用户名: 密码: 验证码:
Toll样受体信号途径在心脏移植排斥反应中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心脏移植是治疗终末期心功能衰竭的有效手段,近年手术成功率有较大提高,但急、慢性排斥反应仍是制约移植近、远期疗效的主要因素。随着天然免疫的深入研究,人们认识到Toll样受体(Toll-Like Receptors,TLRs)及其信号途径是联系天然免疫与获得性免疫的重要桥梁,表达TLRs的天然免疫细胞,如树突状细胞(dendritic cell,DC),在移植排斥反应中具有重要作用。本课题拟通过研究TLRs信号途径的表达,从整体、细胞和分子水平探讨和阐明TLRs在心脏移植排斥反应中的作用机制,丰富移植免疫理论;采用针对MyD88的RNAi技术,体外培育稳定的供体未成熟DC,转输受体诱导免疫耐受,探索提高移植心脏存活率的全新手段。本研究分以下四部分:
     第一部分TLR信号途径在DC成熟中的作用及机制研究
     实验一小鼠骨髓源性树突状细胞的体外扩增、鉴定及生物学特性分析
     目的:建立小鼠骨髓源性树突状细胞的体外扩增方法,并进行生物学特性分析与鉴定。方法:以重组小鼠粒细胞-巨噬细胞集落刺激因子(GM-CSF)和白细胞介素(IL-4)体外诱导小鼠骨髓细胞分化为树突状细胞,分为对照组及LPS组。倒置显微镜动态观察细胞形态学变化,流式细胞术分析细胞表面分子改变,混合淋巴细胞反应检测其刺激T细胞增殖的能力。结果:经体外诱导培养可获得大量DC,并具有典型树突状形态;两组CD11c的表达无显著差别,LPS组CD80、CD86及MHC-Ⅱ分子的表达明显高于对照组;LPS组DC可显著刺激同种异体混合淋巴细胞增殖。结论:体外诱导培养可获得小鼠骨髓来源DC,具有典型树突状细胞的形态及髓系树突状细胞的生物学特性,可广泛应用于临床及实验研究。
     实验二缺/复氧刺激对小鼠骨髓树突状细胞成熟状态的影响
     目的:探讨缺/复氧刺激对小鼠骨髓树突状细胞(DC)成熟状态的影响及可能的作用机制。方法:培养小鼠骨髓源性DC,分为对照组及缺/复氧组,对照组在正常培养条件下培养,缺/复氧组给予缺氧气体培养4h,然后在正常培养条件下继续培养1天。应用流式细胞术检测DC细胞表面CD80、CD86、MHC-Ⅱ分子、CD14及TLR4的变化, ELISA法检测DC分泌肿瘤坏死因子-α(TNF-α)、干扰素-γ(IFN-γ)和白介素-12(IL-12)的浓度,混合淋巴细胞培养检测T细胞增殖能力,免疫细胞化学及Western blot检测DC核因子-κB(NF-κB)的表达。结果:缺/复氧刺激可促进DC高表达CD80、CD86、MHC-Ⅱ分子、CD14及TLR4,促进Th1型细胞因子释放、NF-κB高表达及核移位,并诱导T细胞增殖。结论:缺/复氧刺激可能通过激活TLRs信号途径而促进DC成熟,早期阻抑DC成熟可能成为防治缺血再灌注损伤及器官移植排斥反应的一种新途径。
     实验三树突状细胞MyD88是Hsp60信号转导的关键分子
     目的:探讨髓性分化因子88(MyD88)在介导热休克蛋白60(HSP60)激活的Toll样受体4(TLR4)信号途径中的作用及调控树突状细胞(DC)活性的可能机制。方法:培养小鼠骨髓源性DC,分为对照组、HSP60组及RNA干扰组,对照组在正常条件下培养,HSP60组加入终浓度为10μg/ml的HSP60, RNA干扰组于加入MyD88siRNA 12h后给予10μg/ml HSP60刺激,培养48h。免疫细胞化学检测DC MyD88、核因子-κB(NF-κB)的表达,Western blot检测DC MyD88的变化;流式细胞术检测DC细胞表面CD80、CD86及MHC-Ⅱ分子的变化, ELISA法检测各组DC分泌肿瘤坏死因子-α(TNF-α)、干扰素-γ(IFN-γ)和白介素-12(IL-12)的浓度,混合淋巴细胞培养检测T细胞增殖能力。结果: HSP60可诱导DC高表达CD80、CD86及MHC-Ⅱ分子,促进Th1型细胞因子释放、MyD88高表达及NF-κB核移位,诱导DC成熟并刺激T细胞增殖,MyD88 siRNA可下调DC MyD88的表达并阻断HSP60的这些效应。结论: HSP60通过MyD88依赖的途径活化DC,MyD88是Hsp60信号转导的关键分子,抑制MyD88表达可能是治疗HSP60相关疾病的一种新方法。
     第二部分TLR信号途径在心脏移植排斥反应中的作用及机制研究
     目的:检测HSP60及TLR4信号途径小鼠心脏移植物的表达情况,探讨其在心脏移植排斥反应中的作用以它们之间的关系。方法:建立小鼠颈部心脏移植模型,随机分为2组:对照组(同系移植组),供、受体均为C57BL/ 6小鼠;实验组(同种异品系移植组),供、受体分别为BALB/ C、C57BL/ 6小鼠。分别于移植后第3天、第7天取小鼠心脏及血液标本,病检分析心脏组织形态学改变, ELISA法检测小鼠血液肿瘤坏死因子-α(TNF-α)、干扰素-γ(IFN-γ)和白介素-12(IL-12)的浓度,免疫组化及western blot检测心脏移植物HSP60、TLR4、MyD88及NF-κB的表达情况。结果:病理学检查结果显示实验组小鼠在术后第3、7天分别发生轻、重度排斥,与血清TNF-α、IFN-γ及IL-12的浓度变化相一致,对照组无明显排斥现象;实验组TNF-α、IFN-γ及IL-12的浓度及心脏移植物HSP60、TLR4、MyD88及NF-κB的表达明显高于对照组。结论:心脏移植后HSP60表达增强,可能通过TLR4以MyD88依赖的方式激活TLR4信号途径,从而促进移植排斥反应的发生,调控HSP60其受体后信号途径可能为抗排斥反应提供新的思路。
