用户名: 密码: 验证码:
6-SPS型并联机床若干关键理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并联机床是并联机构与现代数控机床完美结合的产物,是上个世纪末机械制造装备领域最为耀眼的创新,与传统的数控机床相比,并联机床具有许多优点和独特的性质,具有极大的应用潜力。但是,与历史悠久、相对成熟的传统机床相比,无论在设计分析理论方面,还是在本质特性的掌握方面,年轻的并联机床都还显得相对稚嫩和薄弱。针对这一状况,本文对并联机床设计和分析中的若干关键性基础理论进行了某些深入的研究和探讨。
     运动学正解是并联机构的基本问题之一。并联机构的正解方程是位置和姿态参数是高度耦合的非线性方程组,其求解非常困难。本文采用四元数方法描述一类线性相关的并联机构动平台的位姿,将姿态参数方程从高度耦合的正解方程中分离出来,可形成三个二元二次方程,结合单位四元数的约束条件,求出动平台姿态的四个符号解,同时位置也可表达为二次方程,在姿态的基础上也可以采用显式方式解析地解出,于是最终可以得到动平台的八组符号表达的位置正解。这是迄今为止六自由度并联机构正解最为简洁的表达。
     并联机构的奇异性对机构的性能有着重大的影响,寻找奇异性发生的条件,以使机构在工作时加以回避是并联机构理论研究中另一项基础工作。本文以符号正解为基础,解析地表达出一类线性相关并联机构的结构奇异、位置奇异和姿态奇异发生条件,同样是解析的显式表达。并将这个奇异性归纳总结出三条定理。在符号正解和奇异性条件分析的基础上,研究了线性相关并联机构奇异性和装配模式数目之间的关系,否定了各个装配模式之间由奇异曲面分隔的猜想。这也是迄今为止六自由度并联机构奇异性完整的表达和最好的结果。进一步本文还研究了结构奇异条件下的并联机构的自运动现象,解析地表达了自运动轨迹。
     限制并联机构广泛应用的一个主要原因是其相对工作空间较小。本文从实验和计算机仿真分析两个途径研究了BJ-04-02(A)交叉杆型并联机床的工作空间,分析了影响工作空间大小的因素,对实际应用具有参考价值。
     雅可比矩阵是并联机构力学性能分析的基础。本文针对雅可比矩阵中混合有两种不同量纲元素的现象,将并联机构的力传递性能分解为力传递性能和力矩传递性能,分别进行计算。所提方法自然直观,物理意义明确。
     刚度是衡量一台并联机床性能优劣的重要指标。本文推导了在某位姿时并联机床刚度的标量指标及其变化范围。并将其看作六维变形单位向量在六根超椭球轴上投影的加权平方和的根。因此,并联机床的刚度具有方向性。运用刚度指标,对交叉杆型并联机床和一般6-SPS并联机床的刚度进行分析和比较。通过比较发现,交叉杆型并联机床在刚度和刚度的各向同性两方面远优于一般6-SPS并联机床。
     运用凯恩方法,以并联机构运动平台原点的速度和角速度为广义速度,在任务空间中建立了封闭形式的高效并联机构动力学模型。并使用ADAMS动力学分析软件验证了模型的正确性。为了缩短计算动力学模型的时间,实现动力学控制,真正发挥并联机构的特点,本文针对并联机构的两种典型应用,提出了相应的简化动力学模型。
     冗余的自由度可以使并联机构根据需要改善机构的运动学和动力学性能。本文利用任务冗余自由度对并联机构的瞬时动能和关节力进行了优化分析。从结果来看,对并联机构瞬时动能的优化,不仅可以降低机构的瞬时动能,同时也在一定程度上对关节力起到了优化的作用。对并联机构关节的优化可以有效降低关节力的大小,避免关节力的突变。
     通过上述理论和实验的研究工作,加深了对并联机床的正向运动学、奇异性、装配模式、动力学特性、冗余自由度优化等方面的理解,有所拓展了在并联机床研究和开发方面的知识和方法,将会对并联机床进一步发展具有参考价值。本文的研究成果对并联机构及其在并联机器人和其他领域的应用也具有参考价值。
Parallel Kinematics Machines(PKMs) are the perfect combination of modern CNC machine tools and parallel mechanism. And PKMs are most dazzing innovation in the machinery equipment areas at the end of last century. With traditional CNC machine tools, the PKMs have many advantages. They have great potential. However, in terms of design theory, the young PKMs are still relatively immature. In response to the situation, a number of key theories of design and analysis of PKMs are studied in the dessertation.
     The forward kinematic problem is one of the basic problems of PKMs. The forward kinematic equations are complicated and nonlinear. By introducing quaternion to represent the transformation matrix, the forward kinematics of a class of PKMs can be expressed in the form of a set of quadratic algebra equations, which decouples the positions and orientations of the mobile platform. There are eight symbolic solutions obtained from the approach. It is the most concise forward solutions for six DOF PKMs till now.
     Singulartiy has a significant impact on the properties of PKMs. Based on symbolic forward solutions, the singularities of a class of PKMs are expressed analytically, which are divided into architecture singularity, position singularity and orientation singularity. The results of singularity analysis are summarized to three theorems. The relationship between the assembly modes and the singularites of a class PKMs are investigated. It shows that the guess of every assembly mode is separated by singularity surface is wrong. It further studies the selfmotion of PKMs which have architecture singularities.
     Restrictions on the wider use of PKMs are attribute to small workspace. With the experimental analysis and computer simulation, the workspace of BJ-04-02(A) PKMs is studied. The impact of the workspace size is analyzed.
