用户名: 密码: 验证码:
人骨关节炎滑膜组织基因表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨关节炎是一组由多种原因导致的以关节软骨退行性变为主要病理特征的临床综合征,是一种常见病,多发生于中年以后,是一种慢性、进展性关节病变。主要发生在关节软骨。其表现主要是关节软骨受到破坏,软骨表面失去均质性、中断、斑片凹陷、断裂和溃疡。近来一些研究表明骨关节炎的发生与遗传因素有关。滑膜对于维持关节的正常功能,并且在骨关节炎疾病的发生发展过程中起着重要的作用。有研究表明:滑膜细胞在受到病理因素刺激下,可通过凋亡形式而死亡。
     本课题分别选择人骨关节炎与正常骨关节的滑膜组织,构建5'端非偏性cDNA文库,对每个文库大规模EST测序。本文在获得的大规模EST数据基础上进行数据分析、挖掘,以期发现与骨关节炎发病相关的重要功能基因,并获取基因表达的组织差异和特异信息。这些基因的功能和表达信息获得,对骨性关节炎发病机理以及有效预防有重要价值。
     1.cDNA文库构建
     cDNA文库构建是基因克隆的重要方法之一,从cDNA文库中能够筛选到所需的目的基因,并直接用于该目的基因的表达,它是发现新基因和研究基因功能的基础工具。文库的滴度、重组率及插入片段的大小是鉴定cDNA文库质量的重要指标。本文库原始文库的滴度为1.45×106pfu/mL,总克隆数为4.6×105,重组率为96.2%,扩增后文库总滴度为6.4×109pfu/mL,插入片段多分布在0.5~2.6kb之间,文库质量鉴定结果表明,构建骨关节炎滑膜组织cDNA文库具有较好的库容量、较高的重组率以及较大的插入片段。平均长度为1.5kb,达到了平均插入片段长度大于1kb的要求。
     2.大规模EST测定及初步分析
     正常滑膜组织3989个合格的EST序列,骨关节炎滑膜组织4278个合格的EST序列。用Phrap软件进行拼接,正常滑膜组织获得1273个非冗余序列(UniGene),其中包括611个重盈群(contig), 662个独立EST (Singleton )。骨关节炎滑膜组织获得1287个非冗余序列(UniGene),其中包括607个重盈群(contig), 680个独立EST (Singleton )。正常滑膜组织EST序列有59.99%是未知功能序列,骨关节炎滑膜组织EST序列有59.80%是未知功能序列。
     3.基于EST数据的基因表达谱聚类方法
     本文采用基于大规模EST数据的基因表达谱聚类法,探讨在测序数据大量获得时从中提取有价值信息的数据分析方法。通过确定基因与重盈群相关系数之间或者样本与文库相关系数之间的距离,通过显著性分析比较组织间差异表达基因,获得骨关节炎与正常骨关节的滑膜组织基因表达显著不同的基因。
     4.正常骨关节滑膜组织与骨关节炎滑膜组织基因表达差异
     本试验研究了显著性表达差异4类基因,筛选出了25个差异表达基因,从基因表达水平研究了骨关节炎的发病机理。免疫相关的基因有11条,其中上调占57%,下调占43%。在这些基因中, NM-005402表现为下调,可减轻OA滑膜的增生。Toll样受体2基因(NM-003264)是防御感染的先天免疫基因表现为下调。髓鞘磷脂磷酸二酯酶1,酸性溶酶体(酸性髓磷脂酶)基因(NM-000543)表现为上调,可减轻关节炎症状,表现为下调的自体炎性综合征1基因(AF-410477)在TNF-α和IL-1β信号途径上会聚,可控制炎症的反应。与能量相关基因8条,其中上调占25%,下调占75%,本次实验中与能量相关基因大部分表现为下调。
     总之,本次实验提示骨关节炎的差异基因表达谱主要集中于代谢类尤其是免疫类、细胞代谢和信号转导基因,这些基因的表达异常可能是它发病的分子生物学基础;某些与代谢、免疫、信号转导相关的多生物学过程基因与骨关节炎发病的相关性值得进一步研究。
Osteoarthritis is a clinical syndrome which is caused by various factors and pathologically characterized as articular cartilage retrograde affection. It is a chronic, progressive, common disease with high frequency within populations after middle ages. This disease occurred mostly in the articular cartilage. Its symptoms mainly include destruction of articular cartilage, loss of isotropy, breaks, sunken patch, disruption and ulcer. Recently, it is reported that the development of osteoarthritis was related to genetic factors. Synovium is important in maintaining regular articular function and plays an important role in the developing process of osteoarthritis. It was demonstrated that synovium cell would die by programmed cell death under the pathological stimulations.
