用户名: 密码: 验证码:
β-分泌酶活性及其二聚化的动态光学成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔茨海默症(AD)是一种常见的中枢神经系统退行性疾病,临床表现为渐进的记忆丧失和认知障碍,是老年痴呆的一种主要类型。目前普遍认为β-淀粉样肽(Aβ)在AD患者脑内的产生、聚集和沉积在阿尔茨海默症的发病机理中扮演着重要的角色。而β-分泌酶(BACE)对淀粉样前体蛋白(APP)的酶解是Aβ产生的关键限速步骤,因此BACE成为AD药物治疗的一个重要靶标,发展检测BACE活性的技术和对BACE结构的了解对于药物的开发和筛选都具有重要意义。
     然而传统的生化方法难以实现在活细胞生理条件下对BACE的酶活性和结构的实时动态研究。本文利用荧光能量共振转移(FRET)光学成像技术,结合基因工程技术合成的FRET探针和荧光标记蛋白,在活细胞水平检测了BACE的活性及其二聚化结构。主要的研究结果如下:
     1)利用基因工程技术构建了五种基于绿色荧光蛋白(GFP)的可遗传编码的FRET探针。这些FRET探针由GFP的两个颜色突变体——青色荧光蛋白(CFP)和黄色荧光蛋白(YFP),及其之间的一段短肽构成。根据中间连接短肽序列的不同,获得了4种中间短肽为BACE识别底物位点(BACE substrate site,BSS)的FRET探针:YβCwt(野生型BSS)、YβCSweS(Sweden突变的短链BSS)、YβCSweL(Sweden突变的长链BSS)、YβCNFEV(‘NFEV’突变的BSS),和1种中间短肽为随机序列的对照探针YcC。利用荧光光谱扫描和SDS-PAGE凝胶电泳比较了五种探针的体外荧光特性和酶切效果。结果显示,五种荧光探针都具有较强的FRET效率;中间短肽为BSS的YβCwt、YβCSweS、YβCSweL、YβCNFEV的酶切效率依次增强,而对照探针YcC不能被BACE酶切。
     2)由于BACE及其底物APP均为分泌的跨膜蛋白,为了在活细胞水平检测BACE的活性,将经体外验证的FRET探针构建到真核表达载体pDisplay中,获得真核表达的FRET探针dYβC(displayed YβC)和对照探针dYcC(displayed YcC)。共聚焦荧光成像结果显示,在BACE阴性的HeLa细胞内,表达的dYβC和dYcC能够进入分泌途径,展示在细胞膜上,并显现出很高的FRET效率。当共转染BACE到HeLa细胞内时,dYβC的FRET效率明显降低,而对照探针dYcC的FRET效率始终保持不变。此结果表明dYβC可在活细胞中被BACE有效酶切,可用于动态检测活细胞内的BACE活性,为BACE抑制剂的开发提供了一个活细胞筛选的平台。此外,利用该探针分析了BACE在分泌途径中具备酶活性的起始位点,证实BACE早在内质网中就具有酶活性,能够对其底物进行酶切。
     3)为了研究BACE在活细胞中的存在形式,构建了CFP和YFP标记的全长BACE(BACE-FL)和BACE活性部分(BACE-NT)。共聚焦荧光成像和受体漂白FRET实验结果显示,BACE-FL能够定位到高尔基体、质膜、内涵体等细胞器中,而BACE-NT则被滞留在内质网里;BACE-NT是单体结构,而BACE-FL在活细胞内则以二聚体的形式存在。证明BACE的跨膜序列和C-末端对BACE的转运和定位具有重要作用,其二聚体结构由这些序列决定,而不由酶的活性位点决定。
Alzheimer’s disease (AD) is a progressive neurodegenerative disease that results in memory loss, global cognitive dysfunction, and functional impairments. It is one of the most common forms of dementia. Generation, aggregation, and deposition of amyloidβ-peptide (Aβ) in brains of AD patients are a prominent pathological feature of this devastating neurodegenerative disease, and play an important role in the AD pathogenesis. Cleavage of the amyloid precursor protein (APP) by the aspartyl proteaseβ-site APP-cleaving enzyme (BACE) is the first step in the generation of the Aβ. Therefore, BACE plays an important role in the generation of Aβand is believed to be a promising therapeutic target for the prevention and treatment of AD. It is crucial to exploit the monitoring technology of BACE activity and understand the structure of BACE.
