用户名: 密码: 验证码:
极低频磁场发生器的开发及其在神经细胞电生理特性研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物电活动是生物体的一种重要的生命活动。神经元放电和膜片钳离子通道是电生理研究的两个重要领域。生物电活动既然是一种电,就必然受到外界电磁活动一定程度上的影响。目前采用磁场刺激神经细胞和肿瘤细胞是生物磁研究的两个重要课题,适当的磁场刺激对神经系统疾病起到一定的治疗作用,如帕金森症、神经性疼痛、癫痫、抑郁症、精神分裂症等,海马则是学习和记忆的重要脑区,特别是帕金森症的重要病灶区域。因此本文采用磁场刺激海马细胞,通过神经放电信号和钾离子通道信号分析研究其电生理特性的变化。该研究具有重要的理论意义与实际价值。
     本文首先设计了一款电生理磁刺激实验通用的极低频磁场发生器,该仪器能产生多种波形、频率、强度且空间分布均匀的磁场。然后通过神经元放电和膜片钳离子通道两种方法对大鼠海马细胞在极低频磁场作用前后的放电特性和离子通道特性分别进行了研究。最后分析了两种相互关联的研究方法下的结果。
     本研究工作主要获得了如下研究成果:
     (1)研制了一台适于生物磁刺激的多波形、多参数的磁场发生器。该仪器的特点是:
     a)强度从几个毫特斯拉(mT)提高到100 mT;
     b)通过硬件补偿和软件修正的方案,克服了通常随波形频率提高,磁场强度急剧递减的问题。产生从1 Hz到500 Hz,磁场强度均衡的磁场;
     c)针对三角波磁场能够产生恒定的感应电场的特征,也开发了一种三角波形的磁场发生器。
     (2)构造了一种适用于电生理信号的特定的小波降噪算法。在采用小波降噪中,针对电生理信号的两个特点:符合全或无定律;具有一定的不应期。采用方波haar函数作为母函数,构造了一种独特的小波降噪方法。通过检验,该方法较传统均值滤波效果有所提高。
     (3)提出了一种验证离子单通道降噪算法优劣的方法。针对离子单通道全或无的特点,通过原始信号,构造了一种标准波形来衡量降噪效果。
     (4)海马细胞在极低频磁场刺激作用下的放电信号更加具有节律性。通过自回归(Autoregressive,AR)模型谱分析表明,磁场刺激时的海马细胞放电信号的谱线更加光滑,说明高频率成分减少了,表明信号具有更好的节律性。
     (5)海马细胞在磁场刺激作用下其电生理活动更加活跃。采用AR模型谱分析方法研究表明,极低频磁场刺激海马细胞后,其AR频谱发生后移,电活动的频度增高了,表明电生理活动更加频繁。采用随机过程和统计学分析方法研究表明,极低频磁场刺激海马细胞时其发放动作电位的次数增加,峰峰间期(Inter Spike Interval, ISI)减小,钾离子通道的开放时间有所增加,静息时间有减小的趋势。这与有关文献报道的结论是一致的。
     本文采用的两种实验研究都得出特定磁场能够促进电生理活动的特性。从生理学分析,Na~+离子通道在神经元放电中承担主要角色,但是钾离子通道开放也会更加活跃,于是我们似乎可以得出如下推论:特定的磁场刺激对Na~+-K~+泵的活跃起到了一定的促进作用,虽然Na~+-K~+泵的K~+离子流动的方向与离子通道相反。这与文献报道磁场直接作用于Na~+-K~+泵并提高生物膜活性是相一致的,从而实验的角度印证磁场对神经系统疾病的治疗作用。
Electrophysiological activity is an important activity of organisms. Neurons spark and ion channel in patch clamp are two important areas. Since electrophysiological activity is electricity; it will be some affected by external electromagnetic activity. Using electromagnetic fields to stimulate nerve cells and tumor cells are two important subjects in bioelectromagnetics research studies. The appropriate magnetic stimulation on diseases of the nervous system plays a certain role in treatment, such as Parkinson's disease, neuropathic pain, epilepsy, depression, schizophrenia, etc. Hippocampal is an important region in brain for learning and memorization; it is very important lesions region in Parkinsson's disease. In this paper we study hippocampal cells characteristics by magnetic field stimulation. Through research we had analyzed the potassium-ion-channel and neural discharge signals before and after magnetic stimulation to study the changes in its physiological characteristics. This study gave great theoretical and practical values.
