用户名: 密码: 验证码:
乙型肝炎免疫模型与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎病毒(HBV)感染诱发的乙型肝炎是一种世界性的疾病,世界1/3的人口曾经感染乙肝病毒,约有3.5亿人为HBV携带者,其中25%的人会发展成肝硬化甚至肝癌。中国是世界上乙肝患者最多的国家,为预防和治疗HBV感染,国家采取了众多措施,每年投入的经费高达数百亿人民币,如何预防和治疗乙肝一直是社会关注的焦点和重要的医学课题。
     动物试验和分子生物学手段适于研究单一过程或单独的细胞,对于研究病毒的致病机理具有极其重要的作用,但对于分析有许多因素相互作用而无法分割的复杂系统如免疫系统则存在很大局限性。而数学方法可以突破实验手段的局限,综合已有的知识,根据可能的机理,依据不同的假设建立数学模型,通过检验仿真结果与实验和临床数据的符合程度来选择最适合的模型和参数用于解释医学现象、指导下一步医学实验或辅助治疗方案的确定。
     目前感染医学中应用最为广泛的是Nowak建立的描述HIV在感染人体后艾滋病慢性发作过程的数学模型,该模型还用于评估药物抑制病毒感染的疗效。但由于HBV感染有急性、慢性等多种后果,Nowak模型还无法仿真,不能应用于HBV感染过程。
     本文依据从简单到复杂的原则,先抓住最本质的因素构建最简单的模型,在简单模型能够表达HBV感染的多种后果,定性分析结果符合临床结论的基础上,逐步考虑更多的因素,构建复杂的模型反映更多的信息,并且保证复杂模型的分析结论可以概括简单模型的分析结论。复杂模型仿真时尽量利用简单模型仿真中使用的参数以减少搜寻参数的工作量。在缺乏临床数据检验仿真结果准确性的条件限制下,以被验证的简单模型的仿真结果为标准来判断复杂模型仿真结果的正确性,努力使各个模型的仿真结果一致。
     本文首先基于Nowak模型,建立了HBV感染的细胞免疫模型,使用Nowak估计参数对初始模型进行仿真的结果表明模型可以反映人体被HBV感染的各种可能后果。鉴于模型的定性分析结果复杂,无法提供有价值的信息,对模型进行了改进,使模型的定性分析结果简洁明了,并与医学结论相符。根据近年来发现的细胞免疫的非杀伤效应机理,对模型进行了相应修正,定性分析结果可以包括前面的分析结论。
     因为使用临床数据对模型进行仿真时发现肝细胞总是全部死亡,分析原因后重新设置了肝细胞增殖函数,同时将肝细胞受损程度与临床检验指标丙氨酸转氨酶(ALT)联系起来建立方程,形成了新的模型。应用该模型解释了慢性乙肝患者再感染甲肝后肝炎彻底消除,但同时易于发生暴发性肝炎的临床现象。模型定性分析的结果与前面的结果一致,模型可以仿真出人体被HBV感染后可能出现的各种后果,且仿真结果的潜伏期、转氨酶水平以及HBV DNA浓度均在临床范围内。
     在前面模型的基础上构建了包含细胞免疫和体液免疫功能的HBV感染免疫模型。模型的定性分析结果可以涵盖前面的结论,并且可以体现体液免疫在抗感染中的作用。应用前面模型的仿真参数并添加新参数后的仿真结果可以表达人体被HBV感染的各种可能后果,并且仿真图形与世界卫生组织发布的HBV感染趋势图一致。
     鉴于抗原提呈细胞在HBV感染免疫中的重要作用,在前面模型的基础上构建了包括抗原提呈细胞(APC)、辅助T细胞(Th1,Th2)、细胞毒性T细胞(CTL)和抗体分泌细胞(B细胞)以及抗体(Ab)等变量的HBV感染免疫模型。模型的定性分析结果与前面完全一致。仿真结果表明模型可以表现人体被HBV感染的各种可能后果。选择一种位于最严重后果和彻底痊愈之间的中间状态——急性转慢性感染过程的模型,且其方程的主要动力学参数变动10倍或为原来1/10时可遍历各种感染后果,通过研究表现不同后果的参数情况来分析各种因素对感染后果的影响。通过假设药物能将对免疫反应有利的参数扩大为原来2倍,对病毒有利的参数缩小为原来1/2,确定各种感染状态下最有效的治疗措施。仿真结果发现状态不同,治疗目标不同,最有效的措施也不相同。但一般而言降低病毒感染率和抑制病毒复制都是最有效的措施。
More than a third of the world’s population has been infected with hepatitis B virus (HBV) and it is estimated conservatively that there are 350 million persistent carriers of HBV worldwide, 25% of whom have chronic liver disease and cirrhosis, which could progress to hepatocellular carcinoma. Chinese government expends about ten billions of yuan per annum and takes many measures to prevent and treat HB as China has the highest number of sufferers. The prevention and treatment of this infection is the present focus of the society and is the most important task in the medical fields.