     However, the traditional methods can not be used to monitor the activity and structure of BACE in the living cells under physiological conditions. Here, using the fluorescence resonance energy transfer ( FRET) technology , combining with the genetically encoded FRET probes and fluorescent proteins, we monitored the activity and structure of BACE in the living cells. The major results of this study are showed as following:
     1) Five genetically encoded FRET probes that based on green fluorescent protein (GFP) were constructed using bioengineering technique. The FRET sensors consist of a peptide linker sandwiched between monomeric yellow and cyan mutants of GFP. According to the sequence of the peptide linker, the FRET probes are used as a control probe (YcC) or four FRET probes for detecting the BACE activity: YβCwt, YβCSweS, YβCSweL, YβCNFEV, in those the peptide linkers are wild type BACE substrate site (BSS), shorter Sweden mutant BSS, longer Sweden mutant BSS, and‘NFEV’mutant BSS, respectively. Fluorescence spectroscopic analysis showed that a strong FRET signal was recorded, demonstrating energy transfer from CFP to YFP in integral FRET probes. The fluorescence spectroscopic and SDS-PAGE analysis results showed that the control probe YcC can not be cleaved by BACE, and the other four probes that peptide linker are BSS can be cleaved by BACE, and the cleavage efficiency of YβCwt、YβCSweS、YβCSweL and YβCNFEV was orderly increased.
     2) Since BACE and APP are both secretory transmembrane proteins, the FRET probe is chosen to be constructed into a mammalian expression vector pDisplay, creating a FRET probe dYβC (displayed YβC) for detecting BACE activity and a control probe dYcC (displayed YcC). Confocal imaging showed that dYβC and dYcC could be directed into the secretory pathway and displayed on the cell surface, giving it the chance of being cleaved by BACE. The dYβC and dYcC in the living cells showed high FRET efficiency. The FRET efficiency of dYβC decreased significantly in present of BACE, and the FRET efficiency of dYcC was unchanged. The results indicate the FRET probe can be cleaved by BACE efficiency in vivo, suggesting that the probe can be used for real-time monitoring of BACE activity. This assay provides a novel platform for BACE inhibitor screening in vivo. Furthermore, the activity of BACE in secretory pathway was detected using this FRET probe. The results suggest thatβ-secretase cleavage was initiated in the secretory pathway, as early as in the ER.
     3) The dimerization of BACE in intact living cells were monitered using confocal microscopy and acceptor photobleaching FRET. We constructed cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) tagged BACE-FL and BACE-NT, respectively. The expression and location of BACE-FL and BACE-NT are observed by confocal microscopy and FRET between CFP- and YFP- tagged BACE was detected by acceptor photobleaching method. The results showed that the BACE-FL can be transported to the Golgi apparatus, plasma membrane and endosomes, however, the BACE-NT is retained in the ER. BACE-FL exists as a dimmer in living cells, but the BACE-NT is monomer. This results suggesting the transmembrane and C-terminus region is important for normal transport and location, and is necessary for the dimerization of BACE.
