用户名: 密码: 验证码:
运动训练与电针治疗对脑缺血再灌注大鼠神经可塑性和脑卒中患者功能改善的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分强化运动训练对脑缺血再灌注大鼠运动功能以及MAP-2和GFAP表达的影响
     目的探讨应用常规和强化运动训练对脑缺血再灌注大鼠运动功能以及海马区和梗塞灶周围微管相关蛋白-2(MAP-2)和胶质纤维酸性蛋白(GFAP)表达的影响。
     方法采用大鼠局灶性脑缺血再灌注模型,大脑中动脉阻塞1h,再灌注7、14和21d,54只造模成功的大鼠随机分为造模对照组(A组)、常规运动训练组(B组)和强化运动训练组(C组),分别采用姿势反射试验、肢体不对称应用试验和角落试验观察各组大鼠的运动功能,应用免疫组织化学方法分别检测各组大鼠缺血侧海马区和梗塞灶周围MAP-2和GFAP的表达情况。
     结果3组实验大鼠的3项行为学测试评分在造模后24h均无明显差异,但在7、14和21d时则有一定差异,与A组比较,除造模后21d时B组角落试验评分外,B组和C组3项测试评分在造模后7d(P<0.05)、14d(P<0.05或0.01)和21d(P<0.05或0.01)均明显好于A组;与B组比较,除造模后21d肢体不对称应用试验评分外,C组评分在14d和21d均明显好于B组(P<0.05)。MAP-2和GFAP的免疫组化结果显示,与A组比较,B组和C组在海马区和梗塞灶周围MAP-2表达的光密度值在14d(P<0.05)和21d(P<0.01)时,GFAP表达的光密度值在7d(P<0.05)、14d(P<0.05)和21d(P<0.01)时均明显高于A组,而且C组MAP-2和GFAP表达的光密度值在14d(P<0.05或0.01)和21d时(P<0.05)也明显高于B组。
     结论运动训练可促进脑缺血再灌注大鼠运动功能的恢复,其机制可能与脑内MAP-2和GFAP水平上调有关,强化运动训练的效果更明显。
     第二部分运动训练结合电针治疗对脑缺血再灌注大鼠海马齿状回区Nestin表达的影响
     目的探讨应用运动训练结合电针治疗对脑缺血再灌注大鼠海马齿状回区巢蛋白(Nestin)表达的影响。
     方法54只Wistar大鼠随机分为造模对照组(A组)、运动训练组(B组)和运动训练结合电针治疗组(C组),采用大鼠局灶性脑缺血再灌注模型,大脑中动脉阻塞1h,再灌注7、14和21d,应用免疫组织化学方法分别检测各组大鼠缺血侧和对侧海马齿状回区Nestin的表达情况。
     结果3组大鼠均表现为7d时的海马区Nestin阳性细胞最多,而且在各时间点缺血侧海马DG区的Nestin阳性细胞数均明显多于对侧DG区(P<0.01)。7、14和21d时,C组和B组大鼠缺血侧海马区Nestin阳性细胞较A组明显增多,有显著性差异(P<0.01)。C组大鼠缺血侧海马区Nestin阳性细胞在7d和14d时较B组亦明显增多(P<0.01)。
     结论脑缺血再灌注大鼠海马区Nestin阳性细胞的增多存在时间规律及原位增殖特性,运动训练和电针治疗可显著增强Nestin阳性表达的数量。
     第三部分运动训练的训练时间和患者的治疗参与性对脑卒中患者功能预后的影响
     目的探讨运动训练的训练时间和患者的治疗参与性对脑卒中患者功能预后的影响。
     方法将60例脑卒中患者随机分为常规训练组(A组)和强化训练组(B组)各30例,两组患者均接受运动训练,但A组患者每次运动训练的训练时间为30-45min,B组患者每次运动训练的训练时间为45-60min。所有患者在入院时和治疗4周后进行功能独立性评定量表(FIM)中的运动功能评定,同时每次运动训练时通过Pittsburgh康复参与量表(PRPS)记录患者的治疗参与情况。
     结果A组和B组治疗前FIM运动功能平均得分无显著性差异,但两组患者治疗后FIM运动功能平均得分有明显差异,B组患者的FIM运动功能平均得分明显高于A组患者(P<0.05),B组治疗前后FIM运动功能得分改变值明显高于A组(P<0.01) ,而且A组(r=0.787, P<0.01)和B组(r=0.573, P<0.05)患者PRPS评分均与治疗前后FIM运动功能得分的改变值明显相关。
     结论运动训练时间能够对脑卒中患者的近期运动功能的改善产生影响,患者的主动参与性亦能明显影响其功能预后。
     第四部分运动训练结合电针治疗对脑卒中偏瘫患者功能改善的临床研究
     目的探讨运动训练结合电针治疗对不同病程脑卒中患者功能状况的影响。方法将50例急性脑卒中随机分为康复组和对照组各25例,两组患者药物治疗基本相同,康复组同时还接受运动训练和电针治疗,所有患者在治疗前、病程1、3和6月时各进行1次功能评定,采用简式Fugl-meyer运动功能评定(S-FMMFA)、Barthel指数评定(BI)、世界卫生组织生存质量测定简式量表中文版(WHOQOL-BREF)和功能综合评定量表(FCA)分别评定患者运动功能、日常生活活动能力、生活质量以及综合功能状况。
     结果治疗前和病程1月时两组患者各项评分无显著性差异,康复组患者S-FMMFA(P<0.01)、BI评分(P<0.01)和WHOQOL-BREF量表的生理、心理和环境领域评分(P<0.05)以及生活质量和健康状况主观评分(P<0.05或0.01)在病程3月和6月时明显高于对照组,FCA评分在病程6月时亦明显高于对照组(P<0.01)。
     结论早期运动训练结合电针治疗能有效改善运动功能,明显提高生活自理能力和生活质量,而维持性康复治疗则继续改善患者功能状况,并最终提高患者的整体功能。
PartⅠEffects of intensive exercise training on motor function and the expression of MAP-2,GFAP in rats after cerebral ischemia-reperfusion
     Objective To explore the effects of conventional and intensive exercise training on motor function and the expression of MAP-2 , GFAP in the hippocampus and around the cerebral infracted area of rats after cerebral ischemia-reperfusion.