     Animal tests and new techniques in molecular biology have been crucial in deepening our understanding of the pathogenetic mechanisms. Most of these new techniques have allowed the isolation of the process or cell under study so that the results can be readily interpretable. At the present time, however, there is an emerging need to understand the system in a whole, e.g. the immune system. Mathematical models can serve several distinct purposes. They can be used to analyze experimental results, to synthesize existing knowledge and provide a theoretical framework for the interpretation of existing paradigms so as to provide predictions and suggestions for follow-up experiments and treatment.
     The most common mathematical model in infection is presented by Nowak to explain the dynamics of host immune response to HIV and the pathogenesis of Aids. It is widely used to evaluate the antiviral effectiveness of drug treatment for HIV. The model is even used in the assessment of the efficiency of antiviral therapy for HBV and HCV. But it fails to explain the various outcomes of HBV infection.
     According to the principle of from simplicity to complexity, a simple model is established on the essential factors. When the model is proved to be able to simulate the various outcomes of HBV infection and the qualitative analysis results is in accordance with the clinical conclusion, more details are taken into account and more complex model is built the simpler model. The qualitative analysis results of the complex model should generalize the conclusion from the simple one. The values of the parameters in the simple model are used to reduce the workload of searching parameters for the complex model and the simulation results of the simple model is used as a criterion for judging the results of the complex one because of the absence of clinical data.
     Aimed at the shortcomings of Nowak’s model, a modified cellular model is proposed. Using parameters evaluated by Nowak, the simulation results show that the new model can account for the wide variety of clinical manifestations of HBV infection. As the qualitative analysis result of this model is too complex to provide any useful information, the model is modified and the qualitative analysis result is simple and is in good agreement with the clinical results. As noncytolytic effects of CTL is found and proved to be more important than cytolytic effects in the clearance of infected cells, the model is rebuilt on this discovery and the qualitative analysis result is in accordance with the former result.
     The validation result of using clinical data demonstrates that the hepatocytes always die out. After analyzing the causation, hepatocyte proliferation function is regulated, and the equation is found considering the correlation between the functional defect of hepatocyte and clinical laboratory standard. A new model is constructed based on these. The model agrees with the clinical phenomenon that CHB infected with HAV hepatitis will always be completely cured, but the co-infection is easy to course fulminate hepatitis. The model simulates various results that appeared after HBV infection, and the delitescence, the aminotransferase and the HBV DNA concentration are all in the clinical range.
     On the basis of the former model, a new model of B-T cell co-operation including cellular immunity and humoral immunity is constructed. The results of qualitative analysis is in accordance with the conclusion above, and demonstrate the effect of humoral immunity in anti-infectious. The model using the former parameters and some new parameters could simulate various possible results after HBV infection. The simulated graphic is consistent with the trend graph promulgated by WHO.
     As APC plays a critical role in the immune reaction, a model considering APC, Helping T cells (Th1 and Th2), CTL, B cell and Ab is built based on the former model. The qualitative analysis result is the same as the former. The simulation results show that it can account for the wide variety of clinical manifestations.
     The parameters of a model that can simulate the outcome between the most serious one and recovery are enlarged to ten folds or zoom in 1/10 to show all the outcomes of HBV infection, and to analyze the influence of parameters on outcomes. The parameters favoring the immune system ate doubled and those favoring HBV are reduced to 1/2, so as it find out the most effective measures. The simulation results show that the most efficient measures change with different goals under different states. Treatment by blocking the denovo rate of infection or by reducing the production of visions is always the most efficient measure.