     第三部分抑制TLR信号途径对小鼠骨髓DC生物学活性的影响
     目的:采用RNA干扰技术抑制小鼠骨髓树突状细胞(DC)髓样分化因子88(MyD88)的表达,并检测其对细胞生物学活性的影响,为DC的临床应用奠定基础。方法:针对MyD88基因,采用化学合成法合成3对MyD88 siRNA(序列1、序列2及序列3),并转染DC2.4细胞。采用半定量RT-PCR及Western blot分别从mRNA和蛋白质水平检测DC MyD88的表达情况,筛选其中一对高效RNA(序列3)转染DC2.4细胞(RNA干扰组),以未转染RNA的DC2.4细胞作为对照组,分别给予1mg/L的脂多糖(LPS)刺激。流式细胞术(FCM)检测DC细胞表面CD80、CD86及MHC-Ⅱ分子的变化, ELISA法检测DC分泌肿瘤坏死因子-α(TNF-α)、干扰素-γ(IFN-γ)和白介素-12(IL-12)的浓度,免疫细胞化学检测DC核因子-κB(NF-κB)的表达,混合淋巴细胞培养检测T细胞增殖能力,观察RNA干扰对LPS促DC成熟的影响。结果:与空白对照组相比,序列2组及序列3组DC的mRNA和蛋白质表达分别降低90%和85%、92%和88%,差异有统计学意义;脂质体对照组、无义siRNA对照组及序列1组DC的mRNA和蛋白质表达无显著差异。经LPS刺激后,与对照组相比,RNA干扰组CD80、CD86及MHC-Ⅱ分子的表达,TNF-α、IFN-γ及IL-12的浓度及T细胞增殖能力均显著下降,且未见明显NF-κB核转位。结论: RNA干扰技术能显著下调小鼠DCMyD88的表达,并显著抑制LPS促DC成熟的效应,为以DC MyD88为靶向的相关疾病的基因治疗提供了新思路和手段。
     第四部分MyD88siRNA基因修饰的树突状细胞在诱导同种小鼠心脏移植耐受中的作用
     目的:探讨MyD88siRNA处理的供者来源的树突状细胞(DC)在诱导免疫耐受中的作用。方法:化学合成MyD88siRNA,以脂质体为载体将MyD88siRNA导入BALB/c小鼠骨髓来源DC,制备MyD88siRNA基因修饰的DC(MyD88siRNA-DC)。将MyD88siRNA-DC输至受者C57BL/6小鼠体内,分别于输注后7天、14天和21天应用免疫双荧光染色法观察供者MyD88siRNA-DC在受者脾脏内的存活情况,混合淋巴细胞反应(MLR)测定受者脾脏T细胞对供者同种抗原的反应性。通过袖套管技术建立小鼠异颈部位心脏移植模型,观察心脏移植物存活时间,病理检查观察排斥反应程度,并用ELISA方法测定受者血清Th1型细胞因子(INF-γ和IL-12)和Th2型细胞因子(IL-4和IL-10)水平的变化。结果:输注后14天可见受者脾脏内较多DC存活, MyD88siRNA-DC能诱导受者脾脏T细胞的抗原特异性低反应性,使移植心脏存活天数延长至(24.50±4.42)d,较PBS对照组的(6.67±1.37)d明显延长(P<0.01),降低排斥反应病理分级(Stanford 1~2级),使受者小鼠血清INF-γ和IL-12水平显著降低(P<0.01),明显升高IL-4和IL-10水平(P<0.01)。结论: MyD88siRNA处理的供者来源的DC能够诱导针对移植供者的特异性免疫耐受,其机制可能与诱导受体Th1/Th2免疫偏移及形成供受者微嵌合状态有关。
Heart transplantation which is considered as an effective means for treating terminal heart disease has improved greatly rencently , but the acute or chronic immunologic rejection are still a major disturbance which affect operative result. With the development of studying innate immunity, toll-like receptor(TLR) signal pathway is consider as a bridge linked innate immunity and adaptive immunity.The cells which expressed TLR, for example dendritic cell(DC) play important role in allograft rejection. Our project will study the role of TLR signal pathway in cardiac rejection, and try to decrease the morbidity of allograft rejection by inhibiting TLR signal pathway through using MyD88siRNA gene. This study was divided into 4 parts as follows:
     Role of Toll-like Receptor Signal Transduction In Cardiac Allograft Rejection in Mice
     Part 1.