     Jacobian matrix is the base of force properties analysis of PKMs. However, forces and torques have different dimensions. To deal with them separately, the Jacobian is divided into the force Jacobian and the torque Jacobian. On the bases, force transmissibility and torque transmissibility of PKMs are discussed. This method avoids the confusion of two different dimensions in the process of analysis. The physics meanings of the two Jacobians are more perspicuity.
     Stiffness is a important performance criteria of PKMs. The scalar criteria of stiffness and its scope are derived. The stiffness can be considered as the weighted square root of six dimensions unit vector of deformation in the six-axis of hyperellipsoid. By the stiffness criteria, the general 6-SPS PKMs and the cross-leg type 6-SPS PKMs are compared. It shows that stiffness and its isotropy of the cross-leg type 6-SPS PKMs is superior to that of general 6-SPS PKMs.
     By using Kane’s method, the dynamic model of parallel manipulators established in the task space. The partial velocities and partial angular velocities of six branches and moving platform are derived by using velocity and angular velocity of the origin point of moving platform as quasi-velocity of the system. ADAMS is used to validate the dynamic model. To improve the efficiency, dynamic models of two typical applications of parallel mechanism are simplified separately.
     Redundant freedom can make PKMs improve their kinematic and dynamic performances. By using redundant task freedoms of PKMs, the instantaneous energy and active joint force is optimized. From the results of the instantaneous energy optimization, it can not only decrease the kinetic energy, but also reduce the active joint force. The active joint optimization can effectively reduce the joint force and prevent the mutation of the force.
     Through the theoretical and experimental research work, the understanding of the forward kinematic, singularity, assembly modes, dynamic performances and redundancy optimization is deepened. The knowledge and practice of PKMs research are expanded. The research results can be referenced by parallel mechanism, parallel robot and other areas.
引文
[1] Stewart D., A platform with six degrees of freedom[J], Proceedings of the IMechE, 1965, Vol. 180, No. 15:371-385.
    [2] Gwinnett J.E., Amusement devices, US Patent No. 1,789,680, January 20, 1931.
    [3] Pollard, W.L.V., Position controlling apparatus, US Patent No. 2,286,571, June 16, 1942.
    [4] http://www.parallemic.org/Reviews/Review007.html
    [5] Cappel K.L., Motion simulator, US Patent No. 3,295,224, January 3, 1967.
    [6] K.H. Hunt,Kinematic Geometry Mechanism[M].Oxford:Oxford University Press.1978.
    [7] Fichter E. F.,Kinematics of a parallel connection[C]. Proceedings of the ASME Mechanics Conference, Cambridge.1984:84-85.
    [8] Fichter E. F., A Stewart platform-based manipulator:general theory and practical construction[J]. Int. J. Robotics Res.,1986,5(2):157-182.
    [9] Sugimoto K., Kinematic and dynamic analysis of parallel manipulators by means of motor algebra[J]. Trans. ASME, J. Mechanisms, Transms, and Automn Des.,1987,109:3-7.
    [10]汪劲松,黄田.并联机床-机床行业面临的机遇与挑战[J].中国机械工程,1999(10):1103-1107.
    [11]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M],机械工业出版社,北京,1997.
    [12]肖金陵,李壮云,刘长年,六自由度飞行模拟器台架系统的模态质量分析[J],上海航天,1995(1):15-19.
    [13]王宇,丛德宏,徐心和等,轮式炮车驾驶训练实时运动仿真[J],东北大学学报(自然科学版),2004(25):1034-1037.
    [14]韩俊伟,姜洪洲,用于航海模拟的六自由度并联机器人的研究[J],高技术通讯,2001(3):88-90.
    [15]张彦斐,宫金良,高峰,一种冗余输入地震模拟器的静刚度分析[J],机械设计,2006(23):18-21.
    [16]李强,闫洪波,张玉宝,并联机床发展的历史、研究现状与展望[J],机床与液压,2007(35):206-209.
    [17] http://www.abb.com/product/us/9AAC100735.aspx?country=CN
    [18] http://www.physikinstrumente.com/en/products/prdetail.php?sortnr=700800
    [19] Arai T.,Cleary K.,Homma K. Development of Parallel Link Manipulator forUnderground Excavation Task[C], 91’1SART:541-548.
    [20] http://fire.nist.gov/bfrlpubs/build94/PDF/b94072.pdf
    [21] Jin Zhenlin, Gao Feng, Optimal Design of a 6-Axis Force Transducer Based on Stewart Platform Related to Sensitivity Isotropy[J], Chinese Journal of Mechanical Engineering,2003, 16(2):146-148.
    [22]姚裕,基于Stewart平台的并联风洞天平设计理论及应用研究[博士学位论文],南京,南京航空航天大学,2004.
    [23]王海东,并联机器人机构构型与性能分析[硕士学位论文],秦皇岛,燕山大学,2001年3月.
    [24] Bhaskar Dasgupta, T. S. Mruthyunjaya, Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues, Mech. Mach. Theory, 1998, 33(6):727~742.
    [25] Carlo Innocenti,Vinenzo Parenti-Castelli, Direct Position Analysis of the Stewart Platform Mechanism[J], Mech. Mach. Theory,1990,25(6):611-621.
    [26] C. Innocenti and V. Parenti-castelli, A Novel Numerical Approach to the closure of the 6-6 Stewart Platform Mechanism[C], Proc. IEEE 5th Int. Conf. Advanced Robotics, Pisa, Italy, 1991: 851-855.
    [27] Der-Ming Ku, Direct displacement analysis of Stewart platform mechanism[J], Mechanism and machine Theory, 1999, 34: 453-465.
    [28]Xinhua Zhao, Shangxian Peng, Direct Displacement analysis of Parallel Manipulators[J], Journal of Robotic Systems 2000, 17(6): 341-345.