引文
[1] Westmeyer G. G. Identification of a BACE dimer and characterization of its biochemical and enzymatic properties, Ph. D thesis thesis, 2006
    [2] Friedhoff P., von Bergen M., Mandelkow E. M., et al. Structure of tau protein and assembly into paired helical filaments. Biochim Biophys Acta, 2000, 1502(1): 122-132
    [3] Selkoe D. J. Alzheimer's disease: genes, proteins, and therapy. Physiological reviews, 2001, 81(2): 741-766
    [4] Iwatsubo T. The gamma-secretase complex: machinery for intramembrane proteolysis. Current opinion in neurobiology, 2004, 14(3): 379-383
    [5] Schenk D. Amyloid-beta immunotherapy for Alzheimer's disease: the end of the beginning. Nature reviews, 2002, 3(10): 824-828
    [6] Esler W. P., Wolfe M. S. A portrait of Alzheimer secretases--new features and familiar faces. Science, 2001, 293(5534): 1449-1454
    [7]高定国,高尚仁,郭丽. Alzheimer病近十年研究述评.心理科学, 2001, 24(2): 197-201
    [8]洪玉.阿尔茨海默病流行病学研究现状.新疆医科大学学报, 2003, 26(5): 509-511
    [9]程琦,程晓娟,姜国鑫.我国阿尔茨海默病流行病学研究.内科理论与实践, 2007, 2(2): 70-74
    [10]洪震.我国近年阿尔茨海默病流行学研究现状与展望.老年医学与保健, 2005, 11(4): 195-198
    [11] Yan S. D., Chen X., Fu J., et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature, 1996, 382(6593): 685-691
    [12] Wisniewski H. M., Frackowiak J. Commentary to: Differences between the pathogenesis of senile plaques and congophilic angiopathy in Alzheimer disease. Journal of neuropathology and experimental neurology, 1998, 57(1): 96-98
    [13] Dickson D. W. The pathogenesis of senile plaques. Journal of neuropathology andexperimental neurology, 1997, 56(4): 321-339
    [14] Verbeek M. M., Eikelenboom P., de Waal R. M. Differences between the pathogenesis of senile plaques and congophilic angiopathy in Alzheimer disease. Journal of neuropathology and experimental neurology, 1997, 56(7): 751-761
    [15] Masters C. L., Simms G., Weinman N. A., et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(12): 4245-4249
    [16] Jarrett J. T., Berger E. P., Lansbury P. T., Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry, 1993, 32(18): 4693-4697
    [17]邱烈.β-淀粉样蛋白与阿尔茨海默病.重庆医科大学学报, 2007, 32(增刊): 74-75
    [18] Grundke-Iqbal I., Iqbal K., Tung Y. C., et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(13): 4913-4917
    [19] Kosik K. S., Joachim C. L., Selkoe D. J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(11): 4044-4048
    [20] Nukina N., Ihara Y. One of the antigenic determinants of paired helical filaments is related to tau protein. Journal of biochemistry, 1986, 99(5): 1541-1544
    [21]李振,王丽梅,耿美玉. Tau蛋白与神经细胞死亡.中国临床康复, 2006, 10(6): 124-126
    [22] Liu S. J., Zhang J. Y., Li H. L., et al. Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. The Journal of biological chemistry, 2004, 279(48): 50078-50088
    [23] Ballatore C., Lee V. M., Trojanowski J. Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature reviews, 2007, 11: 54-65
    [24] Apelt J., Bigl M., Wunderlich P., et al. Aging-related increase in oxidative stresscorrelates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. Int J Dev Neurosci, 2004, 22(7): 475-484
    [25] Oddo S., Billings L., Kesslak J. P., et al. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron, 2004, 43(3): 321-332
    [26] Gotz J., Chen F., van Dorpe J., et al. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science, 2001, 293(5534): 1491-1495
    [27] Gotz J., Schild A., Hoerndli F., et al. Amyloid-induced neurofibrillary tangle formation in Alzheimer's disease: insight from transgenic mouse and tissue-culture models. Int J Dev Neurosci, 2004, 22(7): 453-465
    [28] Weidemann A., Paliga K., Durrwang U., et al. Formation of stable complexes between two Alzheimer's disease gene products: presenilin-2 and beta-amyloid precursor protein. Nature medicine, 1997, 3(3): 328-332
    [29] Selkoe D. J., Yamazaki T., Citron M., et al. The role of APP processing and trafficking pathways in the formation of amyloid beta-protein. Annals of the New York Academy of Sciences, 1996, 777: 57-64
    [30] Lammich S., Kojro E., Postina R., et al. Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 3922-3927
