用户名: 密码: 验证码:
基于智能算法的非线性模型研究及预测控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着生命科学和计算机技术的迅速发展,大规模并行处理技术的产生,以不确定性、非线性、时间不可逆性为内涵,以复杂问题为对象的“复杂性研究”新兴边缘交叉学科的出现,尤其是以粒子群算法(Particle Swarm Optimization,简称PSO)、遗传算法(Genetic Algorithm,简称GA)和神经网络(Artificial Neural Network,简称ANN)等为代表智能仿生技术的引入,具有随机搜索性能的智能优化分析方法逐渐发展起来,为具有时变特性的土木工程问题解决,提供了一种全新的研究思路和方法,并已取得了重大的科研成果。
     正是基于这样一个背景,本文结合智能研究的发展成果,针对工程的复杂性、时变性特点,将变异粒子群算法(Variation PSO,简称VPSO)引入反分析研究,与具有动态反馈特性的Elman神经网络(Elman Neural Network,简称ENN)进行融合,提出了新的耦合算法“VPSO-ENN”,用于岩土工程智能分析,成功实现了大型工程问题的非线性参数辨识和变形预测控制。本文主要完成以下几个方面工作:
     (1)系统地研究了标准粒子群算法(Standard PSO,简称SPSO)生物运行机理,针对SPSO算法在求解高维、多峰等复杂非线性优化问题时,易陷入局部最优解、早熟等缺陷,本文采用粒子速度随机变异策略,对SPSO算法进行改进,提出了一种具有全局快速收敛的VPSO算法。通过对5个高维复杂Benchmark测试函数的优化,结果表明VPSO算法具有搜索机理简单、算法参数调整少、无需梯度信息的特点,与SPSO相比,VPSO算法的收敛精度、收敛速度以及算法稳定性,均得到显著地提高。
     (2)将VPSO算法与Elman反馈网络进行融合,提出了一种新的耦合算法“VPSO-ENN”。采用VPSO算法优化并确定ENN权值和阈值,使其学习训练不再依赖于梯度信息。通过VPSO搜寻ENN最优的一组权值和阈值,能有效找到问题的全局最优解,克服了ENN算法易于陷入局部极小和收敛速度慢的缺点,可提高网络的训练速度、非线性映射和泛化能力,实现任意非线性函数的逼近。
     (3)建立了基于“VPSO-ENN”非线性参数辨识模型,采用隐性数学表达式建模方式,通过对其目标隐函数进行寻优,实现了时变系统的辨识输出值与实际输出值的高精度拟合,达到非线性参数辨识的目的。结果表明,VPSO-ENN辨识模型具有很强的非线性参数辨识能力,该方法简单易操作且识别准确率高,用以反推时变系统的未知参数是可行的,具有工程实用性。
     (4)根据VPSO算法仿生优化原理和网络控制理论,采用预测智能控制的思想,建立了一个多输入多输出(MIMO)的“VPSO-ENN”预测智能控制系统。将预测系统中过去时刻输出的一阶导数和二阶导数加入到模型的输入,使预测模型VPSO-ENNPM具有动态反馈特性。通过优化含有预测信息的目标函数,系统获得预测控制律,成功地避免了递推预测模型误差迭加增大的问题,实现了时变系统预测智能控制。
     (6)利用VPSO算法和Elman神经网络控制技术,采用时间窗口滚动技术,建立了一套集深基坑施工变形预测与控制于一体的“VPSO-ENN”多步预测控制系统,通过建立期望输出与超前预测输出之间的非线性隐式方程表达式,成功地避开了复杂的岩土本构关系和力学计算。采用MATIAB7.0编制程序,利用基坑有限的历史监测变形数据和最新的观测数据,成功地实现了基坑施工变形的多步预测。
     工程实例分析表明,基于“VPSO-ENN”智能预测方法具有较高的预测精度、很强的泛化能力,适于对时变系统未来变化趋势的预测控制智能化,可实现大型土木工程施工过程的实时控制。
The life science and the computer technique have developed rapidly,and massively parallel processing technology(MPP) has been presented.Complexity research presented is a new interdisciplinary science,which takes the uncertainty,nonlinearity,time irreversibility as connotations and takes complex problems as objects.Especially,the simulating biology intelligent techniques have been introduced gradually,such as Particle Swarm Optimization(PSO),Genetic Algorithm(GA) and Artificial Neural Network (ANN).The algorithms have random search performance.The techniques provide a new research way in solving problems for the civil engineering of time variant characteristics. Moreover the important achievements have been obtained in the scientific research.