    [29] Yunfeng Wang, An Incremental Method for Forward Kinematics of Parallel Manipulators[C], IEEE International Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, Dec, 2006: 1-5.
    [30] H. SADJADIAN and H. D. TAGHIRAD, Comparison of Different Methods for Computing the Forward Kinematics of a Redundant Parallel Manipulator[J], Journal of Intelligent and Robotic Systems, 2005, 44(3): 225– 246.
    [31] Jing-Shan Zhao . Xu Yang . Liang Zhu, et al, On the forward and inverse displacement of spatial parallel manipulators[J], Int. J. Adv. Manuf. Technol., 2006(29): 1284–1294.
    [32] J.P. Merlet,Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis[J], The International Journal of Robotics Research, 2004, 23(3): 221-235.
    [33]K.H. Hunt, E.J.F. Primrose, Assembly configurations of some in-parallel-actuated manipulators[J], Mechanism and MachineTheory,1993,28(1):31-42.
    [34]Wampler C.W., Forward displacement analysis of general six-in-parallel SPS platform manipulators using soma coordinates[J], Mech. Mach. Theory, 1996, 31(3):331-337.
    [35] M.L.Husty, An algorithm for solving the direct kinematics of general Stewart–Gough platforms[J], Mech. Mach. Theory, 1996,31(4):365–379.
    [36]Z. Geng, L. Haynes, A 3-2-1 kinematic configuration of a Stewart platform and its application to six DOF pose measurements[J], Int. J. Robot Comput.-Integr. Manufact.,1994,11(1):23-34.
    [37]W. Lin, J.Duffy, M.Griffis, Forward displacement analysis of a class of Stewart platform[C], Proc. 21st Biennial Mech. Conf. ASME, Chicago, Sept. 1990, Vol.DE-25: 263-269.
    [38] Di Gregorio, Analytic Form Solution of the Direct Position Analysis of a Wide Family of Three-Legged Parallel Manipulators[J], Journal of Mechanical Design, Transactions of the ASME, 2006, Vol. 128: 264-271.
    [39] C. Zhang, S. Song, Forward kinematics of a class of parallel (Stewart) platforms with closed form solutions[J], Robot. Syst., 1992, 9(1): 93–112.
    [40] C. Zhang and S. Song, Forward position analysis of nearly general Stewart platforms, Trans. ASME, J. Mech. Des., 1994, 116(1): 54–60.
    [41] Jun Yang, Z. Jason Geng, Closed Form Forward Kinematics Solution to a Class of Hexapod Robots[J], IEEE Transactions on Robotics and Automation, 1998, 14(3):503-508.
    [42] Tsai, L.W., Robot Analysis: the Mechanics of Serial and Parallel Manipulators[M], John Willey & Sons, New York, NY, 1999.
    [43] Sandipan Bandyopadhyay, Ashitava Ghosal, Analysis of configuration space singularities of closed-loop mechanisms and parallel manipulators[J], Mechanism and Machine Theory, 2004,39: 519–544.
    [44] Merlet, J. P., Parallel Robots[M], Kluwer Academic, Dordrecht, Netherlands , 2000.
    [45] C. H. Liu, Shengchia Cheng, Direct Singular Positions of 3RPS Parallel Manipulators[J], Transactions of the ASME, Journal of Mechanical Design, 2004, Vol.126:1006-1016.
    [46] Sefrioui J., Gosselin C.M., On the quadratic nature of the singularity curves of planar three degree of freedom parallel manipulators[J]. Mech. and Mach. Theory,1995, 30(4) :533-551.
    [47] Raffaele Di Gregorio, Forward Problem Singularities of Manipulators Which Become PS-2RS or 2PS-RS Structures When the Actuators are Locked[J], Transactions of the ASME, Journal of Mechanical Design, 2004, Vol.126:640-645.
    [48] Raffaele Di Gregorio, Forward problem singularities in parallel manipulators which generate SX–YS–ZS structures[J], Mechanism and Machine Theory, 2005 (40): 600–612.
    [49] Mayer St-Onge B.,Gosselin C.,Singularity analysis and representation of spatial six-dof parallel manipulators[M], Recent Advances in Robot Kinematics, Norwell:Kluwer,1996:389~398.
    [50]黄真,空间机构学[M].北京:机械工业出版社,1991.
    [51] Daniali H.R.M.,Zsombor-Murray P.J.,Angeles J.,Singularity analysis of a general class of planar parallel manipulators[J],ICRA,1995:1547-1552.
    [52] Tahmasebi F.,Tsai L.W.,Workspace and Singularity analysis of a novel six-dof parallel mini-manipulator[J]. J. of Applied Mechanisms and Robotics, 1994, 1(2):31-40.
    [53] Olivier Company, Sébastien Krut, Fran?cois Pierrot,Internal Singularity Analysis of a Class of Lower Mobility Parallel Manipulators With Articulated Traveling Plate[J], IEEE Transactions on Robotics, 2006, 1(22): 1-11
    [54]理查德.摩雷,李泽湘,夏恩卡.萨思特里,机器人操作的数学导论[M],北京:机械工业出版社,1998.
    [55] Mohamed M.G.,Duffy J.,A direct determination of the instantaneous kinemaitcs of fullyparallel robot manipulators[J], J. of Mechanisms, Transmissions and Automation in Design, 1985,107:226-229.
    [56] Behi F., Kinematic analysis for a six degree of freedom 3 PRPS parallel mechanism[J], IEEE J.of Robotics and Automation,1988, 4(5) :561-565.
    [57] Gosselin C., Angeles J., The optimum kinematic design of a spherical three degree of freedom parallel manipulator[J], J. of Mechanisms, Transmissions and Automation in Design,1989, 111(2) :202-207.
    [58] Vijar Kumar,Instantaneous kinematics of parallel-chain robotic mechanisms[J], ASME J.Mechanical Design,1992,114(3):349-358.
