用户名: 密码: 验证码:
HA-玻璃-α-Al_2O_3梯度复合生物材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝陶瓷和羟基磷灰石(Hydroxyapatite,简称HA或HAP)陶瓷是研究和应用最广泛的两种生物陶瓷材料。这两种材料都具有各自的优缺点,但作为生物材料它们的性能具有互补性,采用一定的技术将二者复合在一起可以制备出高强度的生物活性陶瓷材料。由于烧结特性和热膨胀系数等性能的差异,将二者直接复合或在氧化铝陶瓷表面制备HA薄膜所获得的结果并不理想。如能借鉴梯度功能材料的设计思想,在α-Al_2O_3陶瓷基体表面制备组成呈梯度变化的HA—玻璃涂层,便可以有效地降低涂层和基体间的热应力,得到结合牢固的HA—玻璃—α-Al_2O_3梯度复合生物陶瓷材料。这种材料兼顾了HA陶瓷和α-Al_2O_3陶瓷的优点,具有很大的研究和应用价值。因此本文对HA—玻璃—α-Al_2O_3复合生物材料及梯度复合生物活性材料的制备、结构、性能与应用进行了基础研究。具体工作和所获的成果如下:
     1.用湿法在水—无水乙醇体系下合成了粒度30~50nm的羟基磷灰石(HA)粉。研究了凝胶洗涤和干燥方式等因素对粉体粒度等特性的影响,确定了合成纳米羟基磷灰石粉体的最佳工艺条件。对纳米HA和煅烧粗化的HA粉体的烧结特性进行了研究和对比。用常压烧结法分别制备了CaO-P_2O_5-SiO_2玻璃、R_2O-Al_2O_3-B_2O_3-SiO_2玻璃、α-Al_2O_3和R_2O-Al_2O_3-B_2O_3-SiO_2玻璃—α-Al_2O_3增韧HA生物陶瓷材料。通过测试坯体烧结收缩率、抗弯强度和断裂韧性(K_(IC))等性能研究了坯体组成对陶瓷材料的烧结特性和机械强度的影响;利用DTA、XRD、IR等手段分析了材料在烧结过程中所发生的物相变化,并用SEM观察了不同条件下制备的陶瓷材料的显微结构。上述工作为进一步设计和制备HA—玻璃—α-Al_2O_3梯度复合生物材料提供理论基础和实验依据。
     结果表明:CaO-P_2O_5-SiO_2玻璃能促进HA的烧结,并具有一定的增强作用;R_2O-B_2O_3-Al_2O_3-SiO_2系统玻璃可以显著降低HA烧结温度,但会促进HA的分解:适量α-Al_2O_3在HA陶瓷中具有增强作用,但过多的α-Al_2O_3会阻碍HA的烧结使烧结温度提高,烧结温度提高会导致HA分解转变成TCP。
     同时使用超细α-Al_2O_3和R_2O-B_2O_3-Al_2O_3-SiO_2玻璃复合增韧HA陶瓷可以取得较好效果。在复合陶瓷材料中玻璃起到降低烧结温度,促进烧结的作用;超细α-Al_2O_3起到增韧补强的作用,同时也能在一定程度上阻碍烧结过程中玻璃与HA的相互作用,防止HA分解。当α-Al_2O_3含量为10%(wt),玻璃含量为20%(wt)时,在1200℃下烧结1h可以获得平均抗折强度为105.82Mpa,平均K_(IC)值为0.84 MPa·m~(1/2)的复合HA生物陶瓷。
     2.以低温燃烧法合成的α-Al_2O_3超细粉体为主要原料、CaO-MgO-Al_2O_3-SiO_2玻璃为熔剂,采用常压烧结法制备了α-Al_2O_3陶瓷基体。在α-Al_2O_3陶瓷表面制备了HA—玻璃—α-Al_2O_3梯度复合生物涂层。其中玻璃分别采用了CaO-P_2O_5-SiO_2玻璃和R_2O-Al_2O_3-B_2O_3-SiO_2玻璃。研究了梯度涂层组成和结构对涂层与α-Al_2O_3陶瓷基体结合牢度和整体梯度材料抗折强度的影响;利用SEM观察了涂层断面和表面的显微结构,并用EDS分析了涂层断面的化学组成变化。
     对HA—玻璃—α-Al_2O_3梯度生物涂层的研究结果表明R_2O-Al_2O_3-B_2O_3-SiO_2玻璃比CaO-P_2O_5-SiO_2玻璃更适合于制备梯度复合材料。当采用R_2O-Al_2O_3-B_2O_3-SiO_2玻璃为梯度涂层玻璃组成,并在涂层中添加适量的超细α-Al_2O_3时,可以显著提高涂层的抗剥离强度。在适当的工艺条件下制备出了涂层与基体结合牢固,平均抗剥离强度达48.22MPa的α-Al_2O_3陶瓷基HA—玻璃—α-Al_2O_3梯度复合生物材料。
     3.对HA、HA—玻璃和HA—硅灰石(wollastonite,简记作W)—玻璃复合陶瓷的微波烧结进行了系统研究,确定了制备致密HA及其复合生物陶瓷材料的最佳微波烧结工艺条件。采用微波烧结制备高强度的ZrO_2-Al_2O_3陶瓷基体,并用微波烧结工艺在ZrO_2-Al_2O_3陶瓷基体表面制备了HA—硅灰石—玻璃梯度生物活性涂层。研究了烧结温度对涂层结构、相变和涂层与基体的结合牢度的影响,确定了最佳涂层烧结温度。
     微波烧结利于HA陶瓷坯体的致密化,可以实现低温快速烧结,并提高陶瓷的机械强度;微波烧结HA—玻璃复相陶瓷的效果不如纯HA,快速升温和烧结导致结构中多孔,强度较纯HA的低。微波烧结对HA的分解有促进作用,而且随着烧结温度升高和时间延长HA分解程度增大。微波烧结工艺可以用于制备梯度涂层材料,微波烧结所制备的HA—W—玻璃梯度涂层结构和性能与常规烧结法制备的梯度涂层相近。但利用微波可以实现快速烧结,缩短烧结周期,降低能耗。
     4.对HA—玻璃—α-Al_2O_3复合生物材料的生物医学性能进行了评价。在进行了一系列安全性评价试验基础上,采用物理模拟实验及小白鼠肌肉埋植实验研究了所研制的复合生物材料的降解特性;采用模拟体液(SBF)浸泡实验,用XRD、EDS和SEM等手段对HA—W—玻璃梯度涂层的生物活性进行了研究。
     生物医学性能评价结果表明:HA—R_2O-Al_2O_3-B_2O_3-SiO_2玻璃—α-Al_2O_3复合生物陶瓷材料对生物体无急性或亚急性毒性反应;溶血试验和热源反应试验结果表明,材料在生物体内不会引起溶血反应和热源反应;肌肉埋植试验结果表明,材料对肌肉无刺激性,发现有多核巨细胞吞噬现象,说明所研究的复合生物材料具有一定的生物降解现象。物理降解试验和肌肉埋植失重分析结果表明复合材料的组成对其降解特性有很大影响。HA—玻璃复合材料有一定的降解特性和良好的表面活性,而在复合生物材料中添加氧化铝有则利于提高耐久性。因此本文研制的HA—R_2O-Al_2O_3-B_2O_3-SiO_2玻璃—α-Al_2O_3梯度活性生物涂层具有表面活性高,内层耐久性好的优点,有利于临床应用。
     模拟体液浸泡实验表明,1150℃常规烧结和微波烧结的HA—W—玻璃梯度涂层都具有良好的表面生物活性,浸泡一段时间后表面形成了HA沉积层。而在1200℃下微波烧结HA—W—玻璃梯度涂层表面生物活性下降。