     Based on the above background,combining development achievements of the intelligent study,Variation PSO(VPSO) is introduced into the back-analysis according to engineering complexity and time variation in this dissertation.A new algorithm is presented,VPSO combines Elman feedback network(ENN) and forms VPSO-ENN.The method is employed in the intelligent analysis of geotechnical engineering.It is successfully realized in the nonlinear parameter identification and deformation predictive control.The dissertation includes the following contents:
     Firstly,the biological operation mechanism of the standard PSO(SPSO) has been systematically studied.SPSO is easy to get locked into the local optimum value and premature convergence,when the nonlinear optimization problems of the high-dimension and multi-peak are solved.The random variation strategy of particle velocity is adopted to improve SPSO in this dissertation.VPSO,which has rapid global convergence,is presented.According to optimize five Benchmark testing functions of the high-dimension and complexity,the results show that VPSO has simple search mechanism,few adjusting parameters and no gradient information.Compared with SPSO,the VPSO performance is significantly improved in convergence precision, convergence speed and computational stability.
     Secondly,a new algorithm is presented by combining VPSO algorithm with the ENN.VPSO is used to optimize and determine ENN structure,which does not depend on the gradient information.Using VPSO to search a group of the optimal weights and thresholds,the global optimal solution can effectively be found.The ENN defects of the low learning convergence speed and the easily appearing local minimum has been overcome.Moreover,the method can improve network training speed,increase nonlinear mapping and generalization ability,and approach arbitrary nonlinear functions.
     Thirdly,the identification model of nonlinear parameters is constructed based on the VPSO-ENN,the implicit mathematical expressions are established.Optimizing the implicit objective function,the high precision fitting is realized between expected output value of the actual system and output value of the identification model.The goal of the nonlinear parameter identification is achieved.The results show that the VPSO-ENN identification model has strong identification ability,simple operation and high identification accuracy.It is feasible to identify unknown parameters of geotechnical engineering.
     Fourthly,according to the bionic optimization principle of VPSO algorithm and networked control theory,intelligent predictive control has been used to establish VPSO-ENN system,which is one of the multi-input/multi-outinput(MIMO) model.The first derivative and the second derivatives,which are of the past output values in system, are added to the input of the prediction model(PM).Then VPSO-ENN prediction model, called VPSO-ENNPM,has dynamic feedback characteristics.The control law of the prediction system can be obtained based on the optimized objective function of prediction information.The increases of iterative error of recursive prediction model can been avoided effectively.The intelligent predictive control of time-varying system is realized.
     Finally,using VPSO-ENN control technology and applying time-scroll technology, a set of VPSO-ENN multi-step prediction control system has been established.The syetem integrates foundation pit deformation prediction and control together.The nonlinear implicit equations are constructed between the target output and prediction output.This approach can be avoided the complicated structure relation and mechanical calculation in geotechnical engineering successfully.The program has been compiled with MATIAB7.0.Using the limited history and the latest observation data,the multi-step prediction of foundation pit construction is successfully realized.
     The results of engineering cases indicate that intelligent prediction method based on the VPSO-ENN has high prediction accuracy and strong generalization ability.It is suitable for the prediction intelligent control of future tendency.The large construction process of civil engineering can be controlled in real-time.
引文
[1]杨志法,王思敬,冯紫良等.岩土工程反分析原理及应用.北京:地震出版社,2002
    [2]冯夏庭.智能岩石力学导论.北京:科学出版社,2000
    [3]孙钧,蒋树屏,袁勇等.岩土力学反演问题的随机理论与方法.汕头:汕头大学出版社,1996
    [4]杨林德.岩土工程问题的反演理论与工程实践.北京:科学出版社,1996
    [5]Kavanagh K T,Clough R W.Finite element application in the characterization of elastic solids.International Journal of Solids Structures,1971,7(1):11-13
    [6]Gioda G,Maier G.Direct search solution of an inverse problem in elastic-plastic:identification of cohesion,friction angle and in-situ stress by pressure tunnel tests.International Journal for Numerical Methods in Engineering,1980,15(11):1823-1848
    [7]杨志法,刘竹华.位移反分析在地下工程设计中的初步应用.地下工程,1981,2(1):20-24
    [8]陈子荫.由位移测定值反算流变岩体变形性质参数及地应力.煤炭学报,1982,10(4):45-51
    [9]杨林德,黄伟,王聿.初始地应力位移反分析计算的有限单元法.同济大学学报,1985,13(4):370-373
    [10]刘怀恒.地下工程位移反分析应用及其原理.西安矿业学院学报,1988,8(3):1-11
    [11]朱维申.考虑时空效应的地下洞室变形观测及反分析.岩石力学与工程学报,1989,8(4):346-353
    [12]王芝银,李云鹏.地下工程位移反分析法及程序.西安:陕西科学技术出版社,1993
    [13]吕爱钟.地下巷道弹性位移反分析各种优化方法的探讨.岩土力学,1996, 17(2):29-34
    [14]戴汝为.科学的前沿与未来.北京:科学出版社,1998
    [15]Waldrop M M.Complexity:The Emerging Science at the Edge of Order and Chaos.New York:Touchstone Books,1993
    [16]许国志,顾基发,车宏安.系统科学.上海:上海科技教育出版社,2000
    [17]宋学锋.复杂性、复杂系统与复杂性科学.中国科学基金,2003,17(5):262-269
    [18]Bonabeau E,Dorigo M,Theraulaz G.Swarm Intelligence:From Natural to Artificial Systems.New York:Oxford University Press,1999
    [19]Holand J H.Emergence:From Chaos to Order.Redwood City,California:Addison-Wesley,1998
    [20]李夏,戴汝为.突现-系统研究的新观念.控制与决策,1999,14(2):97-102.