     Experiment 1.
     Study on generation , identification and cytobiological characteristics of dendritic cells from mouse bone
     Objectives: To obtain and identify dendritic cells(DCs)from mouse bone marrow in vitro and study its cytobiological characteristics. Methods: Mouse bone marrow cells were induced to form dendritic cells by recombinant mouse-granulocyte and macrophage colony-stimulus factor (GM-CSF) and interleukin-4 (IL-4) in vitro. Dendritic cells were divided into control group and LPS group. The morphological changes were observed with light inverted microscope. CD11c, CD80, CD86 and MHC-Ⅱwere identified with flow cytometry. The biological function was studied with mixed lymphocyte reaction (MLR).Results: The cultured DCs from mouse bone marrow displayed the typical morphological characteristics of DCs. The expression of CD1lc is no deference in two groups, while the expression of CD80,CD86and MHC-Ⅱin LPS group are higher than that of control group.The DCs in LPS group could stimulate allogenic mixed lymphocyte proliferation. Conclusions:The DCs generated have cytobiologlcal characteristics of myeloid lineage of DCs,and it will be widely used in the clinical study of and experiment.
     Experiment 2.
     The impact of hypoxia /reoxygenation on maturation of dendritic cells cultured from murine bone marrow
     Objective: To explore the impact and mechanism of hypoxia /reoxygenation stimulation on maturation of dendritic cells( DCs) cultured from murine bone marrow. Methods: Mouse DCs were generated from bone marrow cells and were divided into control group and hypoxia /reoxygenation group. DCs in control group was cultured at normal condition, and in hypoxia /reoxygenation group was cultured at hypoxic condition for 4 hours followed by cultured at normal condition for 24 hours. Flow cytometry and mixed lymphocyte reaction (MLR) was used to detect the phenotype and functional properties of DCs. ELISA was used to detect the concentration of TNF-α, IFN-γand IL-12 in the supernatant. Immunochemistry and western blot was used to detect the concentration of NF-κB. Results: Hypoxia /reoxygen stimulation increased the CD80, CD86, MHC-Ⅱ, CD14 and TLR4 in the cytomembrane of DCs and TNF-α, IFN-γ, IL-12 concentration in the supernatant. Hypoxia /reoxygen stimulation also promoted the shift of NF-κB to karyon. Conclusions: Hypoxia /reoxygen stimulation perhaps promots the maturation of DCs through toll-like receptors signal pathway. Inhibition maturation of DCs may be a novel way for treatment of ischemia-reperfusion injury and rejection.
     Experiment 3.
     Role of Myeloid differentiation factor 88 in HSP60 signal transduction in dendritic cells
     Objective: To explore the role and mechanism of myeloid differentiation factor 88(MyD88) in HSP60 signal transduction in dendritic cells. Methods: Mouse DCs were cultured from murine bone marrow cells. The DC marker CD11c was detected by flow cytometry, then DCs were divided into control group, HSP60 groupand RNA interference group. Control group was cultured under normal condition, and HSP60 group was cultured with 10μg/ml of HSP60. RNA interference group was first cultured with MyD88 siRNA for12 hours and then HSP60 was added into the culture mixture. All groups were cultured for 48 hours. Immunochemistry was used to detect the concentration of MyD88 and NF-κB. Western blot was used to detect the concentration of MyD88.Flow cytometry and mixed lymphocyte reaction (MLR) were used to detect the phenotype and functional properties of DCs. ELISA was used to detect the concentration of TNF-α, IFN-γand IL-12 in the supernatant. Results: The expression of CD11c in murine bone marrow DCs was 88.76%. HSP60 stimulation increased the expression of CD80, CD86, MHC-Ⅱin DCs and TNF-α, IFN-γ, IL-12 secretion in the supernatant. HSP60 stimulation also increased the level of MyD88 in the cytoplasm and promoted the shift of NF-κB to karyon and the proliferation of allogeneic T cells. MyD88 siRNA could decrease MyD88 and inhibit these effects induced by HSP60. Conclusions: HSP60 activates DCs through MyD88-dependent pathway. MyD88 is a critical role in HSP60 signal transduction. Inhibition of MyD88 may be a novel way for treating disease correlated with HSP60.