     In this theses, at first we have designed a generic extremely low-frequency magnetic field generator for electrophysiology experiments in bioelectromagnetics. The equipment can generate a variety of waveforms, frequencies and intensities magnetic field which is constant distribution in spatial. Then we did the experiment on Rat hippocampal by two ways a) ion channel patch clamp b) and neurons spark. In this experiment some neurons has been stimulated by low-frequency magnetic fields, and the others haven’t stimulated. Finally we compared two results.
     The main research results we obtained are as follows:
     (1)A Low-frequency multi-waveform magnetic field stimulator has been developed, which Suitable for the bioelectromagnetics research studies. The apparatus is characterized by:
     a) Magnetic field strength has upgraded from several millitesla (mT) to 100 mT;
     b) Adoption of hardware and compensation software, to overcome the limitations of decreasing the intensity while increasing the frequency of the magnetic waveforms, producing constant magnetic field intensity from 1 Hz to 500 Hz;
     c) The Developed triangular magnetic field waveform can generate a short time constant electric field, which can be used for special researches.
     (2)A wavelet noise reduction algorithm has been created to do with specific electrophysiological signals. The electrophysiological signals have two characteristics: a11 or none law; it has short refractory period. In noise reduction methods we used a generating function called haar function as a wavelet basis function. Through testing, this method can enhance the effect significantly than the traditional of low-pass filter method.
     (3)An algorithm certification standards of ion single-channel noise reduction was been rose. Noting that ion channel has a characteristic of full or off. So we constructed a standard signal waveform to measure noise reduction effects.
     (4) Signals of discharge are more rhythm when hippocampus cells are stimulated by extremely low frequency magnetic field. The AR model spectrum analysis shows that signals spectrum of discharge are smoother when hippocampus cells stimulated by magnetic field, the decrease of the frequency components means signals are more rhythm.
     (5) The activities of the hippocampus cells electrophysiological become more active when they are stimulated by magnetic fields stimulation. Using AR model spectral analysis method we found that the electrophysiological signals in the AR spectrum will move to high frequency section. This means signals frequencies of electrophysiological activity are increased, the electrophysiological activities are more frequent. Stochastic processes and statistical analysis methods, which have been used showed that extremely low frequency magnetic stimulation hippocampus cells increased the number of action potentials, decreases ISI, increased the potassium channel opening time and decreased close time. These results are consistent with the conclusions of the relevant literature reported.
     In this paper, two experimental methods are used; concluded that the specific magnetic field can promote the activities of electrophysiological characteristics. From the view of physiology, Na~+ ion channels in the primary role of neurons discharge, but potassium channel opener will become more active. So it seems that we can draw the following inference: the specific magnetic stimulation played a role in promote Na~+-K~+ pump activity. Although K~+ flow the opposite direction in Na~+-K~+ pump flow and ion channels. This is consistent some literatures which reported magnetic field direct effect Na~+-K~+ pump activity and enhance membrane. By experiment we have proved in a certain way that the magnetic field can play a role in the treatment of nervous system diseases.
引文
[1]李缉熙,牛中奇.生物电磁学概论.第1版.西安:西安电子科技大学出版社, 1990. 1~5
    [2]程守洙江之永.普通物理学.第1版.北京:高等教育出版社. 1998. 211~212
    [3] Amaral D.G., Witter, M.P. Hippocampal formation In The Rat Nervous System, Second Edition, G.Pacinos, ed. (SanDiego, CA:AcademicPress), 1995: 443~493.
    [4] Howard Eichenbaum. Hippocampus:Cognitive Processes and Neural Representations that Underlie Declarative Memory. Neuron, 2004, 44:109~120.
    [5] Bliss T.V.P., Collingridge G.L. A synaptic model of memory:Long-term potentiation in the hippocampus.Nature, 1993, 361:31~39.
    [6] Martin, S.J., Grimwood, Morris, R.G.M. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci, 2000, 23:649~711.
    [7] Shapiro, M.L., Eichenbaum, H. Hippocampus as a mem ory map, synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus, 1999, 9:365~384.
    [8] Kenneth D.Harris, Hajime Hirase, Xavier Leinekuge,et al. Temporal Interaction between Single Spikes and Complex Spike Bursts in Hippocampal Pyramidal Cells. Neuron, 2001, 32:141~149.