    [21]Kennedy J,Eberhart R C.Swarm Intelligence.San Francisco:Morgan Kaufmann Publishers,2001
    [22]McCulloch W S,Pitts W.A logical calculus of the ideas immanent in nervous activity.Bulletin of Mathematical Biophysics,1943,10(5):115-133
    [23]Bandini S,Mauri G,Serra R.Cellular automata:From a theoretical parallel computational model to its application to complex systems.Parallel Computing,2001,27(5):539-553
    [24]Dorigo M,Maniezzo V,Colorni A.The ant system:Optimization by a colony of cooperating agents.IEEE Transactions on Systems,Man and Cybernetics(Part B),1996,26(1):1-13
    [25]Kennedy J,Eberhart R C.Particle swarm optimization.In:Proc.IEEE International Conference on Neural Networks.Piscataway,N J:IEEE Service Center,1995,1942-1948
    [26]Holland J H.Adaptation in Natural and Artificial Systems.Cambridge:MIT Press,1992
    [27]Belew R K.Evolving Networks:Using the Genetic Algorithms with Connectionist Learning.Artifical Life Ⅱ,Addsion Wesley Pub.,1992
    [28]龚涛,蔡自兴.自然计算研究进展.控制理论与应用,2006,23(1):79-85.
    [29]王凌智.智能优化算法及其应用.北京:清华大学出版社,2001
    [30]黄光远,刘维倩,刘小军.反问题与计算力学.计算结构力学及其应用,1993,10(3):302-306
    [31]Feng X T,Zhang Z Q,Xu P.Adaptive and intelligent prediction of deformation time series of high rock excavation slope.Transactions of Nonferrous Metals Society of China(English Edition),1999,9(4):842-846
    [32]张治强,冯夏庭,杨成祥等.非线性位移时间序列分析的遗传-神经网络方法.东北大学学报(自然科学版),1999,20(4):422-425
    [33]苏国韶等.基于粒子群优化算法的高地应力条件下硬岩本构模型的参数辨识.岩石力学与工程学报,2005,24(17):3029-3034
    [34]Arai K,Ohta H,Yasui T.Simple optimization technique for evaluation deformation moduli from field observations.Soil and Foundations,1983,23(1):107-113
    [35]孙钧.岩土材料流变及其工程应用.北京:中国建筑工业出版社,1999
    [36]Yang L,Sterling R L.Back analysis of rock tunnel using boundary element method.Journal of Geotechnics Engineering,1989,115(8):1163-1169
    [37]袁勇,孙钧.岩体本构模型反演分析识别理论及其工程应用.岩石力学与工程学报,1993,12(3):232-239
    [38]Honjo Y,Liu W T,Sakajo S.Application of Akaike information criterion statistics to geotechnical inverse analysis:the Bayesian method.Structural Safety,1994,14(11):5-29
    [39]Sanayei M,Saletnik M J.Parameter estimation of structures from static strain measurements-I:Formulations.Journal of Structural Engineering,1996,122(5): 555-572
    [40]Gioda G,Pandolfi A,Cividini A.A comparative evaluation of some back analysis algorithms and their application to in-situ load tests.Proceedings of 2nd International Symposium on Field Measurement in Geom.Kobe,1987,1131-1144.