     This project took human synovium tissue with and without osteoarthritis, respectively, as starting materials, constructed 5’non–bias cDNA library, and performed large scale EST sequencing for both libraries. Based on the large scale EST data, we performed comprehensive data analysis to find important functional genes related to osteoarthritis and to obtain information on tissue differentiation and specificity of gene expression. This information on gene function and expression will be of important value to pathogenesis of osteoarthritis and effective prophylaxis.
     1.Construction of cDNA library
     cDNA library construction is one the important methods in molecular cloning. By screening target gene(s) directly from the library, and by using them directly for gene expression, it is a elementary tool to find new gene(s) and to study their function(s). Titre, recombination rate and the size of the inserting fragment are important index for the quality of the cDNA library. The original titre of cDNA library is 1.45×106pfu/mL, the total clone number is 4.6×105, and the recombination rate is 96.2%; the titre after the library amplification is 6.4×109pfu/ml,and the size of the inserting fragments ranges between 0.5kb and 2.6kb. The identification data of the library demonstrated that osteoarthritis synovum tissue cDNA library has better library capacity, higher recombination rate and bigger inserting fragments. The average size of the inserting fragments is 1.5kb, which is bigger than the required size of 1kb inserting fragment.
     2.Large scale EST sequencing and primary analysis
     The synovum cell without osteoarthritis has 3989 qualified EST sequences, and the synovum cell with osteoarthritis has 4278 qualified EST sequences. Splicing with the Phrap software, the synovum cell without osteoarthritis has 1273 non-redundancy sequence (UniGene) which include 611 contig and 662 independent EST (Singleton ). The synovum cell with osteoarthritis has 1287 non-redundancy sequence (UniGene) which include 607 contig and 680 independent EST (Singleton ). Among the EST sequences of the synovum cell without osteoarthritis, 59.99% is functionally unknown; but among the EST sequences of the synovum cell with osteoarthritis, 59.80% is functionally unknown.
     3.Gene expression map clustering method based on EST data
     With the gene expression map clustering method based on large scale EST data, we explored the data analysis method to screen valuable information while obtaining the large volume of sequencing date. By defining the distance between genes or samples with the correlation coefficient of (contig)or sample (library), we identified the gene(s) with marked expression differentiation between synovum cells without and with osteoarthritis.
     4 . Gene expression differentiation between synovum cells without and with osteoarthritis
     We compared 4 categories of gene with remarkable differential expression, screened 25 genes with differential expression, and studied the pathogenesis of osteoarthritis at the gene expression level. There are 11 immune related genes, among which 57% with increased expression and 43% with decreased expression. Within this immune related genes, the expression level of NM-005402 decreased, which relieved the hyperplasia of OA synovum. Toll-like acceptor 2 gene (NM-003264) is the natural immune gene with the function of infection prevention, and its expression level decreased. The expression level of sphingomyelin phosphodiesterase 1, acid lysosomal (acid sphingomyelinase()NM-000543)increased, which could relieve the symptom of arthritis; decreased expressed AF-410477 assembled in TNF-αand IL-1βsignal pathway, which could control the infection reaction. Most of the 8 energy-related genes showed decreased expression, 75% of them decreased, but 25% increased.
     In summary, gene expression differentiation of osteoarthritis mainly concentrated in the metabolitic category, especially immune related genes, cell metabolism genes and signal transduction genes, and the abnormal expression of these genes is the possible molecular biology basis of osteoarthritis; The relativity between some metabolism, immune and signal transduction related multiple biological process genes and osteoarthritis need further investigation.
引文
1. Gong, Z. and F.H. Wezeman, Inhibitory effect of alcohol on osteogenic differentiation in human bone marrow-derived mesenchymal stem cells. Alcohol Clin Exp Res, 2004. 28(3): p. 468-79.