引文
[1] Marchuk G I. Mathematical Models in Immunology. Moscow: Nauka Press, 1980
    [2] Marchuk G I. Petrov R V. Mathematical model of antiviral immune response. Journal of Theoretical Biology, 1991, 151: 1-69
    [3] Nowak M A, Charles R M. Population dynamics of immune responses to persistent viruses. Science. 1996, 272: 74-79
    [4] Nowak M A, Bonhoeffer S, Hill A M, et al. Viral dynamics in hepatitis B virus infection. In: Proceedings of the National Academy of Sciences. 1996, 93: 4398-4402
    [5] Perelson A S, Ribeiro R M. Hepatitis B virus kinetics and mathematical modeling. Seminars in Liver Disease. 2004, 24: 11-16
    [6] Robert J H, Nowak M A, Blumberg B S. The Dynamics of Hepatitis B Virus Infection. Medical Sciences. 1996, 93: 6542-6546
    [7] Neumann A U, Lam N P, Perelson A S. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science. 1998, 282: 103-107
    [8] Perelson A S, Herrmann E. New kinetic models for the hepatitis C virus. Hepatology. 2005, 42: 4749-4752
    [9] Zeuzem S D, Roth R A, Schalm W K. Dynamics of hepatitis B virus infection in vivo. Hepatology. 1997, 27: 431-436
    [10] Bonhoeffer S, May R M, Nowak M A. Virus dynamics and drug therapy. In: Proceedings of the National Academy of Sciences. 1997, 94: 6971-6976
    [11] Sharon R L, Ruy M R, Tomos W, et al. Analysis of hepatitis B viral load decline under potent therapy: Complex decay profiles observed. Hepatology, 34 (5): 1012 - 1020
    [12] Tsiang M, Rooney J F, Gibbs C S. Biphasic clearance kinetics of hepatitis B virus from patientsduring defovir dipivoxil therapy. Hepatology. 1999, 29: 1863-1869
    [13] Nowak M A, Robert M M. Virus dynamics, mathematical principles of immunology and virology. New York: Oxford University Press, 2000
    [14] Guidotti L G. Pathogenesis of viral hepatitis. Biological Regulators and Homeostatic Agents. 2003, 17: 115-119
    [15]张定凤.乙型肝炎的发病机理及临床.重庆:重庆出版社, 1992
    [16] London W T, Blumberg B S. A cellular model of the role of hepatitis B virus in thepathogenesis of primary hepatocellular carcinoma. Hepatology, 1982, 2: l0-14
    [17] Payne R J H, Nowak M A, Blumberg B S. Analysis of a cellular model to account for the natural history of infection by the hepatitis B virus and its role in the development of primary hepatocellular carcinoma. Journal of Theoretical Biology, 1992, 159: 215-240
    [18] Payne R J H, Blumberg B S. A cellular model to explain the pathogenesis of infection by the hepatitis B virus. Mathematical Biosciences, 1994, 123: 25-58
    [19] Nowak M A, May R M, Sigmund K. Immune responses against multiple epitopes. Journal of Theoretical Biology, 1995, 175: 325-353
    [20] Neil D, Bernaro S, Portmann C. The canals of Hering and hepatic stem cells in humans. Hepatology, 1999, 30: 1425-1433