    [41]Sakurai S,Abe S.A design approach to dimensioning underground openings.Proceedings 3rd International Conference on Numerical Methods in Geom.Aachen,1979,649-661
    [42]Sakurai S,Takeuchi K.Back analysis of measured displacement of tunnel.Rock Mechanics and Rock Engineering,1983,16(3):173-180
    [43]樱井春辅.地下洞室设计和监控的一种途径.隧道译丛,1986,4:13-25
    [44]冯夏庭,张治强,杨成祥等.位移反分析的进化神经网络方法研究.岩石力学与工程学报,1999,18(5):529-533
    [45]王芝银,杨志法,王思敬.岩石力学位移反演分析回顾及进展.力学进展,1998,28(4):488-498
    [46]吕爱钟,蒋斌松.岩石力学反问题.北京:煤炭工业出版社,1998.
    [47]傅鹤林,彭思甜,韩汝才等.岩土工程数值分析新方法.长沙:中南大学出版社,2005
    [48]Kaiser P K,Zou D,Lang P A.Stress determination by back-analysis of excavation-induced stress changes.Rock Mechanics and Rock Engineering,1990,23(3):185-200
    [49]刘维倩,黄光远,穆永科等.岩土工程的位移反分析法.计算结构力学及其应用,1995,12(1):93-101
    [50]Swoboda G,Ichikawa Y,Dong Q,et al.Back analysis of large geotechnical models.International Journal for Numerical and Analytical Methods in Geomechanics,1999,23(13):1455-1472
    [51]刘怀恒.支护荷载反演及安全度预测.西安矿业学院学报,1991,11(4):1-8
    [52]薛琳.岩体粘弹性力学模型的判别定理与应用.岩土工程学报,1994,16(5):1-10
    [53]Gioda G,Sakurai S.Back analysis procedures for the interpretation of field measurements in Geomechanics.International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(66):555-583
    [54]Quiertant M,Shao J F,Xu W Y.In situ stress determination in rock materials with damage.In:Pande Ned.The Proceedings of the Eleventh International Symposium on Numerical Model in Geomechanics.2002:453-462
    [55]Yang Z F,Wang Z Y,Zhang L Q,et al.Back analysis of visco-plastic displacement in a soft rock road tunnel.International Journal of Rock Mechanics and Mining Sciences,2001,38(3):331-341
    [56]Gioda G,Jurina L.Numerical identification of soil-structure interaction pressures.International Journal for Numerical and Analytical Methods in Geomechanics,1981,5(1):33-56
    [57]Gordon A.Estimation for stochastic soil models.Journal of Geotechnical and Geoenvironmental Engineering.1999,125(6):470-485
    [58]Karkkainen T,Neittaanmaki P,Niemisto A.Numerical method for nonlinear inverse problem.Journal of Computational and Applied Mathematics,1996,74(1-2):231-24
    [59]Ledsma A,Gens A,Alonso E E.Parameter and variance estimation of geotechnical back analysis using prior information.International Journal for Numerical and Analytical Methods in Geomechanics,1998,20(2):119-141
    [60]李皓,唐新军,朱焕春.岩体工程正反耦合位移反分析初探.武汉水利电力大学学报,1997,30(4):42-45
    [61]林育梁,樱井春辅.应用模糊有限元法的一种反分析形式.岩土工程学报, 1995,17(5):48-56
    [62]Sharma M,McBean E A,Thomson N.Maximum likelihood method for parameter estimation in linear model with below-detection data.Journal of Environmental Engineering,1995,121(11):776-784
    [63]Asaoka A,Matsuo M.Bayesian approach to inverse problem in consolidation and its application to settlement predication.Proceedings 3rd International Conference on Numerical Methods in Geomechanics.Archen:1997:732-739
    [64]Yoshihiko M,Genki Y,Shinobu Y.Inverse analysis by means of the combination of multilayer neural networks and computational mechanics.Study on learning and estimating process and its application to defect identification.Nippon Kikai Gakkai Ronbunshu.A Hen,1991,57(540):1922-1929
    [65]Zaman M,Hossain M,Faruque M.Creep constitutive modeling of rock salt and evaluation of model parameters using optimization technique.Indian Geotechnical Journal,1996,12(6):761-780
    [66]Bastian A,Gasos J.Type I structure identification approach using feed-forward neural networks.Proceedings of IEEE International Conference on Neural Networks.New Jersey:1994,5(27):3256-3260
    [67]Feng J,Yang Z.Tupu-displacement back analysis method and its application.Proceedings of International Conference on Progress and Innovation in Tunneling.Toronto Ontario:1989:2123-2126
    [68]蒋树屏.扩张卡尔曼滤波器有限元耦合算法及其隧道工程应用.岩土工程学报,1996,18(4):11-19
    [69]冯夏庭,周辉,李邵军等.岩石力学与工程综合集成智能反馈分析方法及应用.岩石力学与工程学报,2007,29(6):1737-1744
    [70]高玮,郑颖人.岩土力学反分析及其集成智能研究.岩土力学,2001,22(1):114-120
    [71]赵新铭,刘宁,张剑.岩土力学反分析的数值反演方法.水利水电科技进展.2003,23(2):55-58
    [72]蔡美峰.岩石力学与工程.北京:科学出版社.2002
    [73]杨敏,熊巨华,冯又全.基坑工程中的位移反分析技术与应用.工业建筑,1998,28(9):1-6
    [74]Su H T,McAvoy T J,Werbos P J.Long-Term Predictive Chemical Processes Using Recurrent Neural Networks.Industrial Application of Chemical Engineering Research,1992,31(8):1338-1352
    [75]Buescher K L,Baum C C.A Two-Timescale Approach to Nonlinear Model Predictive Control.Proceedings of American Control Conference.Seatle,1995:2250-2256
    [76]Najim K,Rusnak A,Meszaros A.Constrained Long-Range Predictive Control Based on Artificial Neural Networks.System Science,1997,28(2):1211-1226.