     Methods The middle cerebral artery occlusion (MCAO) models was used.The middle cerebral arteries(MCA) of rats were occluded for 1 hour, then reperfused for 7,14 and 21 days. Fifty-four MCAO model-rats were randomized into a control group(Group A), a conventional exercise training group(Group B) and an intensive exercise training group(Group C). Neurologic functional behavior tests (postural reflex test, limb use asymmetrical test and corner test) were performed to test motor function. Immunohistochemistry was used to detect the expression of MAP-2, GFAP in the hippocampus and around the cerebral infracted area of rats.
     Results Except on the 24h after cerebral ischemia-reperfusion, there were some differences of neurological function behavior tests’scores in three groups on the 7th, 14th and 21th day. The scores of Group B and C, except the score of corner test of Group B on the 21th day, were significant better than that of Group A on the 7th(P<0.05), 14th (P<0.05 or 0.01)and 21th day(P<0.05 or 0.01). The scores of Group C, except the score of limb use asymmetrical test of Group C on the 21th day, were significant better than that of Group B on the 14th and 21th day(P<0.05). In the hippocampus and around the cerebral infracted area of rats, significant increase of MAP-2 immunoreactivity on the 14th day(P<0.05) and 21th day (P<0.01)and GFAP immunoreactivity on the 7th(P<0.05),14th (P<0.05)and 21th day (P<0.01)were detected in Group B and C , compared with that of group A. Significant increase of MAP-2 and GFAP immunoreactivity of Group C were detected on the 14th (P <0.05 or 0.01)and 21th day(P<0.05), compared with that of Group B.
     Conclusion Exercise training can promote motor functional recovery. The function enhancement may be partially due to the upregulation of MAP-2 and GFAP. Intensive exercise training is more effective.
     PartⅡEffects of exercise training combined with electroacupuncture on the expression of Nestin in the hippocampus dentate gyrus after cerebral ischemia-reperfusion
     Objective To explore the effects of exercise training combined with electro- acupuncture on the expression of Nestin in the hippocampus dentate gyrus(DG) after cerebral ischemia-reperfusion.
     Methods Fifty-four Wistar rats were randomly divided into control group (Group A), exercise training group (Group B), and exercise training combined with electroacupuncture group (Group C). The middle cerebral arteries (MCA) of rats were occluded for 1 h, then reperfused for 7, 14 and 21 days. Immunohistochemistry was used to detect the expression of Nestin in the hippocampus dentate gyrus of rats.
     Results There was the largest number of Nestin-positive cells in the DG in all groups on the 7th day after cerebral ischemia-reperfusion. Nestin-positive cells in ipsilateral DG were significantly more than those in the counter part at different time points (P<0.01). Significant increase of Nestin expression were detected in rats of Group B and Group C at different time points after cerebral ischemia-reperfusion, compared with that of Group A(P<0.01). We also found that Nestin-positive cells of Group C were significantly more than those of Group B in ipsilateral DG on the 7th day and 14th day after cerebral ischemia-reperfusion(P<0.01).
     Conclusion The increase of Nestin-positive cells in the DG existed time-regularity and in situ proliferation characteristic after cerebral ischemia- reperfusion. Exercise training and electroacupuncture can significantly promote the expression of Nestin.
     PartⅢEffects of training time of exercise training and rehabilitation participation of patients on the functional prognosis in stroke patients
     Objective To explore the effects of training time of exercise training and rehabilitation participation of patients on the functional prognosis in Stroke Patients. Methods Sixty stroke patients were assigned to the conventional rehabilitation group (Group A) and the intensive rehabilitation group(Group B) randomly. There were 30 patients in each group. The patients in two groups were both received exercise training. The training time of Group A was 30-45 min/d, Group B was 45-60min/d. The Motor Function of Function Independence Measure (FIM) was used to assess motor comprehensive function at pre-therapy and 4 weeks after training. The rehabilitation participation of all patients was evaluated through the Pittsburgh Rehabilitation Participation Scale (PRPS) after every motor training.
     Results There were no significant differences between FIM motor function scores of two groups before therapy. But FIM motor function scores of Group B were significant higher than that of Group A after training (P<0.05), and FIM motor function scores change between pre-therapy and 4 weeks after training in Group B were significant higher than that in Group A (P<0.01). And the scores of PRPS in Group A (r=0.787, P<0.01) and Group B (r=0.573, P<0.05) were significantly related with FIM motor function scores change between pre-therapy and 4 weeks after training.
     Conclusion The training time of exercise training can effect the improvement of immediate motor function of stroke patients;The rehabilitation participation of patients also effect significantly the patients’functional prognosis.
     PartⅣClinical research of exercise training and electroacupuncture on the therapeutic effects in hemiplegia patients with stroke
     Objective To explore the effects of exercise training and electroacupuncture on the functional outcomes in hemiplegia patients with stroke at different time.
     Methods Fifty acute stroke patients were assigned to the rehabilitation group (25 cases) and control group (25 cases) randomly. The drug treatments in two groups were almost the same. The patients in rehabilitation group were received exercise training and electroacupuncture. Simplified Fugl-meyer Motor Functional Assessment (S-FMMFA), Barthel Index (BI), the WHO Quality of Life-brief version (WHOQOL-BREF) and Functional Comprehensive Assessment Scale (FCA) were used to assess motor function, ADL, QOL and comprehensive function at pre-therapy and 1, 3 and 6 months after the onset of stroke.
     Results The Scores in both rehabilitation and control groups were similar at pre-therapy and 1 months after the onset of stroke. The patients in the rehabilitation group at 3 and 6 months demonstrated much higher scores in S-FMMFA(P<0.01), BI(P<0.01) and in physical, psychological, environmental domains(P<0.05), the subjective QOL and health items of WHOQOL-BREF(P<0.05 or 0.01) than those in the control group. The FCA scores in the rehabilitation group at 6 months were also higher than those in the control group(P<0.01).