    [21] Litwin S, Ross E A, Toll E. A model of redistribution and loss of cccDNA from infected liver during cell division if viral growth is inhibited and liver size is maintained. Population Science Division, 2005, 145: 365-368
    [22] Murray J M, Wieland S F, Chisari F V. Dynamics of hepatitis B virus clearance in chimpanzees. In: Proceedings of the National Academy of Sciences, 2005, 102: 17780-17785
    [23]杨瑗,成军,黄燕萍等.抗乙型肝炎病毒治疗中病毒载量的动力学特点.世界华人消化杂志, 2004, 12: 1688-1691
    [24]洪卫国,王福生,陈菊梅.病毒载量动态检测在乙型肝炎治疗和研究中的意义中.华肝脏病杂志, 2003, 11: 54-56
    [25]鲍旭丽,段钟平.乙型肝炎病毒动力学研究进展.国外医学:病毒学分册, 2004, 11: 36-40
    [26]邢同京,李兰娟.乙型肝炎病毒感染的病毒和免疫反应动力学研究进展.国外医学:流行病学传染病学分册, 2005, 32: 287-289
    [27]庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析.西南师范大学学报(自然科学版), 2005, 30: 797-799
    [28]闵乐泉,黄劲松. Research on viral dynamic models of hepatitis B virus infection.北京科技大学学报(自然科学版), 2004, 11: 572-576
    [29]苏永美,闵乐泉.阿德福韦抗乙肝病毒感染治疗的数学模型及疗效预测. Internet: http: //www. paper. edu. cn/paper. phpserial_number=200510-268
    [30]季语,李为东,闵乐泉.拉米夫定抗乙肝病毒感染治疗的数学模型及疗效预测.Internet: http: //www. paper. edu. cn/paper. phpserial_number=200511 -294
    [31]闵乐泉,李为东. Peginterferon Alfa-2a抗乙肝病毒感染治疗的数学模型. Internet: http: //www. paper. edu. cn/paper. phpserial_number=200608-57
    [32]高晓明.免疫学教程.北京:高等教育出版社, 2006
    [33]朱迅.免疫学新进展.北京:人民卫生出版社, 2002
    [34]周光炎.免疫学原理.上海:科学技术文献出版社, 2000
    [35] Internet: http: //des. cmu. edu. cn/jiaoxue/kecheng/zupei/zzx/index. htm
    [36]陈立章,莫显昆,范学工.乙型肝炎传播途径的研究现状及进展.中国医师杂志, 2003, 5(8): 1141-1143
    [37]不安全注射造成的乙肝感染不少于3600万人.健康博览, 2006, 6(2): 10-10
    [38]卓家同,钟革,蓝光华等.不安全注射与乙型肝炎病毒传播的流行病学回顾性实验研究.中国计划免疫. 2006, 12(2): 140-142
    [39]张日媚,于吉广.口腔治疗感染乙肝病毒22例临床分析.临床和实验医学杂志. 2004, 3(2): 97-98
    [40]李晶,曹吉斌,刘加乾等.浅析口腔门诊HBV的感染控制.中华医学研究杂志. 2006, 6(4): 470-470
    [41]曾淑蓉,江波,刘治清.口腔专科医院感染的特点及预防措施.中华医院感染学杂志. 2003, 13(1): 52-52
    [42]李珉珉,王珊珊.乙型肝炎病毒的传播与免疫耐受.现代预防医学. 2002, 29(6): 270-271
    [43]朱维江.乙肝流行的新趋势.中国医学理论与实践. 2003, 9: 1306-1307.
    [44]马玲玲,孙阳,李学旺.血液透析中心乙型肝炎病毒感染流行病学.中国血液净化. 2006, 5(5): 265-268
    [45]黄正明,杨新波,曹文斌.乙型病毒性肝炎的传播、转归与药物治疗.世界华人消化杂志. 2002, 8(10): 946-995
    [46]李新生,柴爱琴.乙型肝炎防制进展.职业与健康, 2002, 22(7): 496-497
    [47] Gao B Y. Importance of perinatal versus horizontal transmission of hepatitis B virus infection in China. Gut, 1996, 38(suppl2): 39-42
    [48]孙刚,季广厚.乙肝病毒传播途径调查分析.世界今日医学杂志. 2001, 10(2): 900-901
    [49]杨振洲,宋宏彬.蚊虫传播乙型肝炎病毒的研究现状.中国媒介生物学及控制杂志. 2000, 11(5): 321-322
    [50]中华医学会肝病学分会,中华医学会感染病学分会.慢性乙型肝炎防治指南.国际流行病学传染病学杂志. 2006, 33(1): 2-11
    [51]莫显昆,陈立章.乙肝传播危险因素的调查分析.中国医师杂志. 2006, 8(12): 1720-1721
    [52]郑乃武.乙型病毒性肝炎的传播途径及预防.中国现代医药科. 2004, 4(5): 34-35
    [53]陈仕珠.乙型肝炎病毒疫苗免疫现状及存在的问题.世界华人消化杂志. 2006, 14(27): 2661-2667
    [54]王丽,王琳,李进琴.乙型肝炎血清学检测少见模式分析.实用医技杂志. 2006, 13(14): 2431-2432
    [55]罗天琴,张元猛.浅谈乙型肝炎的传播与预防.中国医药卫生. 2005, 6(23): 75-75
    [56]吴君.乙型肝炎病毒感染的综合性预防.世界华人消化杂志. 2006, 14(12): 1135-1138