    [77]刘晓华,杨振光.基于动态BP网络误差修正的广义预测控制.数学的实践与认识,2002,32(3):445-449
    [78]钱积新,赵均,徐祖华.预测控制.北京:化学工业出版社,2007
    [79]Brown D A.Murthy P L N.Computational simulation of composite ply micromechanics using artificial neural networks.Microcomputers in Civil Engineering.1991,6(2):87-97
    [80]Theoearis P S,Panagiotopoulos P D.Generalized hardening plasticity approximated via anisotropic elasticity:a neural network approach.Computer Methods in Applied Mechanics and Engineering,1995,125(2):123-139
    [81]Tomonari D A.Implicit constitutive modelling for visco-plasticity using neural networks.International Journal for Numerical Methods Engineering,1998,43(3):195-219
    [82]Ghaoboussi J,Sidarta D E.New nested adaptive neural networks(NANN) for constitutive modeling.Computers and Geotechnics,1998,22(1):29-51
    [83]Daoheng S,Qiao H,Hao X.A neuro-computing model for the elasto-plasticity.Computer Methods in Applied Mechanics and Engineering,2000,18(2):177-186.
    [84]孙道恒,胡俏,徐灏.力学反问题的神经网络分析法.计算结构力学及其应用,1996,13(3):308-312
    [85]李立新,王建党,李造鼎.神经网络模型在非线性位移反分析中的应用.岩土力学,1997,18(2):62-64
    [86]Zhang Q,Yang Y.The application of neural network to Rock Engineering Systems(RES).International Journal of Rock Mechanics and Mining Sciences,1998,35(6):727-745
    [87]李端有,李迪,马水山.三峡永久船闸开挖边坡岩体力学参数反分析.长江科学院报,1998,15(2):10-13
    [88]樊琨,刘宇敏,张艳华.基于人工神经网络的岩土工程参数反分析.河海大学学报,1998,26(4):98-102
    [89]杨成祥.材料本构模型自适应识别的初步研究[D].沈阳:东北大学,1998
    [90]冯夏庭,习心宏.智能岩石力学(1)—导论.岩石力学与工程学报,1999,18(2):222-226
    [91]冯夏庭,杨成祥.智能岩石力学(2)—参数与模型的智能辨识.岩石力学与工程学报,1999,18(3):350-353
    [92]葛增杰,李锡菱.深基坑开挖工程多层土体物性参数识别的BP法.大连理工大学学报,2000,40(3):271-275
    [93]高玮,郑颖人.采用快速遗传算法进行岩土工程反分析.岩土工程学报,2001,23(1):120-122
    [94]谭云亮,王春秋.岩石本构关系的径向基函数神经网络快速逼近模型.岩土工程学报,2001,23(1):14-17
    [95]赵启林.力学仿真中应变软化问题数模分析与神经计算力学研究[D].南京:河海大学,2001
    [96]王卫华,丁德馨.开采沉陷反分析的神经网络方法研究.南华大学学报.2001,15(1):10-14
    [97]周瑞忠,邱高翔.基于BP网络的深基坑支护位移反分析.土木工程学报,2001,34(6):60-62
    [98]李晓红,靳小光,亢会明.隧道位移智能化反分析及其应用.地下空间,2001,21(4):299-304