     Conclusion Early exercise training and electroacupuncture can effectively improve motor function, ADL and QOL of stroke patients. The continuing rehabilitation therapy is helpful for improving the patients’comprehensive function.
引文
1. Kuge Y, Minematsu K, Yamaguchi T, et al. Nylon monofilament for intraluminal middle cerebral artery occlusion in rats. Stroke, 1995, 26: 1655-1657.
    2. Hua Y, Schallert T. Behavioral test after intracerebral hemorrhage in the rat. Stroke, 2002, 33: 2478-2484.
    3. Zhang L, Schallert T. A test for detecting longterm sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Meth, 2002, 117: 207-214.
    4. Hunter AJ, Hatcher J, Virley D, et al. Functional assessments in mice and rats after focal stroke. Neuropharmacology, 2000, 39: 806-816.
    5. Zepeda A, Sengpiel F, Guagnelli MA, Vaca L, Arias C. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABAA receptor subunits. J Neurosci, 2004, 24: 1812–1821.
    6. Mittmann T, Eysel UT. Increased synaptic plasticity in the surround of visual cortex lesions in rats. Neuro Report, 2001,12: 3341–3347.
    7. Briones TL, Woods J, Wadoska M, et al. Amelioration of cognitive impairment and changes in microtubule-associated protein 2 after transient global cerebral ischemia are influenced by complex environment experience. Behav Brain Res, 2006, 168: 261–271.
    8. Kowalski RJ, Williams RC. Microtubule associated protein 2 alters the dynamic proterties of microtubule assembly and disassembly. Biol Chem, 1993, 268: 9847-9855.
    9. Hirokawa N, Funakoshi T, Sato-Hurada R, et al. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J Cell Biol, 1996, 132: 667–679.
    10. Sanchez C, Diaz-Nido J, Avila J. Phosphorylation of microtubule associated protein 2 (MAP2) and its relevance for the regulation of neuronal cytoskeletal function. Prog Neurobiol, 2000, 61: 133–168.
    11. Hansson E, Ronnback L. Glial neuronal signaling in the central nervous system. FASEB J, 2003, 17: 341-348.
    12. Chen Y, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow Metab, 2003, 23: 137-149.
    13. Bidmon HJ, Jancsik V, Schleicher A, et al. Structural alteration and changes in cytoskeletalproteins and proteoglycans after focal cortical ischemia. Neuroscience, 1998, 82: 397-420
    14. Gabryel B, Trzecjak HI. Role of astrocytes in pathogenesis of ischemic brain injury. Neurotox Res, 2001, 3: 205-221.
    15. Dietrich WD,Truettner J, Prado R, et al. Thromboembolic events lead to cortical spreading depression and expression of c-fos, brain-derived neuron trophic factor, glial fibrillary acidic protein, and heat shock protein70Mrna in rats. Cereb Blood Flow Metab, 2000, 20: 103-111.
    16. Nawashiro H, Brenner M, Fukui S, et al. High susceptibility to ischemia in GFAP–nullmice. J Cereb Blood Flow Metab, 2000, 20: 1040-1044.
    17. Briones TL, Woods J, Wadoska M, et al. Astrocytic changes in the hippocampus and functional recovery after cerebral ischemia are facilitated by rehabilitation training. Behav Brain Res, 2006, 171: 17-25.
    18. Ridet JL, Malhotro SK, Privat A. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci, 1997, 20(12): 570-577.
    19.段淑荣,王德生,王勋,等.康复训练对大脑中动脉闭塞大鼠脑梗死灶周围GFAP表达的影响.中风与神经疾病杂志, 2004, 21: 133-135.
    20.袁华,龙华,李玲.康复训练对脑梗死大鼠皮质S-100、GFAP和Nestin表达的影响.中华物理医学与康复杂志,2003, 25: 520-523.
    21. Sonoda S, Saitoh E, Nagai S, et al. Full-time integrated treatment program, a new system for stroke rehabilitation with conventional rehabilitation. Am J Phys Med Rehabil. 2004, 83: 88-93.
    22. Meinzer M, Elbert T, Wienbruch C, et al. Intensive language training enhances brain plasticity in chronic aphasia. BMC Biol, 2004, 2: 20.
    1. Gage FH. Mammalian neural stem cells. Science, 2000, 287: 1433-1438.
    2. Gould E, Gross CG. Neurogenesis in adult mammals: some progress and problems. J Neurosci, 2002, 22: 619-623.
    3. Kuge Y, Minematsu K, Yamaguchi T, et al. Nylon monofilament for intraluminal middle cerebral artery occlusion in rats. Stroke, 1995, 26:1655-1657.
    4.李忠仁,主编.实验针灸学.北京:中国中医药出版社, 2003, 1205-1211.
    5. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian nervous system. Science, 1992, 255: 1707-1710.
    6. Tang T, Li XQ, Wu H, et al. Activation of endogenous neural stem cells experi- mental intracerebral hemorrhagic rat brains. Chinese Medical Journal, 2004, 117: 1342-1347.
    7. Takagi Y, Nozaki K, Takahashi J , et al. Proliferation of neuronal precursor cells indentate gyrus is accelerated after transient forebrain ischemia in mice. Brain Res, 1999, 83 : 283-287.
    8. Rossella G,Angela G,Luca B,et al. Neural stem cells. Circ Res, 2003, 92: 598-608.
    9. Iwai M, Sato K, Omori N, et al. Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia. J Cereb Blood Flow Metab, 2002, 22: 411-419.
    10. Yagita Y, Kitagava K, Sasaki T, et al. Differential expression of Musashil and nestin in the adult rat hippocampus after ischemia. J Neurosci Res, 2002, 69: 750-756.
    11.周晓琳,赵永波,段淑荣,等.脑梗死后康复训练对成年大鼠海马结构中神经干细胞的影响.神经疾病与精神卫生, 2004, 4: 430-434.
    12. Nakatomi H, Okabe S, Yamaoto S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell, 2002, 110: 429-441.
    13.唐强,秦颖,倪金霞,等.脑梗死大鼠康复训练后脑功能恢复及免疫组织化学改变.中国康复理论与实践, 2003, 9: 136-138.