     Part 2. Expression and significance of HSP60 and toll-like receptor 4 transducting system in mouse cardiac transplantation
     Objective: To detect the expression of HSP60 and toll-like receptor 4 transducting system in mouse cardiac transplantation , and to investigate their role in mouse cardiac transplantation. Methods: Mouse cervical heart transplantation model was established The animals were divided into control group and experimental group . The heart and blood were chosen for study at day 3 and day 7. Pathological analysis were performed.The levels of cytokines in the blood serum were determined using ELISA. The expression of HSP60, TLR4,MyD88 and NF-κB in cardiac transplantation were determined by immunohistochemistry and western blot. Results: Severe rejection could observed in experimental group whereas no distinct rejection in control group. Thl cytokines (TNF-α、IFN-γ,IL-12)increased significantly in experimental group as compared with that in control group. The expression of HSP60, TLR4,MyD88 , NF-κB was higher in experimental group than that in control group. Conclusions: HSP60 increased significantly after heart transplantation which can activate toll-like receptor 4 transducting system in MyD88-dependent pathway and promote allograft rejection. Regulation of HSP60 signal transduction may be a novel way for treating allograft rejection.
     Part 3.
     Inhibitory effects of RNA interference on MyD88 expression and biological activity in murine myeloid dendritic cells
     Objective: To synthesize small interference RNA aimed directly at myeloid differentiation factor 88 in murine myeloid dendritic cells(DCs) and observe the inhibitory effects on MyD88 expression and biological activity of DCs by RNA interference, and provide basis for clinical applications of DCs. Methods: Three pairs of MyD88 siRNA were synthesized and transfected into DCs with RNAi-mate. The mRNA and protein expressions of MyD88 were analyzed by semi-quantified RT-PCR and Western blot. Mouse DCs were divided into control group and RNA interference group. One of the highest effective siRNA was transfected into RNA interference group. 12 hours later, LPS of the final concentrations of 10μg/ml was added in two groups and continued to culture for 3 days. Flow cytometry and mixed lymphocyte reaction (MLR) were used to detect the phenotype and functional properties of DCs. ELISA was used to detect the concentration of TNF-α, IFN-γand IL-12 in the supernatant. Immunochemistry was used to detect the concentration of NF-κB. Results: MyD88 mRNA and protein were reduced 90% and 85% by sequence2 siRNA, 92% and 88% by sequence3 siRNA respectively, while no change was found in other groups. LPS stimulation increased the CD80, CD86, MHC-Ⅱin the cytomembrane of DCs and TNF-α, IFN-γ, IL-12 concentration in the supernatant in control group. LPS stimulation also promoted the shift of NF-κB to karyon and the proliferation of allogeneic T cells in control group. MyD88 RNA interference can inhibit these effects. Conclusions: RNA interference can knockdown MyD88 expression in murine myeloid dendritic cells and inhibit maturation of DCs. This may provide a new strategy of gene therapy for relative diseases.
     Part 4.
     Pretreatment of donor dendritic cells with MyD88siRNA to induce tolerance in mouse allograft recipients
     Objective: To explore the effects of donor dendritic cells treated with MyD88siRNA in tolerance induction in mouse allograft recipients. Methods: MyD88siRNA were synthesized chemically and transfected into DCs derived from BALB/c bone marrow by RNAi-mate. The DCs modified with MyD88siRNA,named MyD88siRNA-DC,were injected into the recipient C57BL/6 mice 7 days before transplantation.The existence of the donor MyD88siRNA-DC in the recipient animal spleens was studied by double- immunofluorescence staining.The responsiveness of the recipient spleen T cell to the donor alloantigen was determined by mixed lymphocyte reaction (MLR). The cervical heterotopic heart transplantation model was established with“cuff”technique and the cardiac allograft survival time was observed. Pathological analysis were performed and the levels of cytokines in the serum were determined using ELISA. Results: The survival rate of the donor-derived MyD88siRNA-DC in the recipient spleens was higher than that of the donor derived Day8-DC. The donor-derived MyD88siRNA-DC induced alloantigen-specific T-cell hypo-responsiveness. The cardiac allograft survival time of the MyD88siRNA-DC treated group was longer than that of the Day8- DC group and PBS treated group (24.50±4.42)days vs(13.67±2.25) days and (6.67±1.3) days (P<0.01). Pathological grade of rejection was significantly lower (P< 0.01).In the MyD88siRNA-DC treated group,the levels of IL-12 and IFN-γin the serum decreased significantly(P< 0.01),but the levels of IL- 4 and IL-10 in the serum increased significantly (P<0.01). Conclusions: The injection of the donor-derived MyD88 siRNA-DC can leads to donor-specific tolerance in transplant recipients.The Polarization of Th2 response and chimerism of recipient may play important roles on immune tolerance to cardiac allografts.
引文
1. Gatti E, Pierre P.Understanding the cell biology of antigen presentation:the dendriticcell contribution[J].Curt Opin Cell Biol,2003,15(4):468-473.
    2. Mellman I and Steinman RM.Dendritic cells specialized and regulated antigen processing machines[J].Cell, 2001,106(3):255- 258.
    3. Osada T,Nagawa H,Takahashi T,et a1.Dendritic cells cultured in anti-CD40 antibody-immobilized plates elicit a highly eficient peptide-specific T-cell response[J], J Immunother, 2002, 25(2):176-184.