    2. Kuettner KE, G.V., Introduction. Osteoarthritic disorders. Rosemont, IL: American Academy of Orthopaedic Surgeons, 1995: p. XXI-XXV.
    3. Kristoffersen, H., S. Torp-Pedersen, L. Terslev, et al., Indications of inflammation visualized by ultrasound in osteoarthritis of the knee. Acta Radiol, 2006. 47(3): p. 281-6.
    4. Fawaz-Estrup, F., The osteoarthritis initiative: an overview. Med Health R I, 2004. 87(6): p. 169-71.
    5. Flannery, C.R., C.B. Little, C.E. Hughes, et al., IL-6 and its soluble receptor augment aggrecanase-mediated proteoglycan catabolism in articular cartilage. Matrix Biol, 2000. 19(6): p. 549-53.
    6. Birchfield, P.C., Osteoarthritis overview. Geriatr Nurs, 2001. 22(3): p. 124-30; quiz 130-1.
    7. Lin, P.M., C.T. Chen, and P.A. Torzilli, Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthritis Cartilage, 2004. 12(6): p. 485-96.
    8. Ehrlich, G.E., Osteoarthritis beginning with inflammation. Definitions and correlations. Jama, 1975. 232(2): p. 157-9.
    9. Ehrlich, G.E., Osteoarthritis beginning with inflammation. Definitions and correlations. 1975. Bull World Health Organ, 2003. 81(9): p. 691-3.
    10. Benito, M.J., D.J. Veale, O. FitzGerald, et al., Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis, 2005. 64(9): p. 1263-7.
    11. Loeuille, D., I. Chary-Valckenaere, J. Champigneulle, et al., Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum, 2005. 52(11): p. 3492-501.
    12. Smith, M.D., S. Triantafillou, A. Parker, et al., Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol, 1997. 24(2): p. 365-71.
    13. Huser, C.A. and M.E. Davies, Validation of an in vitro single-impact load model of the initiation of osteoarthritis-like changes in articular cartilage. J Orthop Res, 2006. 24(4): p. 725-32.
    14. Wilson, W., C. van Burken, C. van Donkelaar, et al., Causes of mechanically induced collagen damage in articular cartilage. J Orthop Res, 2006. 24(2): p. 220-8.
    15. Creamer, P. and M.C. Hochberg, Osteoarthritis. Lancet, 1997. 350(9076): p. 503-8.
    16. Roland WM, D.S., Roy DA, et al.译者:王学谦,娄思权,侯筱魁等, Osteoarthritis: diagnosis and medical/surgical management.3rd Edition.天津科技翻译出版公司。2005. 5: p. 26-38.
    17. Wieland, H.A., M. Michaelis, B.J. Kirschbaum, et al., Osteoarthritis - an untreatable disease? Nat Rev Drug Discov, 2005. 4(4): p. 331-44.
    18. PC., B., Osteoarthritis Overview. . Geriatr Nurs, 2001. 22: p. 124-31.
    19. Aigner, T., K. Fundel, J. Saas, et al., Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum, 2006. 54(11): p. 3533-44.
    20. Zhang, J., J. Dai, D.L. Lin, et al., Osteoprotegerin abrogates chronic alcohol ingestion-induced bone loss in mice. J Bone Miner Res, 2002. 17(7): p. 1256-63.
    21. Martel-Pelletier, J., Pathophysiology of osteoarthritis. Osteoarthritis Cartilage, 2004. 12 Suppl A: p. S31-3.
    22. Martel-Pelletier, J., Pathophysiology of osteoarthritis. Osteoarthritis Cartilage, 1999. 7(4): p. 371-3.
    23. J.M.P., Pathophysiology of Osteoarthritis. Osteoarthr Cartilage, 2004. 12: p. S31-3.
    24.侯德才,刘元禄,邰东旭等,骨性关节炎的病因与机制研究进展.中医正骨, 2006. 18(7): p. 73-74.
    25.娄思权,骨关节炎的病理与发病因素.中华骨科杂志, 1996. 16(1): p. 56-59.
    26. Dieppe, P.A. and L.S. Lohmander, Pathogenesis and management of pain in osteoarthritis. Lancet, 2005. 365(9463): p. 965-73.