    14.余茜,李晓红,刘羲,等.康复训练对脑梗死大鼠学习记忆与健侧海马神经元NMDA受体通道的影响.中华物理医学与康复杂志, 2002, 24: 683-686.
    15. Pencea V, Bingaman KD, Wiegand SJ, et al. Infusion of brain-derived neurotropic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the atriatum, septum, thalamus, and hypothalamus. J Neurosci, 2001, 21: 6706-6717.
    16. Ou YW, Han L, Da CD, et al. Influence of acupuncture upon expression levels of basic fibroblast growth factor in rat brain following focal cerebral ischemia-evaluated by time resolved fluorescence immunoassay. Neurol Res, 2001, 23: 47-50.
    17.郭宗君,王鲁民.电针刺激神经干对脑缺血再灌注后不同时期皮层BDNFmRNA表达的影响.中华物理医学与康复杂志, 2004, 26: 585-588.
    18. Kim EH, Kim YJ, Lee HJ, et al. Acupuncture increases cell proliferation in dentate gyrus after transglobal ischemia in gerbils. Neurosci Lett, 2001, 297: 21-24.
    19. Yang ZJ, Shen DH, Guo X. Electroacupuncture enhances striatal neurogenesis in adult rat brains after a transient cerebral middle artery occlusion. Acupunct Electrother Res, 2005, 30: 185-199.
    1.中华神经科学会,中华神经外科学会.脑血管疾病分类(1995).中华神经科杂志, 1996, 29: 376-379.
    2.黄晓琳,尤春景.康复医学临床指南(第2版).科学出版社, 2005年, 36-41.
    3. Lenze EJ, Munin MC, Quear T, et al. The Pittsburgh rehabilitation participation scale: reliability and validity of a clinician-rated measure of participation in acute rehabilitation. Arch Phys Med Rehabil, 2004, 85: 380-384.
    4. kwakkel G, van Peppen R, Wagenaar RC, et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke, 2004, 35: 2529-2536.
    5. Bode RK, Heinemann AW, Semik P, et al. Relative importance of rehabilitation therapycharacteristics on functional outcomes for persons with stroke. Stroke. 2004, 35: 2537-2542.
    6. Sonoda S, Saitoh E, Nagai S, et al. Full-time integrated treatment program, a new system for stroke rehabilitation in Japan: comparison with conventional rehabilitation. Am J Med Rehabil, 2004, 83: 88-93.
    7. Di Lauro A, Pellegrino L, Savastano G, et al. A randomized trial on the efficacy of intensive rehabilitation in the acute phase of ischemic stroke. J Neurol, 2003, 250: 1206-1208.
    8. Rodgers H, Mackintosh J, Price C, et al. Does an early increased-intencity interdisciplinary upper limb therapy programme following acute stroke improve outcome? Clin Rehabil, 2003, 17: 579-589.
    9. Maclean N, Pound P. A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc Sci Med, 2000, 50: 495-506.
    10. King P, Barrowclough C. Rating the motivation of elderly patient on a rehabilitation ward. Clin Rehabil, 1989, 3: 289-291.
    11. Maclean N, Pound P, Wolfe C, et al. The concept of patient motivation: a qualitative analysis of stroke professionals’attitudes. Stroke, 2002, 33: 444-448.
    12. Resnick B, Zimmerman SI, Magaziner J, et al. Use of the Apathy evaluaton Scale as a measure of motivation in elderly people. Rehabil Nurs, 1998, 23: 141-147.
    13. Lenze EJ, Munin MC, Dew MA, et al, Depression, cognitive impairments, and functional recovery in elderly rehabilitation hip fracture inpatients: mediating effects of rehabilitation participation. Paper presented at: the American Association for Geriatric Psychiatry Annual Meeting, 2002 Mar: Orlando(FL).
    1.中华神经科学会,中华神经外科学会.脑血管疾病分类(1995).中华神经科杂志, 1996, 29: 376-379.
    2.胡永善.中国脑血管病后三级康复治疗的研究,中国临床康复, 2002, 6: 935.
    3.胡永善.脑卒中三级康复治疗方案的探讨.中华全科医师杂志, 2005, 4: 712-714.
    4.黄晓琳,尤春景.康复医学临床指南(第2版).科学出版社, 2005, 36-41, 367-382.
    5.郝元涛,方积乾.世界卫生组织生存质量测定量表中文版介绍及其使用说明.现代康复, 2000, 4: 1127-1129.
    6.胡永善,吴毅,范文可,等. FCA量表与FIM量表的比较研究.中国康复医学杂志,2004, 19: 228-229.
    7.范文可,胡永善,吴毅,等.功能综合评定量表效度的研究.中国康复医学杂志,2003,18:325-329。
    8.邱纪方,刘哓林,张天友,等.功能综合测量的信度分析.中国康复医学杂志, 2004, 19: 167-169.
    9.倪朝民.脑卒中的康复研究.中国康复医学杂志, 2005, 20: 3.
    10. Thickbroom GW, Byrnes ML, Archer SA, et al. Motor outcome after subcortical reorganization. Clin Neurophsiol, 2004, 115: 2144-2150.
    11. Cauraugh JH. Coupled rehabilitation protocols and neural plasticity: upper extremity improvements in chronic hemiparesis. Restor Neurol Neurosci, 2004, 22: 337-347.
    12. Liepert J, Hamzei F, Weiller C. Lesion-induced and training-induced brain reorganization. Restor Neurol Neurosci, 2004, 22: 269-277.
    13. Winstein CJ, Rose DK, Tan SM, et al. A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: A pilot study of immediate and long-term outcomes. Arch Phys Med Rehabil, 2004, 85: 620-628.
    14. Hochstenbach J, prigatano C, Mulder T. Patients’and relatives’report of disturbances 9 months after stroke: subjective changes in physical functioning, cognition, emotion, and behavior. Arch Phys Med rehabil, 2005, 86: 1587-1593.
    15. Liepert J, Bauder H, Wofgang HR, et al. Treatment-induced cortical reorganization after stroke in humans. Stroke, 2000, 31: 1210-1216.