α-Al_2O_3 and hydroxyapatite(HA or HAP) ceramics are two kinds of important biomaterials that have been widely studied and used for some time.They have some advantages and disadvantages,but their advantages are complementarity.To compose them by suitable process can prepare novel biomaterials with the both advantages ofα-Al_2O_3 arid HA ceramics,just as high sthrength and excerllent bioactivity.Because of the differences t between their sintering ability and thermal expansion coefficient,it can not get ideal results to compose them strightly or prepare HA coating on the surface ofα-Al_2O_3 ceramics.If the designing idea of gradient fimction materials(GFM) is used for reference,to prepare HA-glass gradient coating onα-Al_2O_3 ceramics,the residual thermal stress in the coating can be reduced effectively and HA-glass-α-Al_2O_3 gradient composite biomaterials with high bonding strength can be got.This kind gradient material has the both advantages of HA andα-Al_2O_3 ceramics and has high value to be studied and applied.In this dissertation,the praperation,structure,properties and apllying bases of HA—Glass—α-Al_2O_3 gradient composite biomaterials were studied.
     The main works are as following:
     1.Hydroxyapatite with a particle size 30-50nm was synthesized by wet route in water-alcohol solvent system.The influences of washing-filtrating and drying ways of gel on the particle characteristics of HA were studied.The sintering characteristics of nanometer HA and coarse HA which was fired and ground were researched preliminarily.
     The CaO-P_2O_5-SiO_2 glass,R_2O-Al_2O_3-B_2O_3-SiO_2 glass,ultrafineα-Al_2O_3,and R_2O-Al_2O_3-B_2O_3-SiO_2 glass—α-Al_2O_3 reinforced HA ceramics were prepared respectively by traditional sintering process.The influnces of the composition of ceramics body on the sintering character and mechanical strength were studied by the tests of bulk shrinkage of the body after sintered,bending strength and fracture toughness(K_(IC)).The phase transition or reactions between the compostions that taking place during sintering process was analyzed by DTA,XRD and IR,and the microstuctures of the ceramics prepared under diffrent conditions were observed by SEM.These works and results provided a fundamental and experimental basis for preparing HA—Glass—α-Al_2O_3 gradient composite biomaterials.
     The results show that CaO-P_2O_5-SiO_2 glass can accelerate the sintering of HA and has the reinforcement effect on HA ceramics;The R_2O-Al_2O_3-B_2O_3-SiO_2 glass can decrease the sintering temperature of HA,but it can urge the decomposition of HA when sintered at higher temperature;A suitable amount of ultrafineα-Al_2O_3 can reinforce the HA ceramics but it can block the sintering of HA and raise the sintering temperature when adding amount is more than 10%(wt),the raising of sintering temperature can induce HA decomposing into TCP when it is sintered.