    4. Steinman RM, Cohn ZA.Identification of a novel cell type in peripheral lymphoid organs of mice [J].J Exp Med, 1973, 137(5): 1142-1162.
    5. Mare D, Bianca O, Jan H, et a1.Mature dendrite cells from human mononcytes within 48 hours: A novel strategy for dendritic cell diferentiation from blood precursors [J].J Immunol, 2003, 170(4): 4069-4076.
    6. Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony- stimulating factor[J].J Exp Med, 1992, 176(6):1693-1702.
    7. Ardavin C.Origin,precursors and differentiation of mouse dendritic cells[J].Nat Rev Immunol,2003,3(7):582
    1. Andrade C, Kaneda H, Der S, et al. Effects of ischemia/ reperfusion on gene expression of toll-like receptors and cytokines during human lung transplantation. Am J Respir Crit Care Med, 2004, 169(2): 203.
    2. Stuart LM, Lucas M, Simpson C, et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J Immunol, 2002, 168 (4): 1627-1635.
    3. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury1 J Pathol, 2000, 190(3): 255 - 266.
    4.谢崧,钱桂生,杨晓静.一种用于研究的经济实用缺氧小容器. Acta academiae medicinae militaris tertiae, 1998, 92.
    5. YangDL, Xu YJ, Zhang ZX, et al1 Effect of nitric oxide on NF-κB activation induced by cigarette smoke extract in rat alveolar macrophage. Chin J CellMol Immunol, 2003, 19(1): 7-9
    6. Oyama J, Blais C J r, Liu X, et al. Reduced myocardial ischemia-reperfusion injury intoll-like receptor 4-deficient mice. Circulation, 2004, 109(6): 784-789.
    7. Zhai Y, Shen XD, O’Connell R, et al. Cutting edge: TLR4 activation mediates liver ischemia/ reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol, 2004, 173(12): 7115-7119.
    8. Schnare M, Barton GM, Holt AC, et al. Toll-like receptors control activation of adaptive immune responses. Nat Immunol, 2001, 2(10): 947-950.
    9. Fature E, Equils Q, Sieling P A, et al. Bacterial lipopolysaccharide activates NF-kB through toll-like receptor 4 (TLR4) in cultured human dermal endothelial cells different expression of TLR4 and TLR2 in the endothelial cells [J]. J Biol Chem, 2000, 275(15): 11058 - 11063.
    10.Hilliard B, Samoilova EB, Liu TS, et al. Experimental auto immune encephalo- myelitis in N F2kappa B2deficient m ice: roles of N F-kappa B in the activation and differentiation of auto reactive T cells. J Immunol, 1999; 163 (13): 2937.
    11.Samoilova EB, Horton JL, H illiard B, et al. IL 26 deficient m ice are resistant to experimental auto immune encephalomyelitis: roles of IL-6 in the activation and differentiation of auto reactive T cells. J Immunol, 1998; 161 (27): 6480.
    1. Stuart LM, Lucas M, Simpson C, et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J Immunol, 2002, 168 (4) : 1627-1635.
    2. Zanin-Zhorov A ,Nussbaum G, Franitza S,et al. T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors [J]. FASEB J, 2003, 17 (11):1567-1569.
    3. Gobert AP, Bambou JC ,Werts C, et al. Helicobacter pylori heat shock protein 60 mediates interleukin-6 production by macrophages via a toll-like receptor (TLR)-2-, TLR-4-, and myeloid differentiation factor 88-in-dependent mechanism [J]. J Biol Chem, 200, 279(1): 245-250.
    4. Chen K, Lu J, WangL, et al .Mycobacterial heat shock protein 65 enhances antigen cross-presentation in dendritic cells independent of Toll-like receptor 4 signaling [J]. J Leukoc Biol, 2004, 75 (2):260-266.
    5. YangDL, Xu YJ, Zhang ZX, et al1 Effect of nitric oxide on NF-κB activation induced by cigarette smoke extract in rat alveolar macrophage. Chin J CellMol Immunol, 2003, 19(1): 7-9.
    6. Ohashi K, Burkart V, and Flohe S, et al. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4complex. J Immunol, 2000; 164(2): 558-561.
    7. Bulut Y, Faure E, Thomas L, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway [J]. J Immunol, 2002, 168(3):1435-1440.
    8. Flohe SB, Bruggemann J, Lendemans S, et al.. Human heat shock protein 60 induces maturation of dendritic cells versus a TH1-promoting phenotype. J Immunol, 2003, 170(7): 2340-2348.
    9. Fairchid PJ, Waldmann H. Dendritic cells and prospects for transplantation tolerance. Curr Opin Immunol, 2000, 12(5):528-535.
    1. Heron I. A technique for accessory cervical heart transplantation in rabbits and rats. Acta Pathol Microbiol Scand, 1971, 79: 366-372.
    2. Billingham ME, Cary NR, Hammond ME, et al. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection [J]. J Heart Transplant 1990, 9(6):587-593.
    3. Mann FC. Transplantation of intact mammalian heart. Arch Surg, 1933, 26:219.
    4. Abbott CP, Lindsey ES, Creech O, et al. A Technique for heart transplantation in the rat [J]. Archives of Surgery, 1964, 89: 645-652.