    [99]邓建辉,李焯芬,葛修润.BP网络和遗传算法在岩石边坡位移反分析中的应用.岩石力学与工程学报,2001,20(1):1-5
    [100]高玮,郑颖人.岩土力学反分析及其集成智能研究.岩土力学,2001,22(1):114-116
    [101]蒋中明,徐卫亚,邵建富.基于人工神经网络的初始场应力三维反分析.河海大学学报,2002,30(3):52-56
    [102]韦立德,徐卫亚,将中明等.基坑支护结构水平变形预测的遗传神经网络方法.工程地质学报.2003,11(3):297-301
    [103]赵洪波,冯夏庭.非线性位移时间序列预测的进化-支持向量机方法及应用.岩土工程学报,2003,25(4):468-471
    [104]周海清,陈正汉,朱元青.遗传算法在深基坑支护结构选型中的应用.岩土力学,2004,25(12):2023-2027
    [105]常斌,李宁,马玉扩.神经网络方法在洞室施工期应力及变形预测中的应用及其改进.岩石力学与工程学报,2004,23(7):1132-1135
    [106]姜谙男,冯夏庭,刘健等.基于三维数值模拟的地下大型洞室锚固参数智能优化.岩石力学与工程学报,2004,23(10):1700-1705
    [107]张福波,陈有亮.基于BP神经网络与模糊控制的深基坑开挖侧向变形分析.岩土力学,2005,26(7):1148-1152
    [108]郭凌云,肖明.大型地下洞室群参数反演及其工程应用.岩土工程技术,2005,19(3):118-122
    [109]吴余生,陈胜宏.并行组合模拟退火算法在边坡稳定分析中的应用.岩土力学,2006,27(9):1554-1558
    [110]高玮.基于粒子群优化的岩土工程反分析研究.岩土工程学报,2006,27(5):795-798
    [111]许传华,任青文,郑治等.索风营水电站地下洞室岩体力学参数的位移反分析.岩土工程学报,2006,28(11):1981-1985
    [112]余志雄,周创兵,陈益峰等.基于V-SVR和GA的初始地应力场位移反分析方法研究.岩土力学,2007,28(1):151-156
    [113]姜谙男.基于PSO-SVM非线性时序模型的隧洞围岩变形预报.岩土力学,2007,28(6):1176-1180
    [114]梁桂兰,徐卫亚,何育智等,PSO-RBFNN模型及其在岩土工程非线性时间序列预测中的应用.岩土力学,2008,29(14):995-1000
    [115]米歇尔·沃尔德罗.复杂-诞生于秩序与混沌边缘的科学.北京:三联书店,1997
    [116]Langton C G.Artificial Life.Volume Ⅵ of SFI Studies of Complexity.Addison Wesley,1989
    [117]Fhat-Torbraghan,Madjid.Hildebrand Lars.Complex System Analysis Using Cl-mehtods.Proceedings of SPIE-The International Society for Optical Engineering,1999,300-341
    [118]Langton C G.Artificial Life:An Overview.Massachusetts:The MIT Press,1995
    [119]Bezedek J C.Fuzzy Models-What Are They,and Why? IEEE Transactions on Fuzzy Systems,1993,2(1):1-6
    [120]Rechenberg I.Evolution strategies:optimiering technischer systeme nach prinzipien der biolgischen evolution.Stuttgart:Formmann-Holzboog Verlag, 1973.
    [121][121]Schwefel H P.Numerical optimization of computer models.Chichster,U.K.:Wiley,1981
    [122]Schwefel H P,Evolution and Optimum Seeking.New York:Wiley,1995.