    [31] Olsson A., Hoglund K., Sjogren M., et al. Measurement of alpha- and beta-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Experimental neurology, 2003, 183(1): 74-80
    [32] Sherrington R., Rogaev E. I., Liang Y., et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 1995, 375(6534): 754-760
    [33] Rogaev E. I., Sherrington R., Rogaeva E. A., et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature, 1995, 376(6543): 775-778
    [34] Fraering P. C., Ye W., Strub J. M., et al. Purification and characterization of the human gamma-secretase complex. Biochemistry, 2004, 43(30): 9774-9789
    [35] De Strooper B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron, 2003, 38(1): 9-12
    [36] Sinha S., Lieberburg I. Cellular mechanisms of beta-amyloid production and secretion. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(20): 11049-11053
    [37] Small D. H. The role of presenilins in gamma-secretase activity: catalyst or cofactor? Journal of neurochemistry, 2001, 76(6): 1612-1614
    [38] Wolfe M. S., Haass C. The Role of presenilins in gamma-secretase activity. The Journal of biological chemistry, 2001, 276(8): 5413-5416
    [39] Kimberly W. T., LaVoie M. J., Ostaszewski B. L., et al. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(11): 6382-6387
    [40] Lundkvist J., Naslund J. Gamma-secretase: a complex target for Alzheimer's disease. Current opinion in pharmacology, 2007, 7(1): 112-118
    [41] Ogura T., Mio K., Hayashi I., et al. Three-dimensional structure of the gamma-secretase complex. Biochemical and biophysical research communications, 2006, 343(2): 525-534
    [42] Watanabe N., Tomita T., Sato C., et al. Pen-2 is incorporated into the gamma-secretase complex through binding to transmembrane domain 4 of presenilin 1. The Journal of biological chemistry, 2005, 280(51): 41967-41975
    [43] De Strooper B. Nicastrin: gatekeeper of the gamma-secretase complex. Cell, 2005, 122(3): 318-320
    [44] Hebert L. E., Scherr P. A., Beckett L. A., et al. Age-specific incidence of Alzheimer's disease in a community population. Jama, 1995, 273(17): 1354-1359
    [45] Kawas C., Gray S., Brookmeyer R., et al. Age-specific incidence rates of Alzheimer's disease: the Baltimore Longitudinal Study of Aging. Neurology, 2000, 54(11): 2072-2077
    [46]郭喆,张锦明.阿尔茨海默病的放射性分子显微探针研究进展.国际放射医学核医学杂志, 2006, 30(4): 199-202
    [47] Wang Y. J., Pollard A., Zhong J. H., et al. Intramuscular delivery of a single chain antibody gene reduces brain Abeta burden in a mouse model of Alzheimer's disease. Neurobiol Aging, 2007,
    [48] Zhong J., Lee W. H. Lithium: a novel treatment for Alzheimer's disease? Expert opinion on drug safety, 2007, 6(4): 375-383
    [49] Hussain I., Powell D., Howlett D. R., et al. Identification of a novel aspartic protease (Asp 2) as beta-secretase. Molecular and cellular neurosciences, 1999, 14(6): 419-427
    [50] Yan R., Bienkowski M. J., Shuck M. E., et al. Membrane-anchored aspartyl protease with Alzheimer's disease beta-secretase activity. Nature, 1999, 402(6761): 533-537
    [51] Vassar R., Bennett B. D., Babu-Khan S., et al. Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999, 286(5440): 735-741
    [52] Sinha S., Anderson J. P., Barbour R., et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature, 1999, 402(6761): 537-540
    [53]桑华春,任宏伟,王文清等.酶解淀粉样前体蛋白的β分泌酶研究进展.生命科学, 2001, 13(1): 1-5
    [54] Rockenstein E., Mante M., Alford M., et al. High beta-secretase activity elicits neurodegeneration in transgenic mice despite reductions in amyloid-beta levels: implications for the treatment of Alzheimer disease. The Journal of biological chemistry, 2005, 280(38): 32957-32967
    [55]方欣,杨吉平,赖红.β-分泌酶与阿尔茨海默病.解剖科学进展, 2007, 13(2): 183-185
    [56] Fischer F., Molinari M., Bodendorf U., et al. The disulphide bonds in the catalytic domain of BACE are critical but not essential for amyloid precursor protein processing activity. Journal of neurochemistry, 2002, 80(6): 1079-1088
    [57] Huse J. T., Pijak D. S., Leslie G. J., et al. Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer's disease beta-secretase. The Journal of biological chemistry, 2000, 275(43): 33729-33737