    16.喻澜,黄哓琳,王伟,等.电针治疗对急性脑梗死患者血清神经元特异性烯醇化酶及神经功能缺损的影响.中华物理医学与康复杂志, 2005, 27: 103-105.
    17.唐胜修,徐祖豪.针灸治疗脑梗塞的临床研究进展.医学文选, 2002, 21: 544-546.
    18. Samsa GP, Malchar DB. How strong is the relationship between functional status and quality of life among persons with stroke? J Rehabil Res Dev, 2004, 41: 279-282.
    19. Lalu RE .Changes in the quality of life of cerebral stroke patients in the first year after rehabilitation. Z Gerontol Geriatr, 2003, 36: 484-491.
    20. Wang WC, Yao G, Tsai YJ, et al. Validating, improving reliability, and estimating correlation of the four subscales in the WHOQOL-BREF using multidimensionalRasch analysis. Qual Life Res, 2006, 15: 607-620.
    21. Aigner M, Forster SS, Prause W, et al. What does the WHOQOL-Bref measure? Measurement overlap between quality of life and depressive symptomatology in chronic somatoform pain disorder. Soc Psychiatr Epidemiol. 2006, 41: 81-86.
    22. Vestlin M, Ramel E, Iwarrsson S. Quality of life after stroke: well-being, lifesatisfaction, and subjective aspects of work. Scand J Occup Ther, 2005, 12: 89-95.
    23. Donneiiy M, Power M, Russell M, et al. Randomized controlled trial of an early discharge rehabilitation service: the Belfast Community Stroke Trial. Stroke, 2004, 35: 127-133.
    24. Legg L, Langhorne P. Rehabilitation therapy services for stroke patients living at home: systematic review of randomized trials.Lancet. 2004, 363: 352-356.
    25. Lincoln NB, Walker MF, Dixon A, et al. Evaluation of a multiprofessional community stroke team: a randomized controlled trial. Clin Rehabil, 2004, 18: 40-47.
    1.朱镛连.神经康复学.北京:人民军医出版社, 2001, 1214.
    2. Schwartzkroin PA. Mechanisms of brain plasticity: from normal brain function to pathology. Int Rev Neurobiol, 2001, 45: 1-15.
    3. Rossini PM, Pauri F. Neuromagnetic integrated methods tracking human brain mechanism of sensorimotor areas, plastic, reorganization. Brain Res Brain Res Rev. 2000, 33: 131-154.
    4. Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis and behavioral recovery after neocortical infarction in rats. Stroke, 1995, 26: 2135-2144.
    5. Schallert T, Leasure JL, Kolb B. Experience-associated structural events, subependymal cellular proliferative activity, and functional recovery after injury to the central nervous system. J Cereb Blood Flow Metab, 2000, 20: 1513-1528.
    6. Keyvani K, Schallert T. Plasticity-associated molecular and structural events in the injured brain. J Neuropathol Exp Neurol, 2002, 61: 831-840.
    7. Jones TA. Multiple synapse formation in the motor cortex opposite unilateral sensorimotor cortex lesions in adult Rats. J Comp Neurol, 1999, 414: 57-66.
    8. Liu J, Solway K, Messing RO, et al. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci, 1998, 18: 7768-7778.
    9. Kee N, Sivalingam S, Boonstra R, et al. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods, 2002, 115: 97-105.
    10. Tonchev AB, Yamashima T, Zhao L, et al. Proliferation of neuronal progenitors after global brain ischemia in young adult macaque monkeys. Mol Cell Neurosci, 2003, 23: 292-301.
    11. Takasawa K, Kitagawa K, Yagita Y, et al. Increased proliferation of neuronal progenitors cells but reduced survival of newborn cells in the contralateral hippocampus after focal cerebral ischemia in rats. J Cereb Bloods Flow Metab, 2002, 22: 299-307.
    12. Jin K, Minami M, Lan JQ, et al. Neurogrnrsis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci USA, 2001, 98: 4710-4715.
    13. Hodics T, Cohen LG. Functional neoroimaging in motor recovery after stroke. Top Stroke Rehabil, 2005, 12: 15-21.
    14. Gereon N, Gregor S, Markur J, et al. Reorganization of sensory and motor systems in hemiplegic stroke patients -a positron emission tomography study. Stroke, 1999, 30: 1510-1516.
    15. Cramer SC, Nelles G, Benson RR, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 1997, 28: 2518-2527.
    16. Calautti C, Leroy F, Guincestre JF, et al. Dynamics of motor network overactivation after striatocapsular stroke: a longditudinal PET study using a fixed-performance paradigm. Stroke, 2001, 32: 2534-2542.
    17. Pineiro R, Pendlebury S, Johanson-Berg H, et al. Functional MRI detects posterior shifts in primary sensorimotor cortex activation after stroke: evidence of local adaptivereorganization? Stroke, 2001, 32: 1134-1139.
    18. Zimann U, Iliac TV, Pauli C, et al. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci, 2004, 24: 1666-1672.
    19. Ward NS, BrownMM, ThompsonAJ, et al. Neural correlates of motor recovery after stroke. Brain, 2003, 126: 2476-2496.
    20. Marshall RS, Perera GM, Lazar RM, et al. Evolution of cortical activation during recovery from corticospinal tract infraction. Stroke, 2000, 31: 656-661.
    21. Calautti C, Leroy F, Guincestre JY, et al. Sequential activation brain mapping after subcortical stroke. Neuroreport, 2001, 12: 3883-3886.
    22. Feydy A, Carlier R, Roby-Brami A, et al. Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke, 2002, 33: 1610-1617.
    23. Briones TL, Suh E, Josza L, et al. Changes in number of synapses and mitochondria in presynaptic terminals in the dentate gyrus following cerebral ischemia and rehabilitation training. Brain Res, 2005, 1033(1): 51-57.
    24. Tyc F, Boyadjian A. Cortical plasticity and motor activity studied with transcranial magnetic stimulation. Rev Neurosci, 2006, 17: 465-495.