    [9]刘安西,陈守同.细胞膜离子通道,北京:中央民族学院出版社,1990:23~56
    [10] Sakmann. B, E. Neher. Single Channel Recording. New York: Plenum Publishing Corp, 1983:23~58
    [11] J. R. Gates . Transcranial magnetic stimulation . Neuroimag. Clin. North Amer, Nov 1995, 5: 711~720.
    [12] Korinevskaia IV, KholodovIuA, Korinevskii AV. Human EEG-correlates in multisided peripheral exposure to alternating magnetic field. Fixiol Cheloveka, 1993,19:71~79
    [13] Jorge RE, Robinson RG, Tateno A, etal. Repetitive transcranial magnetic stimulation as treatment of poststroke depression: a preliminary study. Biol Psychiatry, 2004,15(55):398~405.
    [14] Cohen H, Kaplan Z, Kotler M, et al. Repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in posttraumatic stress disorder. a doubled-blind, placebo-controlled study. Am J Psychiatry, 2004, 161:515~524.
    [15] Kamatsu N, Fueta Y, Endo Y, et al. Decreased susceptibility to pentylenetetrazol-induced seizures after low-frequency transcranial magnetic stimulation in rats. Neurosci Lett, 2001, 310:153~156.
    [16] D. Gordon . Electroconvulsive therapy . J. Biomed. Eng., 1989,11: 170~171
    [17] A. Pascual-Leone, B. Rubio, F. Pallardo, et al. Catala . Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression . Lancet , Jul 1996, 348: 233~237
    [18] J. Mally, T.W. Stone . Improvement in Parkinsonian symptoms after repetitive transcranial magnetic stimulation . J. Neurol. Sci., Jan 1999,162: 179~184
    [19] Michael McLean, Stefan Engstrom, Robert Holcomb. Magnetic Field Therapy for Epilepsy. Epilepsy & Behavior, 2001:81~87
    [20]杨雅琴,刑德利,赵性泉等.经颅磁刺激对急性脑梗死患者运动功能的影响.中国康复理论与实践, 2005,7:516~517
    [21] Xinchen Zhang, Husheng Zhang, Congyi Zheng, et al. Extrenely Low Frequency (ELF) Pulsed-GradientMagnetic Fields Inhabit Maligant Tumour Growth at Different Biological Levels. Cell Biology International, 2002, 26(7):599–603
    [22]宋毅军.经颅磁刺激抑制癫痛发作的机制研究. [博士学位论文].天津医科大学, 2003,6:11~35
    [23]胡永善,白玉龙,林伟平等.经颅磁电刺激促进周围神经再生的电生理学研究.中国康复医学杂志,2001, 16(4):216~218
    [24] Anke Post, Marianne B. Muèller, Mario Engelmann, et al. Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. European Journal of Neuroscience, 1999,11: 3247~3254
    [25] Ralph E. Hoffman, Idil Cavus. Slow Transcranial Magnetic Stimulation, Long-Term Depotentiation, and Brain Hyperexcitability Disorders. Am J Psychiatry, July 2002, 159(7):1093~1102
    [26] Canseven AyseG, Seyhan Nesrin, Mirshahidi Saeid, et al. Suppression of natural killer cell activity on Candida Stellatoidea by a 50 Hz magnetic field. Electromagnetic Biology and Medicine, 2006, 2(25): 79~85
    [27]黄曦.用于神经细胞实验研究的低频交变磁场发生器的研制[硕士学位论文].武汉:华中科技大学图书馆,2007.
    [28] Liburdy RP. Calcium signaling in lymphocytes and ELF fields: evidence for an electric field metric and a site of interaction involving the calcium ion channel.FEBS 2000, 478(3): 304
    [29]李晖,朱忠良,李霞等.脉冲磁场对应激大鼠海马神经干细胞增殖的影响.西安交通大学学报, 2006,40(10):1149~1156
    [30] Weiss SR, Li XL, Rosen JB, et al. Quenching: inhibition of development and expression of amygdale kindled seizurs with low freqency stimulation.Neuroreport, 1995, 6(16):171~176
    [31] Asamatsu N, Fueta Y, Endo Y, et al. Decreased suscePtibility to pentyenetetrazol- induced seizures after low-frequency thascranial magnetic stimulation in rats.Neurosci Lett, 2001, 3l0(2~3):l53~l56
    [32]宋毅军,田心.经颅磁刺激对癫痫病灶脑电相关维数的影响.生物物理学报, 2003,19(4):383~387
    [33]牛富生.脉冲微波对小鼠中枢神经系统的延迟效应. [博士学位论文].北京:中国人民解放军总医院图书馆. 2004.