    [58] Yan R., Han P., Miao H., et al. The transmembrane domain of the Alzheimer's beta-secretase (BACE1) determines its late Golgi localization and access to beta -amyloid precursor protein (APP) substrate. The Journal of biological chemistry, 2001, 276(39): 36788-36796
    [59] Cook D. G., Forman M. S., Sung J. C., et al. Alzheimer's A beta(1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nature medicine, 1997, 3(9): 1021-1023
    [60] Huse J. T., Liu K., Pijak D. S., et al. Beta-secretase processing in the trans-Golgi network preferentially generates truncated amyloid species that accumulate in Alzheimer's disease brain. The Journal of biological chemistry, 2002, 277(18): 16278-16284
    [61] Kinoshita A., Fukumoto H., Shah T., et al. Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. Journal of cell science, 2003, 116: 3339-3346
    [62] Chyung J. H., Selkoe D. J. Inhibition of receptor-mediated endocytosis demonstrates generation of amyloid beta-protein at the cell surface. The Journal of biological chemistry, 2003, 278(51): 51035-51043
    [63]廖国超,聂爱华,肖军海等.β-分泌酶抑制剂的研究进展.中国药物化学杂志, 2006, 16(6): 373-379
    [64] Kitazume S., Nakagawa K., Oka R., et al. In vivo cleavage of alpha2, 6-sialyltransferase by Alzheimer beta-secretase. The Journal of biological chemistry, 2005, 280(9): 8589-8595
    [65]骆清铭,陆锦玲,曾绍群等.蛋白质相互作用的实时在体光学检测.生命科学中的单分子行为及细胞内实时检测.第一版.陈宜张,林其谁主编.北京:科学出版社, 2005: 244-268
    [66] Jares-Erijman E. A., Jovin T. M. FRET imaging. Nature biotechnology, 2003, 21(11): 1387-1395
    [67] Bastiaens P. I., Squire A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends in cell biology, 1999, 9(2): 48-52
    [68] Chalfie M., Tu Y., Euskirchen G., et al. Green fluorescent protein as a marker for gene expression. Science, 1994, 263(5148): 802-805
    [69] Tsien R. Y. The green fluorescent protein. Annual review of biochemistry, 1998, 67: 509-544
    [70] Kenworthy A. K. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods, 2001, 24(3): 289-296
    [71] Hink M. A., Bisselin T., Visser A. J. Imaging protein-protein interactions in living cells. Plant molecular biology, 2002, 50(6): 871-883
    [72] Meyer T., Teruel M. N. Fluorescence imaging of signaling networks. Trends in cell biology, 2003, 13(2): 101-106
    [73] Adams S. R., Harootunian A. T., Buechler Y. J., et al. Fluorescence ratio imaging of cyclic AMP in single cells. Nature, 1991, 349(6311): 694-697
    [74] Truong K., Sawano A., Mizuno H., et al. FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule. Nature structural biology, 2001, 8(12): 1069-1073
    [75] Mahajan N. P., Linder K., Berry G., et al. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nature biotechnology, 1998, 16(6): 547-552
    [76] Del Pozo M. A., Kiosses W. B., Alderson N. B., et al. Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nature cell biology, 2002, 4(3): 232-239
    [77] Neefjes J., Dantuma N. P. Fluorescent probes for proteolysis: tools for drug discovery. Nat. Rev. Drug. Discov., 2004, 3(1): 58-69
    [78] Mudher A., Lovestone S. Alzheimer's disease-do tauists and baptists finally shake hands? Trends in neurosciences, 2002, 25(1): 22-26
    [79]郁向静,何俊民.β-淀粉样蛋白在阿尔茨海默病中的病因学作用.临床和实验医学杂志, 2007, 6(2): 147-148
    [80] van Halteren-van Tilborg I. A., Scherder E. J., Hulstijn W. Motor-Skill Learning in Alzheimer's Disease: A Review with an Eye to the Clinical Practice. Neuropsychol Rev, 2007,
    [81] Glenner G. G., Wong C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and biophysical research communications, 1984, 120(3): 885-890
    [82] Allsop D., Landon M., Kidd M., et al. Monoclonal antibodies raised against a subsequence of senile plaque core protein react with plaque cores, plaque periphery and cerebrovascular amyloid in Alzheimer's disease. Neuroscience letters, 1986, 68(2): 252-256
    [83] Palutke M., KuKuruga D., Wolfe D., et al. Flow cytometric purification of Alzheimer's disease amyloid plaque core protein using thioflavin T. Cytometry, 1987, 8(5): 494-499