    25. Ljubisavljevic M. Transcranial magnetic stimulation and the motor learning-associated cortical plasticity. Exp Brain Res, 2006, 173: 215-222.
    26.谭来勋,孙圣刚,张双国,等.脑梗死大鼠运动训练后星形胶质细胞与突触和运动功能的变化.中华物理医学与康复杂志, 2005, 27: 581-584.
    27. Chu CJ, Jones TA. Experience-dependant structural plasticity in cortex heterotopic to focal sensorimotor cortical damage. Exp Neurol, 2000, 166: 403-414.
    28. Brios Suh E, Josza L, et al. Behaviorally-induced ultrastructural plasticity in hippocampal region after cerebral ischemia. Brain Res, 2004, 997:137-146.
    29. Biernaskie J, Corbett D. Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci, 2001, 21: 5272-5280.
    30. Gago N, Avellana-Adalid V, Evercooren AR, et al. Control of survivor and proliferation of postnatal PSA-NCAM(+) progenitors, Mol Cell Neurosci, 2003,22: 162-178.
    31. Kasper C, Rasmussen H, Kastrup JS, et al. Struceutal basis of cell-cell Adhesion by NCAM. Nat Struct Biol, 2000, 7: 389-393.
    32.贾子善,赵大为,槐雅萍,等.运动训练对局灶性脑梗死大鼠梗死灶周围皮层NCAMmRNA表达的影响.中国康复医学杂志, 2005, 20: 502-503.
    33.杨华,李玲,潘惠娟.行为训练对双侧海马梗死大鼠学习记忆与NCAM的影响.中华神经外科疾病研究杂志, 2006, 5: 135-138.
    34. Eastwood SL, Burnet PW, Mcdonald B, et al. Synaptophysin gene expression in human brain: a quantitative in situ hybridization and immunocytochemical study. Neuroscience, 1994, 59: 881-892.
    35.李薇,李玲,牟翔,等.康复训练对脑梗死大鼠大脑皮质突触膜糖蛋白表达的影响.中华物理医学与康复杂志, 2001, 23: 334-336.
    36. Benowitz LI, Routtenberg A, GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci, 1997, 20: 84-91.
    37. Stromer RP, Kent TA, Hulsebosch CE. Neocortical neural prouting, synaptogenesis, and behavioral recoveryafter neocortical infarction in rats. Stroke, 1995, 26: 2135.
    38.李玲,徐莉,饶志仁,等.康复训练对脑梗塞偏瘫大鼠的行为学和脊髓GAP-43表达的影响.中国康复医学杂志, 2001, 16: 132-136.
    39.王亚男,杨永洁,石秉霞,等.运动训练对大鼠脑梗死后肢体功能和GAP-43、MAP-2表达水平的影响.中国康复医学杂志, 2004, 19: 132-136.
    40. Kowalski RJ, Williams RC JR. Microtubule associated protein 2 alters the dynamic proterties of microtnbule assembly and disassembly. Biol Chem, 1993, 268: 9847-9855.
    41. Horokawa N, Funakoshi T, Sato-Hurada R, Kanai Y. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J Cell Biol, 1996, 132: 667–679.
    42. Sanchez C, Diaz-Nido J, Avila J. Phosphorylation of microtubule associated protein 2 (MAP2) and its relevance for the regulation of neuronal cytoskeletal function. Prog Neurobiol. 2000, 61: 133–168.
    43. Marin R, Williams A, Hale S, et al. The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat. Physio Behav, 2003, 80: 167-175.
    44. Ding Y, Li J, Luan X, et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience, 2004, 124: 583-591.
    45. Kleim JA, Cooper NR, Vandenberg PM, et al. Exercises induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res, 2002, 934: 1-6.
    46. Swain RA, Harris AB, Wiener EC, et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neurosceince, 2003, 117: 1037-1046.
    47. Swain RA, Harris AB, Wiener EC, et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience, 2003, 117: 1037-1046.
    48. Prelich G, Kostura M, Marshark DR, et al. The cell cycle regulated proliferating cell nuclear antigenis required for SV40 DNA replication invitro. Nature, 1987, 326: 471-475.
    49. Felberg SJ, Mcintosh TK, Oliver DL, et al. Concurrent loss and proliferation of astrocytes following lateral fluid percussion brain injury in the adult rat. J Neurosci Res, 1999, 57: 271-279.
    50. Kaya SS, Mahmood A, Li Y, et al. Apoptosis and expression of p53 response proteins and cyclin D1 after cortical impact in rat brain. Brain Res, 1999, 818: 23-33.
    51.李玲,徐莉,晏陪松,等.脑梗死大鼠康复训练后脑的增殖细胞核抗原的表达及病理学改变.中华物理医学与康复杂志, 2000, 22: 339-342.
    52. Plantik J, Kuramoto N, Yoneda Y. Molecular mechanisms associated with long-term consolidation of NMDA signals. Life Sci, 2000, 67: 335-364.
    53. Johnsen SP, Pedersen L, Friis S, et al. Nonaspirin nonsteroidal anti-inflammatory drugs and risk of hospitalization for intracerebral hemorrhage: a population based case control study. Stroke, 2003, 34: 387-391.
    54. Nunez G, Benedict MA, Hu Y, et al. Caspases: the proteases of the apoptotic pathway.Oncogene, 1998, 54: 439-459.
    55. Estus S, ZaksWJ, Freeman RS, et al. Altered gene expression in neuons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis. J Cell Biol, 1994, 127: 1717.
    56.王虹,舒斯云,包新民,等.学习记忆过程中即刻早期基因c-fos、c-jun在纹状体边缘区的表达.第一军医大学学报, 2002, 22: 9-12.
    57.李玲,袁华,牟翔,等.康复训练对大鼠脑梗死后Fos和HSP70表达的影响.第四军医大学学报, 2001, 22: 901-904.
    58. Sonninen R, Virtanen T, Sivenius J, et al. Gene expression profiling in the hippocampus of rats subjected to focal cerebral ischemia and enriched environment housing. Restor Neurol Neurosci, 2006, 24: 17-23.