    [59] C.L. Collins,Singularity analysis and design of parallel manipulators,Ph.D dissertation of UCI, 1997.
    [60] Collins C.L.,Long G.L.,The singularity analysis of an in-parallel hand controller for force-reflected teleoperation[J],IEEE Trans. on Robotics andAutomation,1995,11(5):661-669.
    [61] Ilian A. Bonev, Dimiter Zlatanov, Cle′ment M. Gosselin, Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory[J], ASME Journal of Mechanical Design, 2003(125): 573–581.
    [62] Jing-Shan Zhao, Zhi-Jing Feng, Kai Zhou, Jing-Xin Dong, Analysis of the singularity of spatial parallel manipulator with terminal constraints[J], Mechanism and Machine Theory, 2005(40):275–284.
    [63] Sandipan Bandyopadhyay, Ashitava Ghosal, Geometric characterization and parametric representation of the singularity manifold of a 6–6 Stewart platform manipulator[J], Mechanism and Machine Theory 2006 (41): 1377–1400.
    [64] Jaime Gallardo-Alvarado, Jose Maria Rico-Martinez, Gursel Alici, Kinematics and singularity analyses of a 4-dof parallel manipulator using screw theory[J], Mechanism and Machine Theory 2006 (41): 1048–1061.
    [65] Haidong Li, Clément M. Gosselin, Marc J. Richard, et al.,Analytic Form of the Six-Dimensional Singularity Locus of the General Gough-Stewart Platform[J], ASME Journal of Mechanical Design, , 2006(128): 279–287.
    [66] Haidong Li, Clement M. Gosselin, Marc J. Richard, Determination of the maximal singularity-free zones in the six-dimensional workspace of the general Gough–Stewart platform[J], Mechanism and Machine Theory , 2007(42): 497–511.
    [67] Merlet J.P.,Singular configuration of parallel manipulators and grassman geometry[J],The Int. Journal of Robotics Research,1989,8(5):45-56.
    [68] Notash L.,Uncertainty configurations of parallel manipulators[J], Mechanism and Machine Theory,1998,33(1/2):123-138.
    [69] Hao F.,McCarthy J.M.,Conditions for line-based singularities in spatial platform manipulators[J], J.of Robotic Systems,1998,15(1):43-55.
    [70] Anjan Kumar Dash a, I-Ming Chen a, Song Huat Yeo a, Guilin Yang b, Workspace generation and planning singularity-free path for parallel manipulators[J], Mechanism and Machine Theory, 2005 (40): 776–805
    [71]黄真,李艳文,郭希娟等,运动物体上三点速度关系及其应用[J],中国机械工程, 2003,第14卷第15期:1319-1322.
    [72]熊有伦,机器人操作[M],武汉:湖北科学技术出版社,2002.
    [73] Sefrioui J.,et Gosselin C.,Singularity analysis and representation of planar parallel manipulators[J], Robotics and Autonomous System, 1992,10:209-224.
    [74] Sefrioui J.,et Gosselin C.,On the quadratic nature of the singularity curvesof planar three-degree-of-freedom parallel manipulators[J], Mechanism and Machine Theory,1995,30(4):533-551.
    [75] Wang J.,et Gosselin C.M, Kinematic analysis and singularity loci of spatial four-degree-of-freedom parallel manipulators using a vector formulation[J]. ASME J. of Mechanical Design,1998,120(4):555-558.
    [76] Carme Torras, Federico Thomas, and Maria Alberich-Carrami?ana, Stratifying the Singularity Loci of a Class of Parallel Manipulators[J], IEEE Transactions on Robotics, 2006, 1(22):23–32.
    [77]沈辉,并联机器人的几何分析理论和控制方法研究[博士学位论文],长沙:国防科学技术大学,2003.
    [78] Guilin Yang,I-Ming Chen,Wei Lin,et al,Singularity analysis three-legged parallel robots based on passive-joint velocities[C],ICRA,2001:2407-2411.
    [79] A. Ghosal, B. Ravani, A differential geometric analysis of singularities of point trajectories of serial and parallel manipulators[J], Transactions of ASME, Journal of Mechanical Design 2001 (123): 80–89.
    [80] Matteo Zoppi, Luca E. Bruzzone, Rezia M. Molfino,et al, Constraint Singularities of Force Transmission in Nonredundant Parallel Robots With Less Than Six Degrees of Freedom[J], ASME Journal of Mechanical Design, 2003(125): 557–563.
    [81] S. Kemal Ider, Inverse dynamics of parallel manipulators in the presence of drive singularities[J], Mechanism and Machine Theory, 2005 (40): 33–44.
    [82] S.-L. Chen and I.-T. You, Kinematic and Singularity Analyses of a Six DOF 6-3-3 Parallel Link Machine Tool[J], Int J Adv Manuf Technol, 2000 (16):835–842.
    [83]曹毅,六自由度并联机器人奇异位形的研究[博士学位论文],秦皇岛:燕山大学, 2005.
    [84] Haug E J,Luh C,Adkins F A, Numerical Algorithms for Mapping Boundaries of Manipulator Workspace[J], Journal of Mechanical Design, Transactions of the ASME, 1996,118(2):228-234.
    [85] Luh C,Adkins F A,Haug E J, Working Capability Analysis of Stewart Platforms[J], Journal of Mechanical Design, Transactions of the ASME,1996,118(2):220-227.
    [86] Adkins F A,Haug E J. Operational Envelope of a Spatial Stewart Platform[J], Journal of Mechanical Design, Transactions of the ASME,1997,119(2):330-332.
    [87] Merlet J. P.,Designing a Prallel Manipulator for a Specific Workspace[J], International Journal of Robotics Research,1997,16(4)545-556.