    [57]杨静,邵兴兰,尤世刚.乙肝免疫球蛋白阻断HBV父婴、母婴传播的观察.现代预防医学2006, 33(5): 806-807
    [58]李莹,李文凡.乙型肝炎垂直传播及阻断措施的研究现状.中华传染病杂志. 2006, 24(2): 130-132
    [59]王振城,赵海燕.乙型肝炎与免疫.现代中西医结合杂志. 2004, 13(18): 2514-2515
    [60] Stuyver L, Gendt S, Van C, et al. A new genotype of hepatitis B virus: complete genome and phylogenetic relatedness. J Gen Virol. 2000, 81(1): 67-74
    [61] Arauz-Ruiz P, Norder H, Robertson B. H, et al. Genotype H: a new Amerindian genotype of hepatitis B virus revealed in Central America. J. Gen. Virol. 2002, 83(8): 2059-2073
    [62] Sumi H, Yokosuka O, Seki N, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut. 2004, 53: 1494-1498
    [63] Kao J H, Liu C J, Chen D S. Hepatitis B viral genotypes and lamivudine resistance. J Hepatol. 2002, 36: 303-304
    [64] Sugauchi F, Orito E, Ichida T, et al. Hepatitis B virus of genotype B with or withoutrecombination with genotype C over the precore region plus the core gene. J Virol. 2002, 76: 5985-5992.
    [65] Kao J H. Hepatitis B viral genotypes: clinical relevance and molecular characteristics. Gastroenterol Hepatology. 2002, 17: 643-650
    [66]蒋音,篝上雅史,蔡枫等.乙型肝炎病毒基因分型与临床意义.中华传染病杂志. 2006, 24(6): 417-419
    [67] Zoulim F. New insight on hepatitis B virus persistence from the study of in trahepatic viral cccDNA. Hepatology, 2005, 42(3): 302-308
    [68] Ganem D, Schneider R. Hepadnaviridae: the viruses and their replication. In: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia: Lippincott-Raven. 2001: 2923-2970
    [69]陈新月,汪俊韬.慢性乙型肝炎的治疗策略.中华实用医药杂志. 2004, 4(14): 8-9
    [70] Geissler M, Tokushige K, Chante C, et al. Cellular and humoral immune response to hepatitis B virus structural proteins in mice after DNA based immunization. Gastroenterology. 1997, 112: 1207-1213
    [71] Maryline M B. Induction or expansion of T-cell responses by a hepatitis B DNA vaccine administered to chronic HBV carriers. Hepatology, 2004, 40(4): 440-44
    [72] Safadi R, Israeli E, Papo O, Bloch A, et al. Treatment of chronic hepatitis B virus infection via oral immune regulation towards hepatitis B virus proteins. American Journal of Gastroenterology. 2003: 98: 2505-2515
    [73] Hui C K, Lau G K. Advance in immunodulating therapy of HBV Infection. International Journal of Medical Sciences. 2005, 2(1);24-29
    [74]刘士敬.冷眼透视乙肝用药.家庭医生. 2000. 10: 10-11
    [75]王芳,谢雯抗.乙型肝炎病毒药物研究进展.中国医刊. 2006, 41(10): 23-25
    [76] Internet: http: //www. nmufh. net/nmufh2006/html/cgi-bin
    [77] Liu J, McIntosh H, Lin H. Chinese medicinal herbs for chronic hepatitis B: a systematic review Liver International. Liver. 2001, 21: 280-286
    [78]于洪亮,唐立尧,魏斌. 4种常见中药治疗乙肝的研究进展.药学实践杂志. 2006, 24(1): 31-34
    [79]桂占吉.生物动力学模型与计算机仿真.北京:科学出版社, 2005
    [80]安云庆.免疫学基础.北京:北京科学技术出版社, 1998
    [81]李云.非线性动力系统的现代数学方法及其应用.北京:人民交通出版社,1998