    59. Vaynman S, Ying Z, Gomez-Pinilla F, et al. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci, 2004, 20: 2580-2590.
    60. Berchtold NG, Chinn G, Chou M, et al. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience. 2005, 133: 853-861.
    61. Ding Y, Li J, Luan X, et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience, 2004, 124: 583-591.
    62. Komitova M, Mattsson B, Johansson BB, et al. Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke. 2005, 36: 1278-1282.
    63. Nygren J, Wieloch T, Pesic J, et al. Enriched environment attenuates cell genesis in subventricular zone after focal ischemia in mice and decreases migration of newborn cells to the striatum. Stroke, 2006, 37: 2824-2829.
    64. Komitova M, Zhao LR, Gido G, et al. Postischemic exercise attenuates whereas enriched environment has certain enhancing effects on lesion-induced subventricular zone activation in the adult rat. Eur J Neurosci, 2005, 21: 2397-2405.
    65. Briones TL, Suh E, Hattar H, et al. Dentate gyrus neurogenesis after cerebral ischemia and behavioral training. Biol Res Nurs, 2005, 6: 167-179.
    1. American Heart Association. Heart disease and stroke statistics—2005 update. Dallas: AHA, 2005.
    2. Gerben D, Susan D, Brendan C, et al. Opening the Black Box of Poststroke Rehabilitation: Stroke Rehabilitation Patients, Processes, and Outcomes. Arch Phys Med Rehabil, 2005, 86: 1-7.
    3.吴多文,张钦凤,李栋,等.脑卒中康复治疗的标准化、系统化前景.中国临床康复, 2004, 25: 5328-5329.
    4.王玉龙.康复评定.北京:人民卫生出版社, 2000: 168-217.
    5.徐国崇,李俐俐.脑卒中运动功能评价.中国临床康复, 2002, 5: 1233-1235.
    6.黄佳,郭敏,刘俊,等.脑血管意外的运动功能评定.神经疾病与精神卫生, 2005, 5: 480-482.
    7.周宁,南登昆.脑卒中评估方法的最新进展.中国临床康复, 2002, 7: 1867-1871.
    8.郭京伟,孙启良,袁翎雁.脑卒中病损评估量表中运动功能部分的有效性研究.中国康复医学杂志, 1999, 14: 104-106.
    9.陆敏,周宁,彭军.脑卒中残损评价表评定急性脑卒中患者的有效性分析.中华物理医学与康复, 2003, 25, 143-145.
    10.倪朝民.脑卒中的康复研究.中国康复医学杂志, 2005, 20: 3.
    11. Schallert T, Fleming SM, Woodlee MT. Should the injuryed and intact hemispheres be treated differently during the early phases of physical restorative therapy in experimental stroke or parkinsonism? Phys Med Rehabil Clin N Am, 2003, 14: 27-46.
    12. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declineswith time after focal ischemic brain injury. J Neurosci, 2004, 24: 1245–1254.
    13.方定华,王茂斌,胡大萌,等(“九五”攻关课题组).急性脑卒中早期康复的研究.中国康复医学杂志,2001,16: 300-306.
    14. Luft AR, McCombe-Waller S, Whitall J, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. J Am Med Assoc, 2004, 292: 1853-1861.
    15.胡永善.建立康复医学总体网络.中国康复医学杂志, 2002, 17: 316.
    16.朱国行,胡永善,吴毅,等.规范的三级康复治疗对急性脑卒中偏瘫病人神经功能恢复的影响.中国医学杂志, 2004, 84: 1955.
    17.范文可,胡永善,吴毅,等.规范三级康复治疗对脑卒中偏瘫患者运动功能康复的影响.中国康复医学杂志, 2006, 21: 484-487.
    18. Stroke unit Trialists’collaboration. Collaborative systematic review of the randomized trials of organized inpatients (stroke unit)care after stroke. Stroke unit Trialists’collaboration. BMJ, 1997, 314: 1151-1159.
    19. Candelise L, Gattinoni M, Bersano A, et al. Stroke-unit care for acute stroke patients: an observational follow-up study. Lancet, 2007, 369: 299-305.
    20. Gilligan AK, Thrift AG, Sturm JW, Dewey HM, et al. Stroke units, tissue plasminogen activator, aspirin and neuroprotection:which stroke intervention could provide the greatest community benefit? Cerebrovasc Dis, 2005, 20: 239–244.
    21. Fjaertoft H, Indredavik B, Lydersen S. Stroke unit care combined with early supported discharge: long-term follow-up of a randomized controlled trial. Stroke, 2003, 34: 2691-2692.
    22. Cadilhac DA, Ibrahim J, Pearce DC, et al. SCOPES Study Group. Multicenter comparison of processes of care between Stroke Units and conventional care wards in Australia. Stroke, 2004, 35: 1035–1040.
    23. Steiner T. Stroke Unit design intensive monitoring should be a routine procedure. Stroke, 2004, 35: 1018-1019.
    24. Bernhardt J, Dewey H, Thrift A, et al. Inactive and alone physical activity with in first 14 days in acute stroke unit care. Stroke, 2004, 35: 1005-1009.
    25. Kwakkel G, Wagenaar RC, Twisk JW, et al. Intensisity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet, 1999, 354: 191-196.
    26. Slade A, Tennant A, Chamberlain MA. A randomized control trial to determine the effect of intensity therapy upon length of stay in a neurological rehabilitation setting. J Rehabil Med, 2002, 34: 260-266.
    27. kwakkel G, van Peppen R, Wagenaar RC, et al . Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke, 2004, 35: 2529-2536.
    28. Bode RK, Heinemann AW, Semik P, et al. Relative importance of rehabilitation therapy characteristics on functional outcomes for persons with stroke. Stroke, 2004, 35: 2537-2542.
    29. Sonoda S, Saitoh E, Nagai S, et al. Full-time integrated treatment program, a new system for stroke rehabilitation in Japan: comparison with conventional rehabilitation. Am J Med Rehabil, 2004, 83: 88-93.