    [84] Roher A. E., Palmer K. C., Chau V., et al. Isolation and chemical characterization of Alzheimer's disease paired helical filament cytoskeletons: differentiation from amyloid plaque core protein. The Journal of cell biology, 1988, 107: 2703-2716
    [85] Roher A., Wolfe D., Palutke M., et al. Purification, ultrastructure, and chemical analysis of Alzheimer disease amyloid plaque core protein. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(8): 2662-2666
    [86] Stewart A. J., Fox A., Morimoto B. H., et al. Looking for novel ways to treat the hallmarks of Alzheimer's disease. Expert opinion on investigational drugs, 2007, 16(8): 1183-1196
    [87] Haass C., Lemere C. A., Capell A., et al. The Swedish mutation causes early-onset Alzheimer's disease by beta-secretase cleavage within the secretory pathway. Nature medicine, 1995, 1(12): 1291-1296
    [88] Ermolieff J., Loy J. A., Koelsch G., et al. Proteolytic activation of recombinant pro-memapsin 2 (pro-beta-secretase) studied with new fluorogenic substrates. Biochemistry, 2000, 39(40): 12450-12456
    [89] Kennedy M. E., Wang W., Song L., et al. Measuring human beta-secretase (BACE1) activity using homogeneous time-resolved fluorescence. Analyticalbiochemistry, 2003, 319(1): 49-55
    [90] Rizzo M. A., Springer G. H., Granada B., et al. An improved cyan fluorescent protein variant useful for FRET. Nature biotechnology, 2004, 22(4): 445-449
    [91] Zacharias D. A., Violin J. D., Newton A. C., et al. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science, 2002, 296(5569): 913-916
    [92] Shi X. P., Tugusheva K., Bruce J. E., et al. Novel mutations introduced at the beta-site of amyloid beta protein precursor enhance the production of amyloid beta peptide by BACE1 in vitro and in cells. J Alzheimers Dis, 2005, 7(2): 139-148
    [93] Citron M., Olterorf T., Haass C., et al. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature, 1992, 360(6405): 672-674
    [94] Lannfelt L., Johnston J., Bogdanovich N., et al. Amyloid precursor protein gene mutation at codon 670/671 in familial Alzheimer's disease in Sweden. Biochemical Society transactions, 1994, 22(1): 176-179
    [95] Kim H. S., Choi Y., Shin K. Y., et al. Swedish amyloid precursor protein mutation increases phosphorylation of eIF2alpha in vitro and in vivo. Journal of neuroscience research, 2007, 85(7): 1528-1537
    [96] Wakutani Y., Watanabe K., Adachi Y., et al. Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer's disease. Journal of neurology, neurosurgery, and psychiatry, 2004, 75(7): 1039-1042
    [97] Lannfelt L., Bogdanovic N., Appelgren H., et al. Amyloid precursor protein mutation causes Alzheimer's disease in a Swedish family. Neuroscience letters, 1994, 168(2): 254-256
    [98] De Strooper B., Umans L., Van Leuven F., et al. Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): cleavage of APP occurs in a late compartment of the default secretion pathway. The Journal of cell biology, 1993, 121(2): 295-304
    [99] Sisodia S. S. Secretion of the beta-amyloid precursor protein. Annals of the New York Academy of Sciences, 1992, 674: 53-57
    [100] Buxbaum J. D., Oishi M., Chen H. I., et al. Cholinergic agonists and interleukin 1regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(21): 10075-10078
    [101] Seubert P., Oltersdorf T., Lee M. G., et al. Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature, 1993, 361(6409): 260-263
    [102] Nicolaou M., Song Y. Q., Sato C. A., et al. Mutations in the open reading frame of the beta-site APP cleaving enzyme (BACE) locus are not a common cause of Alzheimer's disease. Neurogenetics, 2001, 3(4): 203-206
    [103] Goate A. M. Monogenetic determinants of Alzheimer's disease: APP mutations. Cell Mol Life Sci, 1998, 54(9): 897-901
    [104] Arnholt J. C., Sobell J. L., Heston L. L., et al. APP mutations and schizophrenia. Biological psychiatry, 1993, 34(10): 739-740
    [105] Hecimovic S., Wang J., Dolios G., et al. Mutations in APP have independent effects on Abeta and CTFgamma generation. Neurobiology of disease, 2004, 17(2): 205-218
    [106] Jonsson E., Forsell C., Lannfelt L., et al. Schizophrenia and APP gene mutations. Biological psychiatry, 1995, 37(2): 135-136