     The better result was got when R_2O-Al_2O_3-B_2O_3-SiO_2 glass andα-Al_2O_3 was used at same time to reinforce HA ceramics.Glass can accelerate the sintering of HA and lower the sintering temperature.Ultrafineα-Al_2O_3 has reinforcement effect and hinders the glass reacting with HA at some degree,and then prevents HA decomposing.When ultrafineα-Al_2O_3 addition amount is 10%(wt),the glass addition amount is 20%(wt) and sintered at 1200℃,the HA-Glass-α-Al_2O_3 composite biomaterial with average bending strength 105.82Mpa and toughness K_(IC) 0.84MPa.m~(1/2) can be got.
     2.α-Al_2O_3 cermics substrate was prepared by traditional sintering process when the ultrafineα-Al_2O_3 powder synthesized by low temperature combustion process used as main raw material and CaO-MgO-Al_2O_3-SiO_2 glass used as flux.The HA-Glass-α-Al_2O_3 gradient coatings were prepared onα-Al_2O_3 substrate.Two kinds of glass were used as the compositions of the coatings,i.e.CaO-P_2O_5-SiO_2 glass,R_2O-Al_2O_3-B_2O_3-SiO_2 glass.The influences of the composition and structure of the gradient coating on the combination intensity between the coating and ceramic substrate and the bending strength of the whole gradient composite were studied.The microstructures of surface and cross section of the gradient coating were observed by SEM,and the variation of chemical composition along the cross section was analyzed by EDS.
     The researching results of HA-Glass-α-Al_2O_3 gradient coating show that R_2O-Al_2O_3-B_2O_3-SiO_2 glass is more suitable to be used as the compenent of gradient coating than CaO-P_2O_5-SiO_2 glass.When R_2O-Al_2O_3-B_2O_3-SiO_2 glass is used and suitable amount ultrafineα-Al_2O_3 is added in the coating,the combination intensity between the coating and ceramic substrate increases remarkably.The HA-Glass-α-Al_2O_3 gradient composite biomaterials in which the coating combining withα-Al_2O_3 ceramic substrate tightly,the average combination intensity is about 48.22Mpa,can be prepared under a suitable condition.
     3.Microwave sintering of HA,HA-Glass and HA-Wollastonite(W)—Glass composite ceramics was studied systematically.The best process of microwave sintering of dense HA and these composite bioceramics was worked out.ZrO_2-Al_2O_3 substrate with high strength was prepared by microwave sintering process,and the HA-W—Glass gradient bioactive coating was prepared on ZrO_2-Al_2O_3 ceramic substrate by microwave sintering.The effects of sintering temperature on the structure,phase trasition and the combination intensity between the coating and ceramic substrate were studied initially,the best sintering temperature was decided.
     Microwave sintering is beneficial to the compaction of the HA ceramic body,to realize the fast sintering of HA at low temperature and to increase the strength of HA ceramics.The effects of microwave sintering of HA-Glass composite are not as good as that of pure HA. The fast heating and sintering induces the porosity of HA-Glass composite ceramics,and its strength is lower than that of pour HA.Microwave sintering can accelerate HA decomposing, and the decomposing degree of HA will increase with the raising of sintering temperature and the prolonging of sintering period.Microwave sintering process can be used to prepare gradient coatings.HA-W-Glass gradient coating sintered by microwave has similar structure and properties as that of the gradient coating conventional sintered.But microwave sintering can realize fast sintering,shortening the sintering period and saving energy.
     4.The biomedicine properties of the HA-Glass-α-Al_2O_3 composite biomaterials were evaluated.On the bases of a series of safety evaluation tests,the degradation properties of composite biomaterials were studied by simulative experiments and little rat intramuscular implantation experiment.Simulative body fluid(SBF) immersion test was done and XRD, EDS and SEM techniques were used to study the surface bioactivity of HA-W-Glass gradient coatings.
     The results of biomedicine properties evaluating show that:The HA-R_2O-Al_2O_3-B_2O_3 -SiO_2 system glass-α-Al_2O_3 composite biomaterials have no toxicity to the organism,and do not induce to hemolysis and pyrogen reaction.The results of intramuscular implantation experiment show that the composite biomaterials have no irritation,and the phagocytosis of mutinucleate cells proves the composite biomaterials are biodegradable in some degree.The results of physics degradation experiment and weight loss analyses after intramuscular implantation show that the composition of the composite biomaterials has effects on the degradation properties of the materials,the HA and glass phase is propitious to the degradation and increase the bioactivity of the biomaterials,and it can increase the durability of the biomaterials to add the ultrafineα-Al_2O_3 in the composite biomaterials.So that the surface of HA-R_2O-Al_2O_3-B_2O_3-SiO_2 system Glass-α-Al_2O_3 gradient coating has better bioactivity and the inter layers of the gradient coating have nice durability.
     The results of SBF immersion test show that both of HA-W-Glass gradient coatings conventional sintered and microwave sintered at 1150℃have good surface bioactivity.A deposit layer of HA will form on the surface of the gradient coating after it is immersed in SBF for some periods.But the bioactivity of the coating will be lowered when it is sintered at 1200℃.