    [123]Fogel L J,Owens A J,Walsh M J.Artificial Intelligence through Simulated Evolution.New York:Wiley,1966
    [124]Fogel D B,System Identification Through Simulated Evolution:A Machine Learning Approach to Modeling.Needham Heights,MA:Ginn,1991
    [125]Yao X,Evolutionary Computation:Toward a New Philosophy of Machine Intelligence.New York:IEEE Press,1995
    [126]Millonas M.Swarm,phase transitions and collective intelligence.In Langton C G,Ed.,Artificial Life Ⅲ.Addison Wesley,Reading,MA.1994
    [127]王玫,朱云龙,何小贤.群体智能研究综述.计算机工程,2005,31(11):194-196
    [128]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法.系统工程理论与实践,2002,22(11):32-38
    [129]Dorigo M,Schnepf U.Genetics-based machine learning and behavior based robotics:a new synthesis.IEEE Transactions on Systems,Man and Cybernetics,1985,23(1):141-154
    [130]Grefenstette J J.Optimization of Control Parameters for Genetic Algorithms.IEEE Transactions on Systems,Man and Cybernetics,1986,16(1):122-128
    [131]Fogel L J,Fogel D B,Angeline PJ.A preliminary investigation on extending evolutionary programming to include self-adaptation on.Informatica,1994,18(4):387-398
    [132]Schraudolph N N,Belew R K.Dynamic Parameter Encoding for Genetic Algorithms.Machine Learning,1992,9(1):9-22
    [133]王小平,曹立明等.遗传算法-理论、应用与软件实现.西安:西安交通大学出版社,2002
    [134]彭喜元,彭宇,戴毓丰.群智能理论及应用研究.电子学报,2003,31(12):1982-1988
    [135]冯静,舒宁.群智能理论及应用研究.计算机工程与应用,2006,17(6):31-34.
    [136]李勇,段正澄.动态蚁群算法求解TSP问题.计算机工程与应用,2003,39(17):103-106
    [137]秦元庆,孙德宝,李宁等.基于粒子群算法的移动机器人路径规划.机器人,2004,26(3):222-225
    [138]Fukuyama Y,Yoshida H.A particle swarm optimization for reactive power and voltage control in electric power systems.Proceedings of the IEEE Conference on Evolutionary Computation.Soul,Korea,2001
    [139]闻朝中,李智.粒子群算法在配电网络无功补偿优化中的应用.武汉工业学院学报,2004,23(1):18-21
    [140]Salman A,Ahmad I,Al-Madani S.Particle swarm optimization for task assignment problem.Microprocessors and Microsystems,2002,26(8):363-371
    [141]符强,夏瑛,张华等.基于粒子群算法的粗轧宽展控制模型优化仿真.冶金自动化,2003,27(3):1-4
    [142]Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem.IEEE Transactions on Evolutionary Computation,1997,1(1):53-66
    [143]Colorni A,DorigoM,Maniezzo V.An investigation of some properties of an ant algorithm.Proceedings of Parrallel Problem Solving from Nature.Brussels,Belgium:Elsevier Publishing,1992,509-520
    [144]Gambardella L M,Dorigo M.Ant Q:an reinforcement learning approach to the traveling salesman problem.Proceedings of Twelfth Maching International Conference on Machine Learning.Morgan Kaufmann,France,1995,252-260
    [145]Ying K C,Liao C J.An ant colony system for permutation flow-shop sequencing.Computers and Operations Research,2004,31(5):791-801
    [146]樊晓平,罗熊,易晨等.复杂环境下基于蚁群优化算法的机器人路径规划汇.控制与决策,2004,19(2):166-170
    [147]Caro G D,Dorigo M.Ant Net:Distributed stigmergetic control for communications networks.Journal of Artificial Intelligence Research,1998,9(5),317-365
    [148]王颖,谢剑英.一种基于蚁群算法的多媒体网络多播路由算法.上海交通大学学报,2002,36(4):256-532
    [149]Eberhart R C,Kennedy J.A new optimizer using particle swarm theory.Proceedings of the Sixth International Symposium no Micro machine and Human Science.Piscataway,NJ:IEEE Service Center,1995,39-43
    [150]刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法.系统工程理论与实践,2005,27(6):54-58
    [151]Kennedy J,Spears W.Matching Algorithms to Problem:an Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimode Problem Generator.Proceedings of the IEEE International Conference on Evolutionary Computation(CEC).Anchorage,Alaska,USA,1998
    [152]Van den Bergh F.An analysis of particle swarm optimizers[D].South Africa:University of Pretoria,2002
    [153]Shi Y H,Eberhart R C.Empirical Study of Particle Swarm Optimization.Proceedings of the IEEE Congress on Evolutionary Computation.Piscatawy,NJ:IEEE Service Center,1999,1945-1950
    [154]王宇庆,刘维亚.群体智能在图像处理中的应用.计算机应用,2007,27(7): 1647-1650
    [155]He Z,Wei C,Yang L,et al.Extracting rules from fuzzy neural network by particle swarm optimization.Proceedings of IEEE International Conference on Evolutionary Computation.Anchorage,Alaska,USA,1998