    [107] Houlden H., Crawford F., Rossor M., et al. Screening for the APP codon 670/671 mutations in Alzheimer's disease. Neuroscience letters, 1993, 154(1-2): 161-162
    [108] Citron M., Eckman C. B., Diehl T. S., et al. Additive effects of PS1 and APP mutations on secretion of the 42-residue amyloid beta-protein. Neurobiology of disease, 1998, 5(2): 107-116
    [109] Zeldenrust S. R., Murrell J., Farlow M., et al. RFLP analysis for APP 717 mutations associated with Alzheimer's disease. Journal of medical genetics, 1993, 30(6): 476-478
    [110] Fidani L., Goate A. Mutations in APP and their role in beta-amyloid deposition. Progress in clinical and biological research, 1992, 379: 195-214
    [111] Shoji M., Golde T. E., Ghiso J., et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science, 1992, 258(5079): 126-129
    [112] Thinakaran G., Teplow D. B., Siman R., et al. Metabolism of the "Swedish"amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that cleavage at the "beta-secretase" site occurs in the golgi apparatus. The Journal of biological chemistry, 1996, 271(16): 9390-9397
    [113] Koo E. H., Squazzo S. L. Evidence that production and release of amyloid beta-protein involves the endocytic pathway. The Journal of biological chemistry, 1994, 269(26): 17386-17389
    [114] Fliegel L., Burns K., MacLennan D. H., et al. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. The Journal of biological chemistry, 1989, 264(36): 21522-21528
    [115] Munro S., Pelham H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell, 1987, 48(5): 899-907
    [116] Pelham H. R. The dynamic organisation of the secretory pathway. Cell structure and function, 1996, 21(5): 413-419
    [117] Karpova T. S., Baumann C. T., He L., et al. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. Journal of microscopy, 2003, 209: 56-70
    [118] De Strooper B., Annaert W. Proteolytic processing and cell biological functions of the amyloid precursor protein. Journal of cell science, 2000, 113: 1857-1870
    [119] Glenner G. G. Alzheimer's disease: its proteins and genes. Cell, 1988, 52(3): 307-308
    [120] Zhou W., Qing H., Tong Y., et al. BACE1 gene expression and protein degradation. Annals of the New York Academy of Sciences, 2004, 1035: 49-67
    [121] Capell A., Steiner H., Willem M., et al. Maturation and pro-peptide cleavage of beta-secretase. The Journal of biological chemistry, 2000, 275(40): 30849-30854
    [122] Sidera C., Parsons R., Austen B. Post-translational processing of beta-secretase in Alzheimer's disease. Proteomics, 2005, 5(6): 1533-1543
    [123] Benjannet S., Elagoz A., Wickham L., et al. Post-translational processing of beta-secretase (beta-amyloid-converting enzyme) and its ectodomain shedding. The pro- and transmembrane/cytosolic domains affect its cellular activity and amyloid-beta production. The Journal of biological chemistry, 2001, 276(14): 10879-10887
    [124]魏晓超,李恒,纪建国等. BACE蛋白的表达?纯化和活性测定.生物化学与生物物理学报, 2002, 34(4): 498-501
    [125] Westmeyer G. G., Willem M., Lichtenthaler S. F., et al. Dimerization of beta-site beta-amyloid precursor protein-cleaving enzyme. The Journal of biological chemistry, 2004, 279(51): 53205-53212
    [126] Schmechel A., Strauss M., Schlicksupp A., et al. Human BACE forms dimers and colocalizes with APP. The Journal of biological chemistry, 2004, 279(38): 39710-39717
    [127] Nagai T., Ibata K., Park E. S., et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature biotechnology, 2002, 20(1): 87-90
    [128] Kleemola M., Toivonen M., Mykkanen J., et al. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy. Biochim Biophys Acta, 2007, 347: 1142-1148
    [129] Kuppig S., Nitschke R. A fusion tag enabling optical marking and tracking of proteins and cells by FRET-acceptor photobleaching. Journal of microscopy, 2006, 222: 15-21
    [130] Day R. N., Periasamy A., Schaufele F. Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods, 2001, 25(1): 4-18
    [131] Karasawa S., Araki T., Nagai T., et al. Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. The Biochemical journal, 2004, 381: 307-312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700