引文
[1]山口乔等编,窦筠等译,生物陶瓷,北京,化学工业出版社,1992年2月
    [2]李世普 陈晓明 编著,生物陶瓷,武汉,武汉工业大学出版社,1989年9月
    [3]王志强,胡继林,刘晓蕾等.硅酸钙-磷酸盐复合骨水泥的制备及其性能的研究,生物医学工程学杂志,2006,23(1):121-123.
    [4]Hulbert S.F,Hench L.L.And Forbes D.,et al.History of bioceramics.Ceramics in Surgery(edited by P.Vincenzini),Elsevier Scientific Publishing Company,Amsterdam,1983:3-29
    [5][日]工业调查会编辑部编,陈俊彦译,最新精细陶瓷技术,北京,中国建筑工业出版社,1988年4月
    [6]王零森 编著,特种陶瓷,长沙,中南工业大学出版社,1994年6月
    [7]樱井良文,小井光惠等编,陈俊彦等译,新型陶瓷-材料及其应用,北京,中国建筑工业出版社,1983年12月
    [8]浙江大学等编著,硅酸盐物理化学,北京,中国建筑工业出版社,1980年7月
    [9]薄占满,贺宏胜.细晶氧化铝陶瓷的研究.天津,天津大学学报.1994,27(4):501-506
    [10]沈继耀,胡宗民等编著.电子陶瓷(第二章).北京,国防工业出版社,1979
    [11]薄占满,贺宏胜.低温烧结细晶氧化铝陶瓷的研究.硅酸盐学报.1995,23(3):272-278
    [12]Sato E.and Carry C.Yttria doping and sintering of submicrometer-grained α-alumina.J.Am.Ceram.Soc.1996,79(8):2156-2160
    [13]Thompson A.M.,Soni K.K.,Chan H.M.et al.Dopant distributions in rare-earth-doped alumina.J.Am.Ceram.Soc.1997,80(2):373-376
    [14]Fang J.,Thompson A.M.,Harmer M.P.et al.Effect of yttrium and lanthanum on the final-stage sintering behavior of ultrahigh-purity alumina.J.Am.Ceram.Soc.1997,80(8):2005-2012
    [15]张立德,牟季美著.纳米材料和纳米结构.北京,科学出版社,2002
    [16]Hahn H.,Logas J.and Averback R.SS.Sintedng characteristics of nano-crystalline TiO_2.J.Mater.Res.,1990,5(3):609-614
    [17]Vaszen R.Stover D.Processing and properties of nanophase non-oxide ceramics.Materials Science and Engineering:A,2001,301(1):59-68
    [18]李世普编著.特种陶瓷工艺学,武汉,武汉工业大学出版社,1989
    [19]吴南春,李包顺.Al_2O_3-(Ce)ZrO_2复相陶瓷的制备和力学性能研究.现代技术陶瓷.1998年增刊第十届全国高技术陶瓷学术年会论文集:381-383
    [20]陈沙鸥,戚凭.3Y-TZP对Al_2O_3陶瓷的韧化作用.现代技术陶瓷1998年增刊 第十届全国高技术陶瓷学术年会论文集:389-392
    [21]杨辉,张大海.Al_2O_3/SiC_(((p)))复合陶瓷力学性能的研究.现代技术陶瓷1998年增刊第十届全国高技术陶瓷学术年会论文集:427-429
    [22]徐利华,丁子上,黄勇.先进复相陶瓷的研究现状和展望(Ⅱ)--纳米陶瓷复相材料的研究发展.硅酸盐通报,1997,16(2):56-59
    [23]Freim J.and McKittric.Molding and fabrication of fine-grain alumina-zirconia composites produced from nonocrystalline precursors.J.Am.Ceram.Soc.,1998,81(7):1773-1780
    [24]Uematsu K.Grain-oriented microstructure of alumina ceramics made through the injection molding process.J.Am.Ceram.Soc.,1997,80(5):1313
    [25]谢灼利,孙宏伟.α-Al_2O_3稳定料浆的研究.无机材料学报,1998,13(6):818-822
    [26]侯耀永,李理.高分散高稳定α-Al_2O_3和纳米SiC单相及混合水悬浮液的制备.硅酸盐学报,1998,26(2):171-177
    [27]杨金龙,谢志鹏.α-Al_2O_3和悬浮体的流变性及凝胶注模成型工艺的研究.硅酸盐学报,1998,26(1):41-46
    [28]Mishra R.S.,Lesher E.C.,Mukherjee A.K.et al.High pressure sintering of nanocrystalline γ -Al_2O_3.J.Am.Ceram.Soc.,1996,79(11):2989-2992
    [29]朱文玄,吴一平.微波烧结技术及其进展.材料科学与工程,1998,16(2):61-64
    [30]徐耕夫,庄汉锐.复相α-β-sialon陶瓷的微波反应烧结.硅酸盐学报,1997,25(5):520-526
    [31]Hench L.L.,Splinter R.J.J.Bonding mechanisms at the interface of ceramic prosthetic materials.Biomed.Mater.Res.Symp.,1971,2,part1:117-141
    [32]Ogino M.and Hench L.L.Formation of calcium phosphate films on silicate glasses J.Non-Cryst.Solids.,1980,38and39:673-678
    [33]Fujiu T.,Ogino M.and Ichimura T.New explanation for the bonding behavior of fluorine containing bioglass.J.Non-Cryst.Solids.,1983,56,:417
    [34]Abe Y.,House M.,Kasuga T.,et al.High-strength Ca(PO_3)_2 glass-ceramics prepared by unidirectional crystallization.J.Am.Ceram.Soc.1982,65:c-189-189
    [35]McMillan P.W.Glass-Ceramics,London,Academic Press,1964
    [36]Kokubo T.Nagashima Y.Preparing of apatite-containing glass-ceramics by sintering and crystallization of glass powders.Youkyo-Kyokai-Shi,1982,90(3):151-158
    [37]Kokubo T.Artificial bones.Kagaku-Kogaku,1986,50(10):693-699
    [38]Lin F.H.,Huang Y.Y,Hon M.H.,et al.Fabrication and biocompatibility of a porous bioglass ceramic in a Na_2O-CaO-SiO_2-P_2O_5 system.J.Biomed.Engin.,1991,13(4):328-334
