放式数控系统—新一代NC的主流[J].航空制造技术,1999,(5):35-37
    [131]张正勇,熊清平,李作清等.Windows平台下开放式CNC系统研究[J].中国机械工程,1999,10(8):878-880
    [132]王立松,苏宝库,董申等.可编程多轴控制器的开放式数控系统[J].计算机集成制造系统,2002,8(1):69-72
    [133]姜运涛,王震霞.一个PC内藏CNC型开放式数控系统的开发[J].机械,2004,31(11):50-51
    [134] PMAC USER’S MANUAL. DELTA TAU Data System, Inc., 1999
    [135] Jorgensen B R, Shin Y C. Dynamics of spindle-bearing systems at high speeds including cutting load effects [J]. Journal of Manufacturing Science and Engineering, 1998, 120(2): 387-394
    [136]刘润爱.零传动滚齿机关键技术研究与应用[D].重庆:重庆大学,2006
    [137]肖曙红,张伯霖.高速电主轴过盈联结装置的设计[J].组合机床与自动化加工技术,1999,(10):37-41
    [138]肖曙红,张伯霖,陈焰基.高速电主轴关键技术的研究[J].组合机床与自动化加工技术,1999,(12):5-10
    [139]蔡在亶.金属切削原理[M].上海:同济大学出版社,1994:198-207
    [140]杨辉.高速加工机床进给驱动系统的研究[D].安徽:合肥工业大学,2006
    [141]肖曙红,张伯霖,李志英.高速机床主轴/刀具联结的设计[J].机械工艺师,2000,(3):8-10
    [142]叶云岳.直线电机原理与应用[M].北京:机械工业出版社, 2000:1-45
    [143]徐月同.高速精密永磁直线同步电机进给系统及控制技术研究[D].浙江:浙江大学,2004
    [144]白恩远,王俊元,孙爱国.现代数控机床伺服及检测技术[M].北京:国防工业出版社,2002
    [145]张日升,李尚政,刘宏.高精度直线电机驱动机构的设计与控制[J].机械加工与自动化,2003,10:1-4
    [146]科尔盟根公司.Kollmorgen PLATINUM DDL使用手册
    [147]秦树人,张明洪,罗德扬等.机械工程测试原理与技术[M].重庆:重庆大学出版社,2002
    [148] Rivin E I. Vibration isolation of precision equipment [J]. Precision Engineering, 1995, 17(1): 41-56
    [149] Huston R L, Passerello C E, Harlow M W. Dynamics of multirigid-body system [J]. ASME Journal of Applied Mechanics, 1978, 45(4): 889-894
    [150] J Wittenburg. Dynamics of system of rigid bodies, Stuttgart, Teubner, 1977(7)
    [151] J Y Ho. Direct path method for flexible multibody spacecraft dynamics. AIAA Journal of Spacecraft & Rocket, 1997, 14(2): 102-110
    [152]休斯敦R L,刘又午.多体系统动力学(上、下) [M].天津:天津大学出版社,1987
    [153] Okafor A C, Ertekin Y M. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics [J]. International Journal of Machine Tool and Manufacture, 2000, 40: 1199-1213
    [154]陈立周.稳健设计[M].北京:机械工业出版社,2000
    [155] Mishima N, Kousuke I. Robustness evaluation of a miniaturized machine tool [C]. Proceedings of DETC99 25th Design Automation Conference, Las Vegas, Nevada, 1999
    [156]郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制技术[M].北京:机械工业出版社,2001
    [157]高钟毓.机电控制工程(第2版) [M].北京:清华大学出版社,2002
    [158] Dupont P E. Avoiding stick-slip in position and force control through feedback [C]. Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, California, 1991: 1470-1475
    [159]赵国勇.数控系统运动平滑处理、伺服控制及轮廓控制技术研究[D].大连:大连理工大学,2006
    [160] Koren Y. Cross-couple bixial computer control for manufacturing systems [J]. Journal of Dynamic Systems Measurement and Control, 1980,102(4):265-272
    [161]王立松.超精密机床数控技术及伺服控制的研究[D].哈尔滨:哈尔滨工业大学,2001
    [162] Montgomery D, Altintas Y. Mechanism of cutting forces and surface generation in dynamic milling [J]. Transaction ASME Journal of Engineering Industry, 1991, 113(1): 160~168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700