    27.赵绵松,李小霞,张愚。, TGFB1和BMP2在人膝骨关节炎滑膜组织中的表达研究.山西医科大学学报, 2006. 37(9): p. 920-923.
    28. Martel-Pelletier, J., R. McCollum, N. Fujimoto, et al., Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis. Lab Invest, 1994. 70(6): p. 807-15.
    29. Appel, A.M., C.N. Hopson, and J.H. Herman, Modulation of cartilage proteoglycan synthesis by osteoarthritic synovium. J Rheumatol, 1988. 15(10): p. 1515-24.
    30. Kuryliszyn-Moskal, A., Comparison of blood and synovial fluid lymphocyte subsets in rheumatoid arthritis and osteoarthritis. Clin Rheumatol, 1995. 14(1): p. 43-50.
    31.邱续强,不同病变关节滑膜的凋亡分析.湖南医科大学学报, 2001. 26(5): p. 412-414.
    32. Walker, E.R., R.D. Boyd, D.D. Wu, et al., Morphologic and morphometric changes in synovial membrane associated with mechanically induced osteoarthrosis. Arthritis Rheum, 1991. 34(5): p. 515-24.
    33.许鹏,王效东,郭雄,透明质酸与骨关节炎.中华风湿病学杂志, 2002. 6 (5): p. 360-363.
    34. Blomberg, L.A. and K.A. Zuelke, Serial analysis of gene expression (SAGE) during porcine embryo development. Reprod Fertil Dev, 2004. 16(2): p. 87-92.
    35. Audic, S. and J.M. Claverie, The significance of digital gene expression profiles. Genome Res, 1997. 7(10): p. 986-95.
    36. Apweiler, R., A. Bairoch, C.H. Wu, et al., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res, 2004. 32(Database issue): p. D115-9.
    37. Callard, D., B. Lescure, and L. Mazzolini, A method for the elimination of false positives generated by the mRNA differential display technique. Biotechniques, 1994. 16(6): p. 1096-7, 1100-3.
    38. Zhang, L.H. and J.F. Ji, Molecular profiling of hepatocellular carcinomas by cDNA microarray. World J Gastroenterol, 2005. 11(4): p. 463-8.
    39. Callard, D., M. Axelos, and L. Mazzolini, Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence. Plant Physiol, 1996. 112(2): p. 705-15.
    40. Breitbart, M., P. Salamon, B. Andresen, et al., Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A, 2002. 99(22): p. 14250-5.
    41. Bhattacharjee, A., M.S. Rutherford, M.S. Abrahamsen, et al., Refinements in re-amplification and cloning of DDRT-PCR products. Biotechniques, 1997. 22(6): p. 1048-51.
    42. Chen, Z.J., H. Shen, and K.D. Tew, Gene expression profiling using a novel method: amplified differential gene expression (ADGE). Nucleic Acids Res, 2001. 29(10): p. E46.
    43. Tatusov, R.L., E.V. Koonin, and D.J. Lipman, A genomic perspective on protein families. Science, 1997.
    278(5338): p. 631-7.
    44. Romualdi, C., S. Bortoluzzi, F. D'Alessi, et al., IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics, 2003. 12(2): p. 159-62.
    45. O'Brien, E.A., L.B. Koski, Y. Zhang, et al., TBestDB: a taxonomically broad database of expressed sequence tags (ESTs). Nucleic Acids Res, 2007. 35(Database issue): p. D445-51.
    46. Berry, R., T.J. Stevens, N.A. Walter, et al., Gene-based sequence-tagged-sites (STSs) as the basis for a human gene map. Nat Genet, 1995. 10(4): p. 415-23.
    47. Lander, E.S., L.M. Linton, B. Birren, et al., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921.
    48. Adams, M.D., M. Dubnick, A.R. Kerlavage, et al., Sequence identification of 2,375 human brain genes. Nature, 1992. 355(6361): p. 632-4.
    49. Adams, M.D., J.M. Kelley, J.D. Gocayne, et al., Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991. 252(5013): p. 1651-6.
    50. Kumar, S., J.R. Connor, R.A. Dodds, et al., Identification and initial characterization of 5000 expressed sequenced tags (ESTs) each from adult human normal and osteoarthritic cartilage cDNA libraries. Osteoarthritis Cartilage, 2001. 9(7): p. 641-53.