    [39]Toshihiro K.,Nakagawa K.,Masahiro Y.et al.Compositional dependence of formation an apatite layer on glass-ceranaics in simulated physiological solution.J.Mater.Sci.,1987,22:3721-3724
    [40]Kokubo A.,Sakka S.,Sako M.et al.Preparation of glass-ceramics containing crystalline apatite and magnesium titanate for dental crown.J.Ceram.Jpn.Inter.Ed.,1989,97:236-240
    [41]W.Vogel,W.H(O|")land and K.Naumann,特种玻璃,1985,2(4):49-57
    [42]干福熹主编,现代玻璃科学技术(下册),上海,上海科学技术出版社,1988
    [43]Zakharov N.A.An Analysis of the Phase Transitions in Biocompatible Ca_(10)(PO_4)_6(OH)_2.Technical Physics Letters,2001,Vol.27,No.12:1035-1037
    [44]Lin F.H.,Liao C.J.,Chen K.S,et al.Thermal reconstruction behavior of the quenched hydroxyapatite powder during reheating in air.Mater.Sci.Eng.2000,C13:97-104
    [45]沈卫,刘昌盛,孙祥明等.高纯超细羟基磷灰石粉末的合成.上海硅酸盐,1995,2:111-115
    [46]Tas A.C.,Korkusuz F.,Timicin M.and Akkas N.An investigation of the chemical synthesis and high temperature sintering behavior of calcium hydroxyapatite(HA) and tricalcium phosphate(TCP)bioceramics.J.Mater.Sci.Mater.Med.1997,8:511-518
    [47]Weng W.and Baptista J.L.A new synthesis of hydroxyapatite.J.Eur.Ceram.Soc.1997,17(9):1151-1156
    [48]王峰,李木森,邱俊等.溶胶-凝胶法制备纳米羟基磷灰石粉体的研究进展.生物骨科材料与临床研究.2004,1(2):36-38
    [49]Layrolle P.,Ito A.,Tateishi and T.Sol-Gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics.J.Am.Ceram.Soc.1998,81:1421-1428
    [50]Jillavenkatesa A.and Condrade Sr.R.A sol-gel processing hydroxyapatite,J.Mater.Sci.1998,33:4111-4119
    [51]Bose S.,and Saha S.K.Synthesis of hydroxyapatite nanopowders via sucrose-templated sol-gel method.J.Am.Ceram.Soc.2003,86:1055-1057
    [52]Lim G.K.,Wang J.,Ng S.C.,et al.Processing of hydroxyapatite via microemulsion and emulsion routes,Biomaterials,1997,18:1433-1439
    [53]Liu H.S.,Chin T.S.,Lai L.S.,et al.Hydroxyapatite synthesized by a simplified hydrothermal method,Ceram.Int.1997,23:19-25
    [54]Toriyama M.,Ravaglioli A.,Krajewski A.,et al.Slip casting of mechanochemically synthesized hydroxyapatite.J.Mater.Sci.,1995,30:3216-3221
    [55]Yeong K.C.B.,Wang J.and Ng S.C.Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO_4.Biomaterials,2001,22(20):2705-2712
    [56]Zakharov N.Z.,Toporov Yu.P.,Klyuev V.A.,et al.The effect of mechanical activation on the synthesis of biocompatible Ca_(10)(PO_4)_6(OH)_2.Technical Physics Letters,2001,Vol.27,No.9:746-748
    [57]方佑龄,方侃,赵文宽.从脱脂米糠合成羟基磷灰石的研究,精细化工,1994年11期:49-53
    [58]Xu J.L.,Khor K.A.,Dong Z.L.,ea al.Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency(rf) thermal plasma,Mater.Sci.Eng.2004,A374:101-108
    [59]程逵,翁文剑,葛曼珍.生物陶瓷涂层.材料科学与工程,1998,3:8-12
    [60]唐膺,翁文剑,陆剑平.热压烧结羟基磷灰石陶瓷.中国陶瓷,1994,2:4-7
    [61]Wojiciech L.S.& Masahiro Y.Preparation of fibrous hydroxyapatite ceramics from hydroxyapatite whiskers,J.Am.Ceram.Sot.,1998,83(3):765
    [62]Fang Y.,Agrawal D.K.,et al.Microwave sintering of hydroxyapatite ceramics.J.Mater.Res.,1994,Vol9,1:180-183
    [63]郑岳华,侯小妹.多孔羟基磷灰石生物陶瓷的研究进展.硅酸盐通报,1995年第3期:20-24
    [64]Li S.H.,de Wijn J.R.,Layrolle P.,et al.Novel method to manufacture porous hydroxyapatite by dual-phase mixing.J.Am.Ceram.Soc.2003,86(1):1065-1073
    [65]杨守峰,张世新.纳米羟基磷灰石结构梯度材料.现代技术陶瓷,1998,增刊,第十届全国高技术陶瓷学术年会论文集:789-791
    [66]Tampieri A.,Gelotti G.,and Sprio S.,et al.Porosity-graded hydroxyapatite ceramics to replace nature bone.Biomaterials,2001,22:1365-1370
    [67]Knowles J.C,Bonfield W.J.Development of a glass reinforced hydroxyapatite with enhanced mechanical properties.The effect of glass composition on mechanical properties and its relationship to phase changes.Biomed Mater Res 1993;27:1591-1598.