    [88] Gosselin C M., Angeles J., Singularity Analysis of Closed-Loop KinematicChains[J], IEEE Trans. on Rob. & Aut., 1990a,6(3):281-290.
    [89] Gosselin C M., Angeles J., Kinematic Inversion of Parallel Manipulator in the Presence of Incompletely Specified Tasks[J], ASME J. Of Mech. Des., 1990b, 112:454-500.
    [90] Gosselin C M., Determination of the workspace of 6-DOF parallel Manipulators[J], ASME J. of Mech. Des.,1990c, 112: 331-336.
    [91] Pennock G R,Kassner D J. The Workspace of a General Geometry Planar 6-DOF Platform-Type Manipulator[J], ASME J Mech Des, 1993, 115:269-276.
    [92]胡国胜,6-SPS型并联机器人的工作空间分析和奇异性研究[硕士研究生论文],上海:东华大学,2005.
    [93] Gosselin C. M., Iavoie e, Toutant P., Robotics Spatial Mechanisms and Mechanical Systems[J], ASME J. Of Mech. Des.,1992 (45):323-328.
    [94] Masory O, Wang J. Workspace Evalution of Stewart Platforms[J], ASME, 1992,DE-VOL.45:337-346.
    [95] Mircea Badescu, Constantinos Mavroidis, Workspace Optimization of 3-Legged UPU and UPS Parallel Platforms With Joint Constraints[J], ASME Journal of Mechanical Design,2004(126):291-300.
    [96] Zhe Wang, Zhixing Wang, Wentao Liu, et al, A study on workspace, boundary workspace analysis and workpiece positioning for parallel machine tools[J], Mechanism and Machine Theory, 2001(36):605-622.
    [97] K. Y. Tsai, J. C. Lin, Determining the compatible orientation workspace of Stewart-Gough parallel manipulators[J], Mechanism and Machine Theory, 2006(41):1168-1184.
    [98] Yunjiang Lou, Guanfeng Liu, Ni Chen, et al, Optimal design of parallel manipulators for maximum effective regular workspace[C], IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, Aug, 2005:795-800.
    [99] Bruno Monsarrat, Clement M. Gosselin, Workspace Analysis and Optimal Design of a 3-Leg 6-DOF Parallel Platform Mechanism[J], IEEE Transactions on Robotics and Automation, 2003, 19(6):654-966.
    [100] A.B. Loteswara Rao, P.V.M. Rao , S.K.Saha, Workapce and Dexterity of Hexaslide Machine Tools[C], Prceedings of the 2003 IEEE Interantional conference on Robotics & Automation, Taipei, 2003, 4104-4109.
    [101]陈在礼,陈学生,谢涛,用遗传算法解具有给定工作空间的并联机构综合问题[J],中国机械工程, 2002, 13(3):187-190.
    [102] Merlet J. P., Determination of the Orientation Workspace of Parallel Manipulators[J], J. of Intelligent and Robotic Systems, 1995,13:143-160.
    [103]黄田,汪劲松, Stewart并联机器人位置空间解析[J],中国科学(E辑), 1998, 28(2):136-145.
    [104]刘辛军,张立杰,高峰,基于AutoCAD平台的六自由度并联机器人位置工作空间的解析求解方法[J],机器人, 2000, 22 (6):457-464.
    [105] Jingshan Zhao,Min Chen,Kai Zhou,et al,Workspace of parallel manipulators with symmetric identical kinematic chains[J], Mechanism and Machine Theory, 2006(41):632-645.
    [106] Ilian A. Bonev, Clement M. Gosselin, Analytical Determination of the Workspace of Symmetrical Spherical Parallel Mechnisms[J], IEEE Transactions on Robotics, 2006, 22(5):1011-1017.
    [107] Bhaskar Dasgupta , Prasun Choudhury, A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators[J], Mechanism and Machine Theory,1999,34(6):801-824.
    [108] Bhaskar Dasgupta,T.S. Mruthyunjaya, Closed-Form Dynamic Equations of the General Stewart Platform through the Newton-Euler Approach[J], Mechanism and Machine Theory,1998,33(7):993-1012.
    [109] Raffaele Di Gregorio, Vincenzo Parenti-Castelli, Dynamics of a Class of Parallel Wrists[J], Transactions of the ASME, Journal of Mechanical Design, 2004, Vol.126: 436-441.
    [110] Xinjun Liu,Qiming Wang, Jingsong Wang, Kinematics, Dynamics and Dimensional Synthesis of a Novel 2-DoF Translational Manipulator[J], Journal of Intelligent and Robotic Systems, 2004, 41: 205–224.
    [111] L. BEJI and M. PASCAL, The Kinematics and the Full Minimal Dynamic Model of a 6-DOF Parallel Robot Manipulator[J], Nonlinear Dynamics, 1999[18]: 339–356.
    [112] Yangmin Li, Qingsong Xu, Kinematic Design and Dynamic Analysis of a Medical Parallel Manipulator for Chest Compression Task[C], 2005 IEEE International Conference on Robotics and Biomimetics (ROBIO2005),Hong Kong and Macau, June 29-July 3,2005: 693-698.
    [113] Krzysztof Stachera, A new Method for the Direct Dynamics’Calculation of Parallel Manipulators[C], Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21 - 23, 2006, Dalian, China:1599-1604.
    [114] Jie Gao Wang, Clement M.Gosselin, A New Approach for the Dynamic Analysis ofParallel Manipulators[J], Multibody System Dynamics, 1998,2(3):317-334.
    [115] Stefan STAICU, Laurian STAICU, Radu RUGESCU, Inverse Dynamics of Star Parallel Manipulator[C], Proceedings of the 2004 IEEE International Conference on Control Applications Taipei, Taiwan, Scptemher 2-4, 2004:333-337.