    51. Hu, W., Q. Yan, D.K. Shen, et al., Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet, 2003. 35(2): p. 139-47.
    52. Gomez, S.M., K. Eiglmeier, B. Segurens, et al., Pilot Anopheles gambiae full-length cDNA study: sequencing and initial characterization of 35,575 clones. Genome Biol, 2005. 6(4): p. R39.
    53. Yoshida, K., M. Nishiguchi, N. Futamura, et al., Expressed sequence tags from Cryptomeria japonica sapwood during the drying process. Tree Physiol, 2007. 27(1): p. 1-9.
    54. Hishiki, T., S. Kawamoto, S. Morishita, et al., BodyMap: a human and mouse gene expression database. Nucleic Acids Res, 2000. 28(1): p. 136-8.
    55. Lotz, M., F.J. Blanco, J. von Kempis, et al., Cytokine regulation of chondrocyte functions. J Rheumatol Suppl, 1995. 43: p. 104-8.
    56. Pelletier, J.P., J.A. DiBattista, P. Roughley, et al., Cytokines and inflammation in cartilage degradation. Rheum Dis Clin North Am, 1993. 19(3): p. 545-68.
    57. Westacott, C.I. and M. Sharif, Cytokines in osteoarthritis: mediators or markers of joint destruction? Semin Arthritis Rheum, 1996. 25(4): p. 254-72.
    58. Kammermann, J.R., S.A. Kincaid, P.F. Rumph, et al., Tumor necrosis factor-alpha (TNF-alpha) in canine osteoarthritis: Immunolocalization of TNF-alpha, stromelysin and TNF receptors in canine osteoarthritic cartilage. Osteoarthritis Cartilage, 1996. 4(1): p. 23-34.
    59.郭世绂,性激素和细胞因子与骨关节炎及骨质疏松的关系.国外医学内分泌学分册, 2003. 23(2): p. 98-100.
    60. Mathieu, P., [Interleukin 1: Its role, its dosage, the difficulties in advances in arthritis. Results of a "pilot" study with diacerheine (ART 50) in gonarthrosis]. Rev Prat, 1999. Suppl 13: p. S15-8.
    61.邓廉夫,柴本甫,杨庆铭,肿瘤坏死因子-α对骨关节炎滑膜细胞增殖和RNA表达的影响.中国药理学通报, 1998. 14(6): p. 506-508.
    62.吴宏斌,杜靖远,郑启新等,基质金属蛋白酶-1在创伤性骨关节炎软骨及滑膜中的表达.中华创伤杂志, 2003. 19(1): p. 42-46.
    63.夏睿,董启榕, MMP13在骨性关节炎患者滑膜细胞中的表达.苏州大学学报(医学版), 2006. 26(5): p. 815-817.
    64. Hashimoto, S., M. Setareh, R.L. Ochs, et al., Fas/Fas ligand expression and induction of apoptosis in chondrocytes. Arthritis Rheum, 1997. 40(10): p. 1749-55.
    65. Hoa, T.T., T. Hasunuma, H. Aono, et al., Novel mechanisms of selective apoptosis in synovial T cells of patients with rheumatoid arthritis. J Rheumatol, 1996. 23(8): p. 1332-7.
    66. Marshall, K.W., H. Zhang, and N. Nossova, Chondrocyte genomics: implications for disease modification in osteoarthritis. Drug Discov Today, 2006. 11(17-18): p. 825-32.
    67. Yager, T.D., A.A. Dempsey, H. Tang, et al., First comprehensive mapping of cartilage transcripts to the human genome. Genomics, 2004. 84(3): p. 524-35.
    68. Meng, J., X. Ma, D. Ma, et al., Microarray analysis of differential gene expression in temporomandibular joint condylar cartilage after experimentally induced osteoarthritis. Osteoarthritis Cartilage, 2005. 13(12): p. 1115-25.
    69. Burrage, P.S., K.S. Mix, and C.E. Brinckerhoff, Matrix metalloproteinases: role in arthritis. Front Biosci, 2006. 11: p. 529-43.