    [68]Knowles J.C,Abrahams I.,Bonfield W.Effect of reinforcing glass composition on phase transformation and crystallographic parameters in hydroxyapatite. In: Ducheyne P, Christiansen D, eds. Bioceramics, Vol 6. Butterworth-Heinemann, 1993: 191-196.
    
    [69] Lopes M. A., Silva R. F., Monteiro F. J. Microstructural dependence of Young's and shear moduli of P_2O_5 glass reinforced hydroxyapatite for biomedical applications. Biomaterials, 2000,21: 749-754
    
    [70] Santos J. D., Knowles J. C, Reis R. L., et al. Microstructural characterization of glass-reinforced hydroxyapatite composites. Biomaterials 1994; 15(1): 5-10.
    
    [71] Knowles J.C. Development of hydroxyapatite with enhanced mechanical properties: effect of high glass additions on mechanical properties and phase stability of sintered hydroxyapatite. Br. Ceram. Trans. 1994, 93(3), 100-103.
    
    [72] Knowles J.C. Talal S. and Santos J. D. Sintering effects in a glass reinforced hydroxyapatite. Biomaterials 1996 17(14): 1437-1442
    [73] Queiz A. C, Santos J. D., Monteiro F. J., et al. Dissolution studies of hydroxyapatite and glass-reinforced hydroxyapatite ceramics. Materials Characterization, 2003, 50: 197-202
    
    [74] Lopes M. A., Knowles J. C, Santos J. D., et al. Direct and indirect effects of P_2O_5 glass reinforced-hydroxyapatite composites on the growth and function of osteoblast-like cells. Biomaterials, 2000,21: 1165-1172
    
    [75] Queiz A. C, Santos J. D., Monteiro F. J., et al. Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites. Biomaterials. 2001, 22(11): 1393- 1400
    
    [76] Goller G., Demirkiran H., Oktar F. N.,et al. Processing and characterization of bioglass reinforced hydroxyapatite composites Ceramics International, 2003, 29 :721-724
    [77] Margrita, D.L., Peter L., Istvan S. Composite bioceramics in the system hydroxyapatite-yattria stabilized zirconia. Adv. Sci. Technol. 1995 12: 321-323
    [78] Osumu S., Kiyotaka S. Zirconium compound-dispersed hydroxyapatite of high strength and toughness. 1989, JP 01,24011
    [79] Wu J. M., Yeh T. S.Sintering of hydroxyapatite-zirconia composite materiale. J. Mater. Sci. 1988, 23(10): 3771
    [80] Nagarajan V.S., Rao K.J. Structural, mechanical and biocompatibility studies of hydroxyapatite-derived composites toughened by zirconia addition J. Mater. Chem. 1993, 3: 43-51.
    [81] Rapacz-Kmita A., S'lo'sarczyk A., Paszkiewicz Z., et al. Phase stability of hydroxyapatite-zirconia (HA-ZrO_2) composites for bone replacement. J. Mole. Struct, 2004, 704(1-3): 333-340
    [82] Rapacz-Kmita A., S'lo'sarczyk A., Paszkiewicz Z., et al. Mechanical properties of HA-ZrO_2 composites. Euro. Ceram. Soc, 2006, 26( 8):1481-1488
    [83] Li W., Gao L. Fabrication of HA-ZrO_2 (3Y) nano-composite by SPS. Biomaterials, 2003,24:937
    [84] Margrita D.L., Andras J., Gyorgy V., et al. Mechanical properties of Hydroxyapatite/Fluorapatite -Alumina composite. Silic. Ind. 1996, 61(3-4): 85-90
    [85] Ji H., Marquis P.M. Sintering behaviour of hydroxyapatite reinforced with 20 wt % Al_2O_3. J. Mater. Sci. 1993:28: 1941-1945.