    [116]Yi Lu, Bo Hu, Ping-Li Liu, Kinematics and dynamics analyses of a parallel manipulator with three active legs and one passive leg by a virtual serial mechanism[J], Multibody Syst Dyn, 2007(17):229–241.
    [117] Alexei Sokolov , Paul Xirouchakis, Dynamics analysis of a 3-DOF parallel manipulator with R-P-S joint structure[J], Mechanism and Machine Theory, 2007(42): 541-557.
    [118] Stefan Staicu, Xin-Jun Liu, JinsongWang, Inverse dynamics of the HALF parallel manipulator with revolute actuators[J], Nonlinear Dynamics, DOI 10.1007/s11071-006-9138-5, 2006.
    [119]杨灏泉,吴盛林,曹键等,考虑驱动分支惯量影响的Stewart平台动力学研究[J],中国机械工程,2002,l3(l2):1009-1012.
    [120]P. Ben Horin, S. Djerassi, M. Shoham, R. Ben Horin, Dynamics of a six degrees-of-freedom parallel robot actuated by three two-wheel carts[J], Multibody Syst Dyn, 2006(16):105–121.
    [121] Y.K. Yiu,H.Cheng,Z.H. Xiong et al, On the Dynamics of Parallel Manipulators[C], Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul,Korea,2001,May:21-28.
    [122]贾书惠,刚体动力学[M],北京:高等教育出版社,1987:74.
    [123] Min-Jie Liu,Cong-Xin Li,Chong-Ni Li, Dynamics Analysis of the Gough-Stewart Platform Manipulator[J], IEEE Transactions on Robotics and Automation, 2000,16(1):94-98.
    [124]李兵,王知行,李建生,基于凯恩方程的新型并联机床动力学研究[J],机械科学与技术,1999,18(1):41-43.
    [125] Zhen-Lei Zhou, Charles C. Nguyen, Globally Optimal Trajectory Planning for Redundant Manipulators using State Space Augmentation Method. Journal of Intelligent and Robotic Systems, 1997(19):105–117.
    [126]刘迎春,余跃庆,姜春福,冗余度机器人研究动向[J],机械设计与研究, 2003, 19(1): 24-27.
    [127] Whitney, D. E., The mathematics of coordinated control of prostheses and manipulators[J], J. Dyn. Syst. Meas. Control, 1972, 94(4):303–309.
    [128] Carlos L. Luck, Self-Motion Representation and Global Path Planning Optimization for Redundant Manipulators through Topology-Based Discretization[J], Journal of Intelligent and Robotic Systems, 1997,19:23–38.
    [129] Homayoun Seraji,Configuration Control of Redundant Manipulators: Theory and Implementation[J], IEEE Transactions on Robotics and Autonmtion,1989,5(4):472-490.
    [130] Maher G. Mohamed,Clément M. Gosselin, Design and Analysis of Kinematically Redundant Parallel Manipulators with Configurable Platforms[J], IEEE Transactions on Robotics, 2005, 21(3): 277-287.
    [131] S.B. Nokleby, R. Fisher, R.P. Podhorodeski, et al, Force capabilities of redundantly-actuated parallel manipulators[J], Mechanism and Machine Theory, 2005 (40): 578–599.
    [132] Jing Wang, Clement M. Gosselin, Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms[J], Transactions of the ASME, Journal of Mechanical Design, 2004(126):109-118.
    [133]丁汉,冗余度机器人的轨迹规划[J],机器人, 1990, 12(6):58-63.
    [134]李鲁亚,张启先,杨宗熙,基于运动可优化度的冗余自由度机器人运动学实时控制研究[J],机械工程学报,1994,30(6):93-100.
    [135]黄真,孔宪文,具有冗余自由度的空间并联多环机构的运动分析[J],机械工程学报, 1995,31(3):44-50.
    [136]李健,李剑锋,武桢等,冗余度机器人多关节故障的运动学容错性及其优化,机械工程学报,Vol.38,No.7,2002,p111~115
    [137]吴瑞珉,刘廷荣,一种新的冗余度机器人梯度投影算法[J],机械工程学报,1999, 35(1): 76~80.
    [138]叶平,孙汉旭,张秋豪,基于自运动控制的冗余度机器人运动学优化[J],机械工程学报,2004, 40(12):128-132.
    [139]王凯,陈祖安,韩大勇,基于广义坐标的冗余度机器人运动轨迹的规划[J],机械科学与技术,2001, 20(2):207-209.
    [140]余跃庆,刘林涛,多冗余度柔性机器人运动规划,机械科学与技术[J],2003, 22(4):588-591.
    [141]刘迎春,余跃庆,两4R冗余度柔性机器人协调操作的运动规划[J],中国机械工程,2004,15(14):1272-1276.
    [142]杨建新,余跃庆,平面三自由度冗余并联机构的驱动奇异性分析[J],中国机械工程2006,17(6):629-632.
    [143]白志富,韩先国,陈五一,冗余驱动消除并联机构奇异研究[J],航空学报, 2006,127(14): 733-736.
    [144]张彦斐,宫金良,高峰,冗余驱动消除并联机构位形奇异原理[J],中国机械工程, 2006, 17(5):445-448.
    [145]邓秀娟,陆震,基于微分几何的过驱动并联机器人驱动奇异性分析[J],机械工程学报, 2006, 42(6) :30-34.
    [146] Dasgupta, B. and Mruthyunjaya, T. S., Stewart Platform Manipulator: A Review[J], Mechanism and Machine Theory, 2000, 35(1):15-40.
    [147] Raghavan, M., Stewart Platform of General Geometry Has 40 Configurations[J], ASME J. Mechanical Design, 1993, 115(2):277-280.