    30. Di Lauro A, Pellegrino L, Savastano G, et al. A randomized trial on the efficacy of intensive rehabilitation in the acute phase of ischemic stroke. J Neurol, 2003, 250: 1206-1208.
    31. Hendrics HT, van Limbic J, Geurts AC, et al. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil, 2002, 83: 1629-1637.
    32. Horgan NF, Finn AM. Motor recovery following stroke: abasis for evaluation. Disabil Rehab, 1997, 19: 64-70.
    33. Keith RA, Wilson DB, Gutierrez P. Acute and subacute rehabilitation for stroke: a comparison. Arch Phys Med Rehabil, 1995, 76: 495-500.
    34. Dam M, Tonin P, Casson S, et al. The effects of long-term rehabilitation therapy on post stroke hemiplegic patients. Stroke, 1993, 24: 1186-1191.
    35.李贞兰,安莲华,刘世文.神经生理学康复训练技术回顾与展望.中国康复医学杂志, 2005, 20: 231-233.
    36.黄永禧.中风患者运动再学习方法的原理与应用1.中国康复医学杂志, 1996, 11: 183.
    37.黄永禧.中风患者运动再学习方法的原理与应用.中国康复医学杂志, 1996, 11: 232.
    38. Hesse S, Werner C. Partial body weight supported treadmill training for gait recoveryfollowing stroke. Adv Neurol, 2003, 92: 423-428.
    39. Barbeau H, Visintin M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil, 2003, 84: 1458-1465.
    40. Kosak MC, Reding MJ. Comparison of partial body weightsupported treadmill gait training versus aggressive bracing assisted walking post stroke. Neurorehabil Neural Repair, 2000, 14: 13-19.
    41. Cunha IT, Lim PA, Qureshy H, et al. Gait outcomes after acute stroke rehabilitation with supported treadmill ambulation training: a randomized controlled pilot study. Arch Phys Med Rehabil, 2002, 83: 1258-1265.
    42. Taub E, Cargo JE, Uswatte G. Constraint-induced movement therapy: a new approach to treatment in physical rehabilitation. Rehab Psych, 1998, 43: 152-170.
    43. Taub E, Uswatte G. Constraint-induced movement therapy: A new family of techniques with broad application to physical rehabilitation- A clinical review. J Rehabil Res Dev, 1999, 36: 237-251.
    44. Bonifer NM, Anderson KM, Arciniegas DB. Constrait-induced movement therapy after stroke: efficacy for patients with minimal upper-extremity motor ability. Arch Phys Med Rehabil, 2005, 86: 1867-1873.
    45. Kobb B, Kunkel A, Muhlnickel W, et al. Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport, 1999, 10: 807-810.
    46. Ro T, Noser E, Boake C, et al. Functional reorganization and recovery after constraint-induced movement therapy in subacute stroke: case reports. Neurocase, 2006, 12: 50-60.
    47. Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA, 2006, 296: 2095-2104.
    48.毕胜,郑立芬,郑姝阳,等.“强制性使用”运动疗法在慢性脑损伤患者上肢功能恢复中的作用.中国康复医学杂志,2001,4:233-235.
    49. Mark VW, Taub E. Constraint-induced movement therapy for chronic strokehemiparesis and other disabilities. Restor Neurol Neurosci, 2004, 22: 317-336.
    50. Wolf SL, Winstein CJ, Miller JP, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA, 2006, 296: 2095-2104.
    51. Brogardh C, Sjolund BH. Constaint-induced movement therapy in patients with stroke: a pilot s tudy on effects of small group training and of extended mitt use. Clin Rehabil, 2006, 20: 218-227.
    52.毕胜,季林红,纪树荣.机器人辅助神经康复训练的研究进展,中国康复医学杂志,2004,19:931-932.
    53. Reinkensmeyer DJ, Emken Jl, Cramer SC. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng, 2004, 6: 497-525.
    54. Volpe BT, Krebs HI, Hogan N. Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Curr Opin Neurol, 2001, 14: 745-752.
    55. Peurala SH, Pitkanen K, Sivenius J, et al. Cutaneous electrical stimulation may enhance sensorimotor recovery in chronic stroke. Clin Rehabil, 2002, 16: 709-716
    56. Yozbatiran N, Donmez B, Kayak N, et al. Electrical stimulation of wrist and fingers for sensory and functional recovery in acute hemiplegia. Clin Rehabil, 2006, 20: 4-11.
    57. Robbins SM, Houghon PE, Woodbury MG, et al. The therapeutic effect of functional and transcutaneous electric stimulation on improving gait speed in stroke patients: a meta-analysis. Arch Phys Med Rehabil, 2006, 87: 853-859.
    58. Yan T, Hui-chen CW, Li LS. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke, 2005, 36: 80-85.
    59. Peurala SH, Pitkanen K, Sivenius J. Cutaneous electrical stimulation may enhance sensorimotor recovery in chronic stroke. Clin Rehabil, 2002, 16: 709-716.
    60. Selles RW, Li X, Lin F, et al. Feedback-controlled and programmed stretching of the ankle plantarflexors and dorsiflexors in stroke: effects of a 4-week intervention program. Arch Phys Med Rehabil, 2005, 86: 2330-2336.
    61. Heller F, Beuret-Blanquart F, Weber J. Postural biofeedback and locomotion reeducation in stroke patients. Ann Readapt Med Phys, 2005, 48: 187-195.
    62.韩瑞,倪朝民.肌电生物反馈法治疗对脑卒中偏瘫患者上肢功能的影响.中国康复理论与实践, 2005, 11: 209-210.
    63. Page SJ, Levine P, Sisto S, et al. A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil, 2001, 15: 233-240.
    64. Crosbie JH, McDounough SM, Gimore DH, et al. The adjunctive role of mental practice in rehabilitation of the upper limb after hemiplegic stroke: a pilot study. Clin Rehabil, 2004, 14: 60-68.
    65. Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke? Stroke. 2006, 37: 1941-1952.
    66.刘惠宇,朱丽芳,谢冬玲,等.运动想象结合运动再学习疗法对脑卒中偏瘫患者上肢功能恢复的影响.中华物理医学与康复杂志, 2006, 28: 528-530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700