    [156]Van den Bergh,Engelbrecht A P.Training product unit networks using,cooperative particle swarm optimizers.Proceedings of INNS-IEEE International Joint Conference on Neural Networks.Washington D C,USA,2001
    [157]王耀南.智能信息处理技术.北京:高等教育出版社,2003
    [158]康琦,汪镭,吴启迪.群体智能于人工生命.模式识别于人工智能,2005,18(6):689-697
    [159]Jang J S R.ANFIS:Adaptive network based fuzzy inference system.IEEE Transactions on Systems,Man and Cybernetics,1993,23(3):665-685
    [160]Kosko B.Neural networks and fuzzy systems.Prentice Hall,Englewood,Cliffs,1992
    [161]鲍鸿,黄心汉,李锡雄等.用模糊RBF神经网络简化模型设计多变量自适应模糊控制器.控制理论与应用,2000,17(2):167-174
    [162]Carpenter G A,Grossberg S.A self-organizing neural network for unsupervised learning,recognition,and prediction.IEEE Communications Magazine.1992,30(9):38-49
    [163]Arabshashi P,Choi J J,Marks J,et al.Fuzzy control of back propagation.IEEE International Conference on Fuzzy Systems.San Diego,CA,1992:967-972
    [164]Jacobs R A.Increased rates of convergence through learning rate adaptation.Neural Networks,1998,1:295-307
    [165]冯天瑾,陈哲.BP网络学习参数模糊自适应算法的实现.青岛海洋大学学报,2000,30(1):137-141
    [166]邱阿瑞,孙健.用模糊逻辑方法优化多层前馈网络结构.电工电能新技术, 1999,18(4):1-4
    [167]Montana D J,Davis L.Training feed-forward neural networks using genetic algorithms.Proceedings of the Eleventh International Joint Conference Artificial Intelligence.San Francisco,CA:Morgan Kaufmann.1989,1:726-767
    [168]Kitano H.Empirical studies on the speed of convergence of neural network training using genetic algorithms.Proceedings of the Eighth National Conference on Artificial Intelligence.1990,2:789-795
    [169]Mclnemey M,Dhawan A P.Use of genetic algorithms with back-propagation in training of feed-forward neural networks.Proceedings of the IEEE International Journal on Neural Network.San Francisco,CA,1993,1:1203-208
    [170]Maniezzo V,Genetic evolution of the topology and weight distribution of neural networks.IEEE Transactions on Neural Networks,1994,5(1):39-53
    [171]李敏强,徐博艺,寇纪淞.遗传算法与神经网络的结合.系统工程理论与实践,1999,19(2):65-69
    [172]Forgel D B,Forgel L J,Porto V W.Evolutionary methods for training neural networks.Proceedings of IEEE Conference on Neural Networks for Oceanography Engineering.Washington,D C,1991:317-327
    [173]McDonnell J R,Waagen D.Evolving neural networks connectivity.Proceedings of IEEE International Conference on Neural Networks.SanFrancisco,CA,1993:863-868
    [174]Angeline P J,Saunders G M,Pollack J B.An evolutionary algorithm that constructs recurrent neural networks.IEEE Transactions on Neural Networks,1994,5(1):54-65
    [175]高海兵,高亮,周驰等.基于粒子群优化的神经网络训练算法研究.电子学报,2004,32(9):1572-1574
    [176]van den Berh F,Engelbrecht A P.Effects of swarm size on cooperative particle swarm optimization. Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco, USA, 2001: 892-899
    [177] Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization. Proceedings of the Congress on Evolutionary Computation.Piscataway: IEEE Press, 1999: 1927-1930
    [178] EI-Gallad A I, EI-Hawary M, et al. Swarm intelligently trained neural network for power transformer protection. Proceedings of the Canadian Conference on Electrical and Computer Engineering. Toronto, Canada, 2001: 265-269
    [179] Carlisle A, Dozier G. An off-the-shelf PSO. Proceedings of the Particle Swarm Optimization Workshop, 2001,1-7
    [180] Gudise V G, Venayagamoorthy G K. Comparison of particle swarm optimization and back propagation as train algorithms for neural networks. Proceedings of the IEEE Swarm Intelligence Symposium 2003. Indianapolis, Indiana, USA, 2003,110-117
    [181] Treleal C. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 2003, 85(6): 317-325
    [182] Clerc M, Kennedy J. The Particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73
    
    [183] Elman J L. Finding structure in time. Cognitive Science, 1990,14(2): 179-211
    [184] Hunt K.J, Sbarbaro D, Zhikowski R. Neural networks for control systems. A survey. Automatica, 1992, 8 (6): 1083-1112
    [185] Cesare A. A neural network based control solution to air-fuel ratio for automotive fuel injection system. IEEE Transactions on System, Man and Cybernetics (Part C), 2003, 33 (2): 259-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700