    [82] Dennis L C. Modeling the cytotoxic T cell response. PhD thesis: Princeton University, 1994
    [83] Panther E, Spangenberg HC, Neumann-Haefelin C, et al. The role of the virus specific T-cell response in acute and chronic HBV and HCV infection. Gastroenterol. 2004, 42(1): 39-46
    [84] Ganem D, Prince A M. Hepatitis B virus infection -- natural history and clinical consequences. The New England Journal of Medicine. 2004, 350(2): 1118-1129
    [85] Chang J J, Lewin S R. Immunopathogenesis of hepatitis B virus infection. Immunology and Cell Biology. 2007, 85(1): 16-23
    [86]郝友华,杨东亮.特异性细胞毒T淋巴细胞清除胞内乙肝病毒机制的研究进展.细胞与分子免疫学杂志. 2005, 21(B03): 128-129
    [87] Baumert TF, Thimme R, von Weizsacker F. Pathogenesis of hepatitis B virus infection. World Gastroenterol. 2007, 13(1): 82-90
    [88] Glebe D. Recent advances in hepatitis B virus research. World Gastroenterol. 2007, 13(1): 8-13
    [89]王福生.抗HBV感染治疗中患者体内病毒学和耐药性等因素的动态变化及其临床意义.世界华人消化杂志. 2003, 2, 2(11): 130-133
    [90] Rippler M, Gerken G. HBV viral load within subpopulations of peripheral blood mononuclear cells in HBV infection using limiting dilution PCR. Journal of Viroloqical Methods, 1999, 78: 129-147
    [91]谭行华.乙型肝炎的诊断和中西医治疗.广州:暨南大学出版社, 2005
    [92]倪安平.检验科诊疗常规.北京:人民卫生出版社, 2006
    [93] Guidottl LG, Rochford R, ChungL, et a1. Viral clearance without destmction of infected cels during acute HBV infection. Science, 1999, 284: 825-829.
    [94]崔瑞耀,刘成玉,张登学等.肝脏的基础医学与临床.青岛:海洋大学出版社, 1998
    [95]梁扩寰.肝脏病学.北京:人民卫生出版社, 1995
    [96]杨黎青.免疫学基础与病原生物学.北京:中国中医药出版社, 2003
    [97]吴引伟,文剑.慢性乙型肝炎患者B淋巴细胞及其活化状况对治疗和预后的影响.临床荟萃. 2006, l(21): 3l-33
    [98]李志群,朱思和,李志恒等.非细胞毒性清除乙型肝炎病毒机制的研究.国际流行病学传染病学杂志. 2006, 33(2): 96-99
    [99] Hollinger F B, Lau D T. Hepatitis B: the pathway to recovery through treatment. Gastroenterol Clin North Am. 2006, 35(2): 425-61
    [100]张林国,乙型肝炎.北京:科学技术文献出版社, 2002
    [101]孟宪镛.乙型肝炎的病原学、发病机制与临床类型.北京:世界图书出版公司, 2001
    [102]刘建欣,郑昌学.现代免疫学:免疫的细胞和分子基础.北京:清华大学出版社, 2002
    [103]姚桢.分子乙型肝炎病毒相关病学北京:中国医药科技出版社, 1998
    [104] Cassandra F H. Pathogenesis of hepatitis B virus infection. PhD thesis: University of Toronto, 2002
    [105]沈霞.临床免疫学与免疫学检验新技术.北京:人民军医出版社, 2002.
    [106]陈立东,陈悦,熊勇.乙型肝炎患者树突状细胞内HBV DNA存在状况的研究.中西医结合肝病杂志. 2005, 15(3): 139-141
    [107]黄茵.慢性HBV感染的免疫耐受形成机制.国外医学流行病学传染病分册. 2001, 28(2): 57-60
    [108]赵英仁,郑婕,张树林.慢性乙型肝炎Th1/Th2失衡分析.第四军医大学学报, 2004, 25(5) : 468-470
    [109]陈杰,杨露绮.树突细胞与慢性HBV感染.传染病网络动态. 2005, 9: 23-27
    [110] Soheila T, Wibke S. Phenotype and function of monocyte derived dendritic cells in chronic hepatitis B virus infection. Society for General Microbiology. 2004, 85:2829-2836
    [111] Beckebaum S, Cicinnati VR, Zhang X, et a1. Hepatitis B virus-induced defect of monoc yte-derived dendritic cells leads to impaired T helper type 1 response in vitro: mechanisms for viral immune escape. Immunology, 2003, 109(4): 487-495.