    [86] Gautier S., Champion E. and Bernache-Assollant D. Processing, microstructure and toughness of Al_2O_3 platelet-reinforced hydroxyapatite. J. Europ. Ceram. Soc. 1997, 17: 1361-1369
    [87] Chiba A., Kimura S., Raghukandan K., et al. Effect of alumina addition on hydroxyapatite biocomposites fabricated by underwater-shock compaction.Mater.Sci.Eng.2003,A350:179-183
    [88]Li J.,Fartash B.and Hermansson L.Hydroxyapatite--alumina composites and bone-bonding.Biomoterials,1995,16:417-422
    [89]Kim H.W.,Koh Y.H.,Seo S.B.,et al.Properties of fluoridated hydroxyapatite-alumina biological composites densified with addition of CaF_2.Mater.Sci.Eng.2003,C 23:515-521
    [90]SuchaneK W.,Yashima M.,Kakihara M.,et al.Hydroxyapatite/Hydroxyapatite-Whisker Composites without Sintering Additives:Mechanical properties and microstructural evolution.J.Am.Ceram.Soc.1997,80(11):2085-2813
    [91]M.Knepper,S.Moricca t and B.K.Milthorpe.Stability of hydroxyapatite while processing short-fibre reinforced hydroxyapatite ceramics.Biomaterials 1997,18(23):1523-1528
    [92]Sakaki T.,Fujita A.,Sinike T.,et al.Application to dental impants of the sintered rare-earth coating hydroxyapatite.Kidorui,1989,14:76-77
    [93]Ohno K.,Sugimoto A.,Shirota T.et al.Application of dense hydroxyapatite-metal complex artificial root implant to maxillofacial prosthetics(part Ⅰ).Showa shigakkai zashi 1988,8(3):325-336
    [94]Tian J.,Zhang S.,Shao Y.,et al.Nano-size SiC particle-reinforced hydroxyapatite composite.Ceram.Trans.1996 63(Bioceram.:Mater.Appl.Ⅱ):107-114
    [95]Yu S.,Hariram K.P.,Kumar R.,et al.In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites.Biomaterials,2005,26(15):2343-2352
    [96]李志刚,李世普.牙根种植体生物活性涂层的研制及其生物学性能评价.玻璃与搪瓷,1997年25(6):6-9
    [97]罗宇宽.HA陶瓷涂层与金属密着界面的电镜观察.中国陶瓷,1993,(4):26-29
    [98]黄立业,憨 勇,徐可为等.电化学沉积-水热合成法制备羟基磷灰石生物涂层的工艺研究.硅酸盐学报1998.26(1):87-91
    [99]闫玉华,李志刚,陈晓明等.钛合金牙根种植体表面烧结复合涂层的研究.硅酸盐学报.1997,25(5):599-602
    [100]Ozeki K.,Yuhta T.,Aoki H.,et al.Inhibition of Ni Release from NiTi Alloy by Hydoxyapatite,Alumina,and Titanium Sputtered.Bio-Medical Meter.Eng.,2003,13:271-279
    [101]Chou B.Y.,Chang E.Phase transformation during plasma spraying of hydroxyapatite-10-zirconia composite coating.J Am.Ceram.Sot.,2002,85(3):661-669
    [102]Rapacz-Kmita A.,S'lo'sarczyk A.,Paszldewicz Z.HA-ZrO_2 composite coatings prepared by plasma spraying for biomedical applications.Ceram.Int.2005,31:567-571
    [103]Kim D.H.,Kong Y.M.,Lee S.H.,et al.Composition and crystallization of hydroxyapatite coating layer fprmed by electron beam deposition.J Am.Ceram.Sot.,2003,86(1):186-88
    [104]M.P.Feeraz,Knowles J.C.,Olsen I.,et al.Flow cytometry analysis of the effects ofpre-immersion on the biocompatibility of glass-reinforced hydroxyapatite plasma-sprayed coatings Biomaterials,2000,21:813-820
    [105]M.P.Feeraz,F.J.Monteiro,A.P.Serro,et al.Effect of chemical composition on hydrophobicity and zeta potential of plasma sprayed HA/CaO-P_2O_5 glass coatings.Biomaterials,2001,22:3105-3112
    [106]Habibovic P.,Barrère F.,Blitterswijk C.A.,et al.Biomimetic Hydroxyapatite Coating on Metal Implants.J Am.Ceram.Sot.,2002,85(3):517-522
    [107]Kim T.N.,Feng Q.L.,Luo Z.S.,et al.Highly adhesive hydroxyapatite coatings on alumina substrates prepared by ion-beam assisted deposition.Surface and Coatings Technology.1998,99(1-2):20-23
    [108]Hontsu S.,Matsumoto T.,Ishii J.,et al.Electrical properties of hydroxyapatite thin films grown by pulsed laser deposition.Thin Solid Films.1997,295(1-2):214-217
    [109]Shi D.and Jiang G.Synthesis of hydroxyapatite films on porous Al_2O_3 substrate for hard tissue prosthetics.Materials Science and Engineering:C.1998,6(2-3):175-182