    [148] Ji, P. and Wu, H.T., A Closed-Form Forward Kinematics Solution for the 6-6P Stewart Platform[J], IEEE Trans. Robotics and Automation, 2001, 17(4):522-526.
    [149] Screenivasan, Waldron, K.J., Nanua, P., Closed-Form Direct Displacement Analysis of a 6-6 Stewart Platform[J], Mechanism and Machine Theory, 1994, 29(6): 855-864.
    [150] Wang, Q.Y., Zou, H., Zhao, M.Y., and Li, Q.M., Design and Kinematics of A Parallel Manipulator for Manufacturing[C], CIRP Annals - Manufacturing Technology, 1997, 46(1):297-300.
    [151] Gosselin C M, Pierre E S.,Development and Experimentation of a Fast 3-DOF Camera Orientating Device[J], International Journal of Robotics Research, 1997, 16 (5):619-630.
    [152] Byun Y K, Cho H S, Analysis of a Novel 6-DOF, 3-PPSP Parallel Manipulator[J], International Journal of Robotics Research, 1997, 16(6): 859-872.
    [153] Bruyninckx H, The Analytical Forward Displacement Kinematics of the“31-12”Parallel Manipulator[C], In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Albuquerque, New Mexico, 1997: 2956~2960.
    [154] Innocenti C. Closed Form Determination of the Location of a Rigid Body by Seven in Parallel Linear Transducers[J], ASME Journal of Menchanical Design, 1998, 120 (2): 293-298.
    [155] Wen Fuan, Liang Chonggao, Displacement Analysis of the 6-6 Stewart Platform Mechanism[J], Mech. Mach. Theory, 1994, 29(4): 547-557.
    [156]肖尚彬,四元数方法及其应用[J],力学进展,1993,23(2):249-260.
    [157] Qing Tan, Jens G. Balchen, General Quaternion Transformation Representation for Robotic Application, Systems, Man and Cybernetics, 1993. 'Systems Engineering in the Service of Humans', Conference Proceedings., International Conference on,17-20 Oct 1993:319-324.
    [158] Ma O. and Angeles J., Architecture Singularities of Platform Manipulators[C], in Proceedings of IEEE Int. Conf. Robotics and Automation, 1991:1542-1547.
    [159] R. L.休斯敦,刘又午,多体系统动力学[M],天津:天津大学出版社,1987.
    [160] Mayer St-Onge B.,Gosselin C.,Singularity analysis and representation of spatial six-dof parallel manipulators[M], in Recent Advances in Robot Kinematics.Norwell, MA: Kluwer, 1996: 389~398.
    [161] Kuipers J.B. ,Quaternions and Rotation Sequences, Princeton: Princeton University, NJ, 1999,
    [162] Philippe Wenger,Damien Chablat, Definition sets for the Direct Kinematics of Parallel Manipulators, ICAR97, Monterey, CA, July, 1997:859-864.
    [163] Ilian A. Bonev,Damien Chablat,Philippe Wenger,Working and Assembly Modes of the Agile Eye[J],Proceedings of the 2006 IEEE International Conference on Robotics and Automation Orlando, Florida, May 2006:2317-2322.
    [164] http://www-sop.inria.fr/coprin/equipe/merlet/ASME/asme2002.html
    [165] Zhang C. D., Song S. M., Forward kinematics of a class of parallel (Stewart) platforms with closed-form solution[J]. Journal of Robotic Systems,1992,9(1):93-112.
    [166] Doik Kim, Wankyun Chung, Analytic Singularity Equation and Analysis of Six-DOF Parallel Manipulators Using Local Structurization Method[J], IEEE Transactions Robotics and Automation, 1999, 15(4):612– 622.
    [167]吴洪涛,王春刚,刘延山等,四元数在多体系统理论应用中的归一化问题[J],江苏工学院学报,1994,15(1):19-25.
    [168] Boris Mayer St-Onge, Clement M. Gosselin, Singularity analysis and representation of the general Gough-Stewart platform, The International Journal of Robotics Research, 2000,19(3) :271-288
    [169] Manfred L. Husty, Adolf Karger, Self Motions of Stewart-Gough Platforms An overview[C], Proceedings of the Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators ,October 3nd, 2002, Quebec City, Quebec, Canada: 131-141.
    [170] Xianwen Kong, Clement M. Gosselin, Generation of Architecturally Singular 6-SPS Parallel Manipulators with Linearly Relate Planar Platforms[C], Computational Kinematics, EJCK, 20-22 Mai, 2001:67-75.
    [171]袁剑雄,王知行,李建生等,并联机床电主轴干涉校验,机械科学与技术,2001,20(4):563-566.
    [172] Bhaskar Dasgupta, T.S. Mruthyunjaya, The Stewart platform manipulator: a review[J], Mechanism and Machine Theory, 2000(35):15-40.
    [173] Stefan Dutre,Herman Bruyninckx,Joris De Schutter, The analytical Jacobian and its derivative for a parallel manipulator[C], Proceedings of the 1997 IEEE International Conference on Robotics and Automation Albuquerque, New Mexico, April 1997(4):2961-2966.
    [174] Jean-Pierre Merlet, Efficient Estimation of the extremal articular forces of a parallel manipulator in a translation workspace[C], Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven,Belguim. 1998(5) :1982-1987.
    [175]熊有伦,机器人学[M],北京:机械工业出版社,1993:153-155.
    [176] Yoshikawa, T., Manipulability of robotic mechanism[J], Int. J. of Robotics Research, 1984, 4(2):439-446.
    [177]汪劲松,王忠华,黄田等, Gough-Stewart平台微分运动特性分析与综合[J],中国科学(E辑), 2001(5):412-418.