    70.胡松年,基因表达序列标签(EST)数据分析手册.浙江大学出版社,2005
    71.胡松年,薛庆中,基因组数据分析手册.浙江大学出版社,2003年5月.
    72.金冬雁,黎孟枫,分子克隆实验指南.第二军医大学出版社,2004.
    73. Lindqvist, C., A.C. Scheen, M.J. Yoo, et al., An expressed sequence tag (EST) library from developing fruits of an Hawaiian endemic mint (Stenogyne rugosa, Lamiaceae): characterization and microsatellite markers. BMC Plant Biol, 2006. 6: p. 16.
    74.董志敏,张宝石,关荣霞,等,全长cDNA文库的构建方法.中国农学通报, 2006. 22(2): p. 51-55.
    75.梁成伟,李友训,孟春晓,等,秦松雨生红球藻cDNA表达文库的构建与初步分析.海洋通报, 2006. 25(2).
    76. Chenchik, A., L. Diachenko, F. Moqadam, et al., Full-length cDNA cloning and determination of mRNA 5' and 3' ends by amplification of adaptor-ligated cDNA. Biotechniques, 1996. 21(3): p. 526-34.
    77. Gubler, U., A.O. Chua, B.J. Hoffman, et al., Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc Natl Acad Sci U S A, 1984. 81(14): p. 4307-10.
    78. Camon, E., M. Magrane, D. Barrell, et al., The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res, 2004. 32(Database issue): p. D262-6.
    79. Bauer, D., H. Muller, J. Reich, et al., Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Res, 1993. 21(18): p. 4272-80.
    80. Lee, M.J. and G.J. Goldsworthy, The preparation and use of dispersed cells from fat body of Locusta migratoria in a filtration plate assay for adipokinetic peptides. Anal Biochem, 1995. 228(1): p. 155-61.
    81. Anderson, I.J., R.F. Watkins, J. Samuelson, et al., Gene discovery in the Acanthamoeba castellanii genome. Protist, 2005. 156(2): p. 203-14.
    82. Ashburner, M., C.A. Ball, J.A. Blake, et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000. 25(1): p. 25-9.
    83. Badidi, E., C. De Sousa, B.F. Lang, et al., AnaBench: a Web/CORBA-based workbench for biomolecular sequence analysis. BMC Bioinformatics, 2003. 4: p. 63.
    84. Bateman, A., L. Coin, R. Durbin, et al., The Pfam protein families database. Nucleic Acids Res, 2004. 32(Database issue): p. D138-41.
    85. Romualdi, C., S. Bortoluzzi, and G.A. Danieli, Detecting differentially expressed genes in multiple tag sampling experiments: comparative evaluation of statistical tests. Hum Mol Genet, 2001. 10(19): p. 2133-41.
    86. Tatusov, R.L., N.D. Fedorova, J.D. Jackson, et al., The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 2003. 4: p. 41.
    87. Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000. 28(1): p. 27-30.
    88. Hoog, C., Isolation of a large number of novel mammalian genes by a differential cDNA library screening strategy. Nucleic Acids Res, 1991. 19(22): p. 6123-7.
    89. Davidson, R.K., J.G. Waters, L. Kevorkian, et al., Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthritis Res Ther, 2006. 8(4): p. R124.
    90. Christoffels, A., R. Bartfai, H. Srinivasan, et al., Comparative genomics in cyprinids: common carp ESTs help the annotation of the zebrafish genome. BMC Bioinformatics, 2006. 7 Suppl 5: p. S2.
    91. Wuyts, J., G. Perriere, and Y. Van De Peer, The European ribosomal RNA database. Nucleic Acids Res, 2004. 32(Database issue): p. D101-3.
    92. Corton, J.C. and J.A. Gustafsson, Increased efficiency in screening large numbers of cDNA fragments generated by differential display. Biotechniques, 1997. 22(5): p. 802-4, 806, 808 passim.
    93. Ferrari, S.L., D. Karasik, J. Liu, et al., Interactions of interleukin-6 promoter polymorphisms with dietary and lifestyle factors and their association with bone mass in men and women from the Framingham Osteoporosis Study. J Bone Miner Res, 2004. 19(4): p. 552-9.
    94. Bau B, G.P., Haag J, Knorr T, Bartnik E, Aigner T, Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum, 2002. 46: p. 2648-57.