    5. Ono K, Lindsey ES.Improved technique of heart transplantation in rats [J].J Thorac Cardiovasc Surg, 1969, 57:225-229.
    6. Corry RJ, Winn HJ, Russell PS. Primarily vascularized allografts of heart in mice [J].Transplantation, 1973, 16(4):343-350.
    7. Chen Z. A technique of cervical heterotopic heart transplantation in mice. Transplantation, 1991, 51:1099-1101.
    1. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388 (6640): 394 - 397.
    2. Goldstein DR, Tesar BM, Akira S, et al. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J Clin Invest, 2003, 111 (10): 1571 - 1578.
    3. Billingham ME. Diagnosis of cardiac rejection by endomyocardiac biopsy[J].Heart Transplant,1981,1(2):25-30
    4. Schnare M, Barton GM, Holt AC, et al. Toll-like receptors control activation of adaptive immune responses. Nat Immunol , 2001 , 2 :947-950
    5. Youssef AR,Otley C,Mathieson PW,et al.Effector mechanisms in murine allograft rejection and comparison of skin and heart grafts in fully allogeneic and minor histocompatibility antigenmismatched strain combinations[J]. Transpl Int, 2002, 15:302-309
    6. Verma N, He XY, Chen J, et al. Interleukin 12 delays allograft rejection: Effect mediated via nitric oxide. Transplant Proc, 2001, 33 ( 1 - 2) : 416- 417.
    7. Wang H, DeVries ME, Deng S, et al. The axis of interleukin 12 and gamma interferon regulates acute vascular xenogeneic rejection. Nat Med, 2000, 6 (5): 549 - 555.
    8. Dybdahl B, Wahba A, Lien E, et al. Inflammatory response after open heart surgery: release of heat-shock protein 70 and signaling through Toll2like recep tor24. Circulation, 2002, 105: 685-690.
    9. Bulut Y, Faure E, Thomas L, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway [J]. J Immunol, 2002, 168(3):1435-1440.
    10. Itoh H, Komatsuda A, Ohtani H, et al. Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydration [J]. Eur J Biochem, 2002, 269 (23): 5931 - 5938.
    1. Stuart LM, Lucas M, Simpson C, et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation [J]. J Immunol, 2002, 168 (4): 1627-1635.
    2. Schnare M, Barton GM, Holt AC, et al. Toll-like receptors control activation of adaptive immune responses [J]. Nat Immunol, 2001, 2(10): 947-950.
    3. Elbashir S M, Harborth J, Weber K, Tuschl T. Analysis of gene function in somatic mammalian cells using small interfering RNAs [J]. Methods , 2002 , 26 (2) : 199~213.
    4.饶林,詹林盛,彭剑淳,王全立. siRNA抑制丙型肝炎病毒IRES介导的基因表达.中国生物化学与分子生物学报(Rao Lin , ZhanLin-Sheng , Peng Jian-Chun , Wang Quan-Li . Inhibition of hepattis Cvirus IRES mediated gene expression by short interfering RNAs. Chin J Biochem Mol Biol) , 2004 , 20 (1) : 38~43.
    5. Huang D, ChenWT, Zhang ZY, et al. Identification of genes with consistent exp ression alteration pattern in ACC-2 and ACC-M cells by cDNA array [J]. ChinMed J ( Engl) , 2003, 116(3): 448-452.
    6. Bulut Y, Faure E, Thomas L, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway [J]. J Immunol, 2002, 168(3):1435-1440.
    7. Hannon GJ. RNA interference [J]. Nature, 2002, 418 (6894): 244-251.
    8. Brummelkamp T R, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian [J]. Science , 2002, 296 (5567) : 550~553.
    9. MiyagishiM, Taira K. U6 promoter-driven siRNAs with four uridine 3’overhangs efficiently suppress targeted gene expression in mammalian cells [J]. Nat Biotechnol, 2002, 20(5): 497-500.
    1. Stuart LM, Lucas M, Simpson C, et al. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation [J]. J Immunol, 2002, 168 (4): 1627-1635.
    2. Schnare M, Barton GM, Holt AC, et al.Toll-like receptors control activation of adaptive immune responses [J]. Nat Immunol, 2001, 2(10): 947-950.
    3. Elbashir S M, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs [J]. Methods, 2002, 26 (2): 199-213.
    4.饶林,詹林盛,彭剑淳,王全立. siRNA抑制丙型肝炎病毒IRES介导的基因表达[J].中国生物化学与分子生物学报, 2004 , 20 (1) : 38-43.
    5. Huang D, ChenWT, Zhang ZY, et al. Identification of genes with consistent exp- ression alteration pattern in ACC-2 and ACC-M cells by cDNA array [J]. Chin Med J (Engl), 2003, 116(3): 448-452.
    6. YangDL, Xu YJ, Zhang ZX, et al. Effect of nitric oxide on NF-κB activation induced by cigarette smoke extract in rat alveolar macrophage [J]. Chin J CellMol Immunol, 2003, 19(1): 7-9.