    [178] Bashar S. El-Khasawneh, Placid M. Ferreira,Computation of stiffness and stiffness bounds for parallel link manipulators[J], International Journal of Machine Tools & Manufacture, 1999,39:321–342.
    [179]张春林,高等机构学[M],北京:北京理工大学出版社,2005.
    [180] http://www.mscsoftware.com.cn/MscProducts/productdetail.asp?id=223
    [181]邬昌峰,高荣慧,并联机床的特点、研究现状及展望[J],机械,2003(30):1-4.
    [182]吴重光,仿真技术[M],化学工业出版社,北京,2000:1-5.
    [183]杨灏泉,赵克定,吴盛林,飞行模拟器六自由度运动系统的实验研究[J],系统仿真学报,2004,16(6):1217-1219.
    [184] http://www.coming-xg.com/list10.htm
    [185] A. Müller, A dexterity maximizing continuation method for the inverse kinematics of redundant manipulator[C], 11th IEEE Mediterranean Conf. on Control and Automation,Rhodes, 2003.
    [186] Andreas Müller, Collision avoiding continuation method for the inverse kinematics of redundant manipulators[C], Proceedings of the 2004 IEEE International Conference on Robotics&Automation, New Orleans, LA, April, 2004, p1593~1598.
    [187] Hengbin Liao, Tiemin Li, Xiaoqiang Tang. Singularity analysis of redundant parallel manipulators[C], 2004 IEEE International Conference on Systems, Man andCybernetics. P4214~4220
    [188] A. Liegeois, Automatic supervisory control of the configuration and behavior of multi-body mechanisms[J], IEEE Trans. Syst., Man, Cybern., 1977,vol. SMC-7: 868–871.
    [189] Chih-Jer Lin, Motion planning of redundant robots by perturbation method. Mechatronics 2004 (14):281–297.
    [190] C. Y. Chung, B. H. Lee, Torque Optimizing Control with Singularity-Robustness for Kinematically Redundant Robots[J], Journal of Intelligent and Robotic Systems, 2000, 28: 231–258.
    [191] Andreas Muller, Energy optimal control of serial manipulators avoiding collisions[C],Mechatronics, ICM '04. Proceedings of the IEEE International Conference on Publication , 3-5 June 2004:299-304.
    [192] Sungbok Kim, Optimal Redundant Actuation of Closed-Chain Mechanisms for High Operational Stiffness[C], Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems,2000:p683-688.
    [193] Bhaskar Dasgupta , T. S. Mruthyunjaya , Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues[J] , Mech. Mach. Theory ,1998,33(6):727-742.
    [194] Zanganeh K.E. and Angeles J., Instantaneous kinematics and design of a novel redundant parallel manipulator[C], In Proc. IEEE International Conference on Robotics and Automation, San Diego, May 8-13 1994, volume 4:3043--3048,
    [195] Zanganeh K.E. and Angeles J. Mobility and position analyses of a novel redundant parallel manipulator[C], In Proc. IEEE International Conference on Robotics and Automation, San Diego, May 8-13 1994, volume 4:3049--3054.
    [196] Bhaskar Dasgupta, and Mruthyunjaya, T.S., Force Redundancy in Parallel Manipulators: Theoretical and Practical Issues[J], Mech. Mach. Theory, 1998, 33(6):727-742.
    [197] Bhaskar Dasgupta, Redundancy Resolution Schemes for Parallel Manipulators with Force Redundancy[C],Proceedings of the WORKSHOP on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators,October 3–4, 2002, Quebec City, Quebec, Canada:257-260.
    [198] Gonzalez L.J., Sreenivasan S.V., Representational Singularities in the Torque Optimisation Problem of an Active Closed Loop Mechanism[J], Mech. Mach. Theory, 2000, 35(6), 871- 886.
    [199]蔡胜利白师贤,带冗余度并联机器人的特性分析[J],北京工业大学学报, 1997,3:62-66.
    [200] Yixin Chen and John E. McInroy, A Task Space Redundancy-Based Scheme for Motion Planning[J] , Proc. American Control Conference, , Denver, CO, June 2003 :3435-3445.
    [201] Y.Nakamura, H. Hanafusa, T. Yoshikawa, Task-priority base redundancy control of robot manipulators[J], The Int’l Journal of Robotics Research, 1987, 6(2):3-15
    [202] Rodrigo Jamisola, Marcel0 H. Ang, Jr., Denny Oetomo, et al, The Operational Space Formulation Implementation to Aircraft Canopy Polishing Using a Mobile Manipulator[C], Proceedings of the 2002 IEEE International Conference on Robotics &Automation Washington, DC - May 2002:400-405.
    [203] H. Yazarel, C. C. Cheah, Task-Space Adaptive Control of Robotic Manipulators With Uncertainties in Gravity Regressor Matrix and Kinematics[J],IEEE Transactions on Automatic Control, 2002, 47(9):1580~1585.
    [204] Jeffrey Russakow, Oussama Khatib, Stephen M. Rock, Extended Operational Space Formulation for Serial-to-Parallel Chain (Branching) Manipulators[C], IEEE International Conference on Robotics and Automation 1995: 1056~1061.
    [205] J. Russakow , O. Khatib, A new control structure for free-flying space robots[C]. In i-SAIRAS Symp on Art Int, Rob, and Autom an Space, Toulouse, Sept. 1992.
    [206]李金泉,丁洪生,付铁等,并联机床的历史现状及展望[J],机床与液压, 2003(3):3-8.
    [207]范守文,混联结构并联机床的研究[博士学位论文],四川大学, 2002.
    [208]周延佑,林益耀,发展中的六条腿机床[J],机械制造, 1998(10):4-8.
    [209]傅京逊,机器人学[M],北京,中国科学技术出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700