    95. Sabatini, M., B. Boyce, T. Aufdemorte, et al., Infusions of recombinant human interleukins 1 alpha and 1 beta cause hypercalcemia in normal mice. Proc Natl Acad Sci U S A, 1988. 85(14): p. 5235-9.
    96. Hogquist, K.A., M.A. Nett, E.R. Unanue, et al., Interleukin 1 is processed and released during apoptosis. Proc Natl Acad Sci U S A, 1991. 88(19): p. 8485-9.
    97. Fujisawa, T., T. Hattori, K. Takahashi, et al., Cyclic mechanical stress induces extracellular matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J Biochem (Tokyo), 1999. 125(5): p. 966-75.
    98. Martel-Pelletier, J., N. Alaaeddine, and J.P. Pelletier, Cytokines and their role in the pathophysiology of osteoarthritis. Front Biosci, 1999. 4: p. D694-703.
    99. Martel-Pelletier, J., D. Lajeunesse, H. Fahmi, et al., New thoughts on the pathophysiology of osteoarthritis: one more step toward new therapeutic targets. Curr Rheumatol Rep, 2006. 8(1): p. 30-6.
    100. Wei, S., H. Kitaura, P. Zhou, et al., IL-1 mediates TNF-induced osteoclastogenesis. J Clin Invest, 2005. 115(2): p. 282-90.
    101. Brenner, D.A., M. O'Hara, P. Angel, et al., Prolonged activation of jun and collagenase genes by tumour necrosis factor-alpha. Nature, 1989. 337(6208): p. 661-3.
    102. Haklar, U., M. Yuksel, A. Velioglu, et al., Oxygen radicals and nitric oxide levels in chondral or meniscal lesions or both. Clin Orthop Relat Res, 2002(403): p. 135-42.
    103. Del Carlo, M., Jr. and R.F. Loeser, Nitric oxide-mediated chondrocyte cell death requires the generation of additional reactive oxygen species. Arthritis Rheum, 2002. 46(2): p. 394-403.
    104. Mazzetti, I., B. Grigolo, L. Pulsatelli, et al., Differential roles of nitric oxide and oxygen radicals in chondrocytes affected by osteoarthritis and rheumatoid arthritis. Clin Sci (Lond), 2001. 101(6): p. 593-9.
    105. Kamata, H., S. Honda, S. Maeda, et al., Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell, 2005. 120(5): p. 649-61.
    106. Montero, A., Y. Okada, M. Tomita, et al., Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest, 2000. 105(8): p. 1085-93.
    107.蓝旭,刘雪梅,葛宝丰,等,豚鼠原发性骨性关节炎的血清IGF-1检测及意义.中国矫形外科杂志, 2000. 7(7): p. 667-668.
    108.陈百成,张洪斌,张汉杰,等,生长因子对软骨细胞的作用.中华骨科杂志, 1999. 19(12): p. 746-748.
    109. De Rycke, L., B. Vandooren, E. Kruithof, et al., Tumor necrosis factor alpha blockade treatment down-modulates the increased systemic and local expression of Toll-like receptor 2 and Toll-like receptor 4 in spondylarthropathy. Arthritis Rheum, 2005. 52(7): p. 2146-58.
    110. Rousseau-Merck, M.F., A. Bernheim, P. Chardin, et al., The ras-related ral gene maps to chromosome 7p15-22. Hum Genet, 1988. 79(2): p. 132-6.
    111. Garcia-Ruiz, C., A. Colell, M. Mari, et al., Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest, 2003. 111(2): p. 197-208.
    112. Park, S.H., S.G. Lee, Y. Kim, et al., Assignment of a human putative RNA helicase gene, DDX3, to human X chromosome bands p11.3-->p11.23. Cytogenet Cell Genet, 1998. 81(3-4): p. 178-9.
    113. van Meurs, J., P. van Lent, A. Holthuysen, et al., Active matrix metalloproteinases are present in cartilage during immune complex-mediated arthritis: a pivotal role for stromelysin-1 in cartilage destruction. J Immunol, 1999. 163(10): p. 5633-9.
    114. Dreier, R., S. Grassel, S. Fuchs, et al., Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Exp Cell Res, 2004. 297(2): p. 303-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700