    7. Bulut Y, Faure E, Thomas L, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway [J]. J Immunol, 2002, 168(3):1435-1440.
    8. Hannon GJ. RNA interference [J]. Nature, 2002, 418 (6894): 244-251.
    9. Michelsen KS, AicherA, Mohaupt M,et al .The Role of Toll-like Receptors (TLRs) in Bacteria-induced Maturation of Murine Dendritic Cells (DCs) [J]. J Biol Chem, 2001, 276(28): 25680-25686.
    1. Akira S,Takeda K,Kaisho T.Toll-like receptors:critical proteins linking innate and acquired immunity[J].Nat Imunol,2001,2(8):675-680.
    2. Adler AJ, Marsh DW, Yochum GS, et al. CD4+T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen-presenting cells [J]. J Exp Med, 1998, 187(10):1555-1564.
    3. Kirk AD, H-arlan DN, Armstrong NN, et al. CTLA4-Ig and anti CD40 ligand prevent renal allograft rejection in primates [J]. Proc Natl Acad Sic USA, 1997, 94:8789-8794,
    4. Tan P,Anasetti C,Hansen JA,et a1.Induction of alloantigen-specific hyporesponsivenessin human T lympbocytes by blocking interaction of CD28 with its natural ligand B7/BB1.J Exp Med.1993.177:165-173.
    5. Noel PJ,BoiseLH.Green JM.et a1. CD28 costimulation prevents cell death during primary T cell activation. J Immunol, 1996, 157:636-642.
    6. Arpinati M, Green CL, Heimfeld S, et al. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood, 2000, 95(8):2484-2490.
    7. Kalinski P, Hilkens CM, Wierenga EA, et al. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today, 1999, 20(12):561-567.
    8. Gorczynski RM, Fu XM, Issekutz T, et al. Differential regulation of rejection of small intestinal and skin allografts in rats by injection of antibodies to ICAM-1 or the integrins alpha 4, alpha L, or beta 2. Cell Immunol, 1998, 184(1):74-82.
    9. Hannon GJ. RNA interference [J]. Nature, 2002, 418 (6894): 244-251
    10. Gorczynski RM, Bransom J, Cattral M et al. Synergy in induction of increased renal allograft survival after portal vein infusion of dendritic cells transduced to express TGFbeta and IL-10, along with administration of CHO cells expressing the regulatory molecule OX-2. Clin Immunol. 2000, 95(3):182-189.
    11. Zhang M, Wang Q,Liu Y,et at.Effective induction of immune tolerance by portal venous infusion with IL-10 gene-modifled immature dendritic cells leading to prolongation of allograft survival[J].J Mol Med,2004,82(4):240-249.
    12. Gorczynski RM, Cohen Z, Fu XM, et al. Interleukin-13, in combination with anti-interleukin-12, increases graft prolongation after portal venous immunization with cultured allogeneic bone marrow-derived dendritic cells. Transplantation, 1996, 62(11):1592-1600.
    1. Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive imm unity.Nature, 1997, 88(6640):394-397.
    2. Vives PM,Somoza N,Fernandez-Alvarez J,et a1.Evidence of expression of endotoxin receptors CD14,Toll-like receptors TLR4 and TLR2 and associated molecule M D-2 and of sensitivity to endotoxin (LPS) in islet beta cells.J Clin Exp Imm unol,2003,133(2):208-218.
    3. Seitz M. Toll-like receptors: sensors of the innate immunesystem [J].Allergy, 2003, 58(12):1247-1249.
    4. Bell JK, MullenGED, leifer CA, et a1. leucine-rich repeats and pathogen recognition in Toll-like receptors[J].Trends lmmunol, 2003,24(10):528-533.
    5. Kawai F.Akira S.Pathogen recognition with Toll-like receptors [J].Curr Opon lmmunol, 2005, 17(4):338-344.
    6. Akira S.Hemmi H.Recognition of pathogen-associated molecular patterns by TLR family [J].1mmunol Lett,2003,85:85-95.
    7. Warren HS. Toll-like receptors [J].Crit Care Med, 2005, 33: 457-459.
    8. Cohen-Sfady M.Nussbaum G. Pevsner-Fischer M, et a1.Heat shock protein 60 activate B cells via the TLR4-MyD88pathway [J].J lmmunol, 2005, 175(6):3594- 3601.
    9. Zhang J,Xu K,Ambati B,et a1. Toll-like receptor 5 medi-ated corneal epithelial inflammatory responses to pseudomonas aeruginosa flagellin[J].Invest Ophthamol Vis Sci,2003,44:4247-4254.
    10. Vollmer J, Tluk S,Schmitz C,et a1. Immune stimulation mediated by auto-antigen binding sites within small nuclear RNAs involvesToll-like receptors 7 and 8[J]. J Exp Med, 2005, 202(11):1575-1585.
    11. Zhang D.A toll-like receptor that prevents infection by uropathogenic bacterial [J]. Science, 2004, 303:1522-1526.
    12. Hyakushima N, Mitsuzawa H, Nishitani C, et a1. Interaction of soluble form ofrecombinant extracellular TLR4 domain with M D-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling[J].J lmmunol, 2004, 173(11): 6949-6954.