    [112] Massard G, Tongio M M, Wihlm J M, et a1. The dendritic cell lineage: a ubiquitous antigen-presenting organization. Ann Thorac Surg, 1996, 61(1): 252-258
    [113] Thurner B, Haendle L, Roder C, et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stgae melanoma. J Exp Med 1999, 190 : 1669-1678
    [114]陈萍,丛雅琴.树突状细胞与慢性HBV感染.国外医学(临床生物化学与检验学分册). 2005, 26(8): 544-547
    [115]苏智军,庄建良,郭如意等.乙型肝炎不同白介素细胞因子的检测及其意义.中国实用内科杂志. 2006, 2(12): 1881-1883
    [116]童华生,张一,袁铿等. HBsAg负载慢性乙型肝炎患者外周血树突状细胞表型分子的变化.中华传染病杂志. 2005, 23(1): 32-34
    [117] Wang F S, Xing L H, Liu M X, et a1. Dysfunction of peripheral blood dendritic cells from patients with chronic hepatitis B virus infection. World Journal of Gastroenterology. 2001, 7(4): 537-541
    [118] Willmann K, Dunne J F. A flow cytometric immune function assay for human peripheral blood dendritic cells. J Leukoc Biol, 2000, 67(4): 536-544
    [119] Duan X Z, He H X, Zhuang H. Restoration in vitro of impaired T-cell responses in patients with chronic hepatitis B by autologous dendritic cells loaded with hepatitis B virus proteins. Journal of Gastroenterology and Hepatology. 2006, 21(6): 970–976
    [120] Van R G, Sprengers D, Binda R S, et al. Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B. Hepatology. 2004, 40(3): 738-746.
    [121] Arima S, Akbar SM, Michitaka K, et al. Impaired function of antigen presenting dendritic cells in patients with chronic hepatitis B: localization of HBV DNA and HBV RNA in blood DC by in situ hybridization. Int J Mol Med. 2003, 11(2): 169-174.
    [122] Lohr H F, Pingel S, Bocher W O, et al. Reduced virus specific T helper cell induction by autologous dendritic cells in patients with chronic hepatitis B restoration by exogenous interleukin-12. Clin Exp Immunol. 2002, 130(1): 107-114.
    [123] Zheng B J, Zhou J, Qu D, et al. Selective functional deficit in dendritic cell T cell interaction is a crucial mechanism in chronic hepatitis B virus infection. J Viral Hepat. 2004, 11(3): 217-224.
    [124] Shimizu Y, Guidotti LG, Fowler P, et al. Dendritic cell immunization breaks cytotoxic T lymphocyte tolerance in hepatitis B virus transgenic mice. J Immunol. 1998, 161(9): 4520-4529.
    [125] Lohr HF, Pingel S, Bocher W O, et al. Reduced virus specific T helper cell induction by autologous dendritic cells in patients with chronic hepatitis Brestoration by exogenous interleukin-2. Clin Exp Immunol, 2002, 130(1): 107-114.
    [126]邢利和,王福生,刘明旭.树突状细胞与肝脏疾病.世界华人消化杂志. 2000, 8(11): 1276-1279
    [127]龚非力.临床医学免疫学丛书-基础免疫学.武汉:湖北科学技术出版社, 1998
    [128]许洁,陈同辛,高泽立.树突细胞功能与乙型肝炎病毒感染慢性化的研究进展.国外医学:流行病学.传染病学分册, 2005, 32(5): 299-301
    [129]唐艳萍,邵沂.树突状细胞与乙肝病毒感染.临床荟萃, 2004, 19(4): 232-234
    [130]谭锦泉,邓涛.免疫学临床.北京:科学出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700