    [110]Takaoka T.,Okumura M.,Ohgushi H.et al.Histological and biochemical evaluation of osteogenic response in porous hydroxyapatite coated alumina ceramics.Biomaterials 1996 17(15):1499-1505
    [111]孙淑珍,徐晓虹,陈安民等.氧化锆增韧陶瓷人工关节柄部H-Z涂层材料的研究.现代技术陶瓷.1998,增刊,第十届全国高技术陶瓷学术年会论文集:813-816
    [112]Kim H.W.,Geogiou G.,Knowles J.C.,et al.Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility.Biomaterials,2004,25:4203-4213
    [113]余茂黎,魏明坤.梯度功能材料的研究动态.功能材料.1992,23(3):184-189
    [114]朱信华,孟中岩.梯度功能材料的研究现状与展望.功能材料.1998,29(2):121-127
    [115]Maruno S.Characteriztion and biological application of ha-g-ti functionally gradient composites.Proc.IMMM'93(Intern.Semi.Microstruc.& Mechan.Properties New Eng.Mater.) Ed.By Tokuda M.et al.Mie Acad Press,1993:305-312
    [116]Maruno S.,Ban S.,Iwata H.et al,USP 5,077,132,Dec.31:1991
    [117]Maruno S.,Ban S.,Wang Y.F.et al,Properties of functionally gradient composite of hydroxyapatite containing glass coated titanium and characters for bioactive implant,J.Ceram.Soc.Japn.,1992,100(4):362-367
    [118]Ban S.,Maruno S.,Arimoto N.,et al.Reactivity of hydroxyapatite,α-tricalcium phosphate and tetracalcium phosphate with alumina-borosilicate glass.Phosphate Res.Bull.,1996,6:337-340
    [119]Ban S.,Maruno S.Arimoto N.et al.Effect of electrochemically deposited apatite coating on bonding of bone to the HA-G-Ti composite and titanium.J.Biomed.Mater.Res.,1997,36:9-15
    [120]Roop Kumar R.,Wang M.,Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system.Mater.Lett.,2002,55:133-137
    [121]赵九蓬,李壵,刘丽编,新型功能材料设计与制备工艺,北京,化学工业出版社,2003年6月
    [122]王迎军,赵子衷,宁成云等,生物活性梯度涂层的显微结构与附着强度,材料研究学报,1999,13(1):103-106
    [123]Khor K.A.,Gu Y.W.,Quek C.H.,et al.Plasma spraying of functionally graded hydroxyapatite/Ti-6Al-4V coatings.Surface and Coating Technology,2003,168(2-3):195-201
    [124]Wang C.X.,Chen Z.Q.,Wang M.,et al.Functionally graded calcium phosphate coatings produced by ion beam sputtering/mixing deposition.Biomaterials,2001,22(12):1619-1626
    [125]常程康,丁传贤.氧化锆基羟基磷灰石梯度涂层材料的研究,无机材料学报,1998,13(1):71-77
    [126]ASTM标准年鉴;医用装置标准,13.01卷,1984美国材料试验协会
    [127]奚廷斐 美国医用装置管理概况.世界医疗器械,1997,3(7):55-57
    [128]ISO 10993-1992 International standard:Biological evaluation of medicine device
    [129]国家标准GB/T 16886.1-1997医疗器械生物学评价,第一部分:试验选择指南
    [130]俞耀庭 主编 生物医用材料,天津大学出版社,2000年12月,36-37
    [131]Kingsley J J,Patil K C.A novel combustion process for the synthesis of fine particle-aluminum and related oxide materails.Mater Lett,1988,6(11/12):427-432
    [132]李汶霞 殷声.低温燃烧合成陶瓷微粉.硅酸盐学报,1999,Vol.27(1):71-76
    [133]Siriphannon P.Preparation and sintering of CaSiO_3 from copreeipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution.J.Mater.REs.,Vol.14.No.2:529
    [134]丘利,胡玉和编.X射线衍射技术及设备.北京,冶金工业出版社,1998年2月
    [135]"ISO".Biological Evaluation of Dental Materials.TR 7405(E),1984
    [136]西北轻工业学院主编,玻璃工艺学,轻工业出版社,北京,1995年4月
    [137]Knotek O.,Elsing R.and Strompen N.On the properties of plasma-sprayed oxide and metal-oxide coatings.Thin Solid Films,1984,118(4):457-466
    [138]Yi F.,Dinesh K.Agrawal D.M.,et al.Microwave sintering of hydroxyapatitie.J.Mater.Res.,1994,19(1):180-187
    [139]蔡杰,徐耕夫,李文兰等.羟基磷灰石的快速烧结研究.中国科学院研究生学院学报,1996,Vol.13(2):163-167
    [140]孙璐薇,冉均国,苟立等.微波烧结多孔双相生物陶瓷的性能.材料研究学报,2004,Vol.18(4):429-434
    [141]吴苏,鹿安理,白向钰等.陶瓷材料的微波烧结机理探讨.航空材料学报,1996,Vol.16(4):24-29
    [142]吴红,史洪刚,冯宏伟等.微波烧结技术的研究进展.兵器材料科学与工程,2004,Vol.27(4):59-61
    [143]蔡杰,郭景坤.陶瓷材料微波烧结研究.无机材料学报,1995,Vol.10(2):164-168
    [144]林伟,白新德,马文君等.微波在陶瓷加工中的应用与进展.清华大学学报(自然科学版),2002,vol.42(5):696-700
    [145]陈晓峰,王迎军,赵娜如等.溶胶-凝胶生物玻璃多孔材料显微结构和生物活性的扫描电镜及红外光谱分析.电子显微学报2003,21(4):304-309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700