    13. Akira S,Takeda K.Toll-like receptor signalling[J].Nat Rev lmmunol, 2004,4(7):499-5l1.
    14. Yamamoto M. Essential role for TlRAP in activation of the signalling cascade shared by TLR2 and TLR4 [J].Nature, 2002, 420(6913):324-329.
    15. O’Neill LA. How Toll-like receptors signal: what we know and what we don’t know[J].Curr Opin lmmuno1.2006,18(1):3-9.
    16. Shortman K. Liu YJ.Mouse and human dendritic cell subtypes [J].Nat Rev Immunol, 2002, 2(3):151-161.
    17. Rissoan MC,Soumelis V,Kadowaki N,et al. Reciprocal control of T helper cell and dendritic differentiation[J].Science,1999,283(5405):l183-1186.
    18. Kadowaki N,Ho S,Antonenko S,et a1.Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens[J].J Exp Med,2001, 194 (6):863-869.
    19. Muzio M,Bosisio D,Polentarutti N,et a1.Differential expression and regulation of toil-like receptors(TLR) in human leukocytes:selective expression of TLR3 in dendritic ce11s [J].J Immunol,2000,164(11):5998-6004.
    20. Visintin A,Maxzoni A,Spitzer JH,et a1.Regulation of Toll-like receptors in human moncytes and dendritic cells[J].J Immunol, 2001, l66(1):249-255.
    21. Means TK,Hayashi F,Smith KD,et a1.The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells [J].J Immuno1, 2003, 170(10):5165-5175.
    22. King A,Towarowski A, Brhsch S, et a1. Toll- like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-I2 [J].Eur J lmmuno1, 2001, 31(10): 3026-3037.
    23. Jarrossay D,Napolitani G,Colonna M, et al. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells [J] Eur J lmnnmn],2001,3 1(11):3388-3393.
    24. Kadowaki N, Antonenko S, Liu YJ. Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CDllc-type 2 dendritic cellprecursors and CDllc+ dendritic cells to produce type I IFN [J].J Immunol 2001,166 (4):2291-2295.
    25. Aomung V,Rothenfusser S,Britsch S,et a1.Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides[J]. J lmmunol, 2002, 168(9): 453l-4537.
    26. Schattenberg D,Schott M,Reindl G,et a1.Response of human monocyte-derived dendritic cells to immunostimulatory DNA[J].Eur J Immunol,2000, 30 (10):2824-2831.
    27. Ito T,Amakawa R,Kaisho T,et al.Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets[J].J Exp Med,2002,195(11):1507-1512.
    28. Kaisho T, Takeuehi O, Kawai T, et a1. Endotoxin induced maturation of MyD88-deficient dendritic cells[J] J lmmuno1,2001,166 (9):5688-5694.
    29. Yamamoto M,Sato S,Hemmi H,et al .Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway[J].Science,2003,301 (5633):640-643.
    30. Reis E, Sousa C.Tol1-1ike receptors and dendritic cells: for whom the bug tolls [J].Seminars in Immunology, 2004, 16(1):27- 34.
    31. Beg AA.Endogenous ligands of Toll-like receptors:implications for regulating and immune responses f [J].Trends in Immunology,2002,23 (11):509-512.
    32. Andrade C, Kaneda H, Der S, et al. Effects of ischemia/ reperfusion on gene expression of toll-like receptors and cytokines during human lung transplantation. Am J Respir Crit Care Med, 2004, 169: 203.
    33. Oyama J, Blais C Jr, Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation, 2004, 109: 784-789.
    34. Kim BS, Lim SW, Li C, et al. Ischemia2reperfusion injury activates innate immunity in rat kidneys. Transplantation, 2005, 79:1370-1377.
    35. Zhai Y, Shen XD, O’Connell R, et al. Cutting edge: TLR4 activation mediates liver ischemia/ reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol, 2004, 173: 7115-7119.
    36. Kariko K, Ni H , Capodici J , et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem, 2004, 279: 12542-12550.
    37. Schnare M , Barton GM , Holt AC , et al. Toll2like receptors control activation of adaptive immune responses. Nat Immunol, 2001, 2:947-950.
    38. Goldstein DR , Tesar BM , Akira S , et al. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J Clin Invest, 2003, 111: 1571-1578.
    39. Samstein B , Johnson GB , Platt JL. Toll-like receptor-4 and allograft responses. Transplantation, 2004, 77: 475-477.
    40. Palmer SM, Burch LH, Davis RD, et al. The role of innate immunity in acute allograft rejection after lung transplantation. Am J Respir Crit Care Med, 2003, 168: 628-632.
    41. Tesar BM, Zhang J, Li Q, et al. TH1 immune responses to fully MHC mismatched allografts are diminished in the absence of MyD8, a Toll-like receptor signal adaptor protein. Am J Transplant, 2004, 4: 1429-1439.
    42. Saleem S, Konieczny BT, Lowry RP, et al. Acute rejection of vascularized heart allografts in the absence of IFN gamma. Transplantation, 1996, 62: 1908-1911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700