    [34] Henry Lai, Narendra P. Singh. Magnetic-Field–Induced DNA Strand Breaks in Brain Cells of the Rat. Environmental Health Perspectives, May 2004, 12(6):206~215
    [35]李伯勤,张鸿日,张向红等.低频脉冲磁场对大鼠学习与记忆EEG及脑组织形态学的影响.山东大学学报(医学版),2005,43(10):924~927
    [36]吴彦,卓贾宇,峰郭鹞.电磁脉冲对大鼠学习和脑内神经递质的影响.生物物理学报, 1993, 15(1):152~157
    [37] Mari Ogiue-Ikeda, Yuko Sato, Shoogo Ueno. A New Method to Destruct Targeted Cells Using Magnetizable Beads and Pulsed Magnetic Force . IEEE TRANSACTIONS ON NANOBIOSCIENCE, Dec 2003, 2(4):262~265
    [38] Anke Post, Marianne B. Muller, Mario Engelmann, et al. Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo . European Journal of Neuroscience, Vol. 11, pp. 3247~3254, 1999
    [39] Mari Ogiue-Ikeda, Suguru Kawato, Shoogo Ueno. The Effect of Transcranial Magnetic Stimulation on Long-Term Potentiation in Rat Hippocampus. IEEE TRANSACTIONS ON MAGNETICS, September 2003, 39(5):3390~3392
    [40] S. Maren, M. Baudry. Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiol. Learn. Mem., Jan 1995,63:1~18.
    [41] A. Hausmann, C.Weis, J. Marksteiner, H. Hinterhuber, et al. Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus . Brain Res. Mol. Brain Res., Mar 2000,76: 355~362
    [42] M. Fujiki, O. Steward. High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS . Brain Res. Mol. Brain Res., Mar 1997, 44: 301~308
    [43]黄晓琳,韩肖华,李春芳等.电针结合磁刺激对脑缺血大鼠脑组织含水量和细胞外钙离子浓度的影响.中华物理医学与康复杂志, 2003,04:206~208
    [44] Sandyk R. Resolution of dysarthria in multiple sclerosis by treatment with weak electromagnetic fields[J]. Int J Neurosci, 1995, 83(1- 2):81~92.
    [45] Blackman CF, Benane SG, House DE. The influence of temperature during electric- and magnetic-field-induced alternation of calcium-ion release from in vitro brain tissue[J]. Bioelectromagnetics, 1991, 12(3):173~182.
    [46] Bawin SM, Kaczmarek LK, Adey WR. Effects of modulated VHF fields on the central nervous system[J]. Ann N Y Acad Sci, 1975, 247:74~80.
    [47] Mayumi Obo, Shiro Konishi, Yoshihisa Otaka, et al. Effect of Magnetic Field Exposure on Calcium Channel Currents Using Patch ClampTechnique. Bioelectromagnetics, 2002, 23:306~314
    [48] B.C. Stange, R.E. Rowland, B.I.Rapley, et al. ELFMagnetic Fields Increase Amino Acid Uptake IntoVicia faba L.Roots and Alter Ion Movement Across the Plasma Membrane. Bioelectromagnetics, 2002,23:347~354
    [49] Hideyuki Okano, Chiyoji Ohkubo. Exposure to a Moderate Intensity Static Magnetic Field Enhances the Hypotensive Effect of a CalciumChannel Blocker in Spontaneously Hypertensive Rats. Bioelectromagnetics, 2005,26:611~623
    [50] Arthur D. Rosen. Effect of a 125 mT Static Magnetic Field on the Kinetics of Voltage Activated Nat Channels in GH3 Cells. Bioelectromagnetics, 2003, 24:517~523
    [51] Fabriziomaria Gobba, Davide Malagoli, Enzo Ottaviani. Effects of 50 Hz Magnetic Fields on fMLP-Induced Shape Changes in Invertebrate Immunocytes:The Role of Calcium Ion Channels. Bioelectromagnetics, 2003, 24:277~282
    [52] Enzo Ottaviani, Davide Malagoli, Alex Ferrari, et al. 50 Hz Magnetic Fields of Varying Flux Intensity Affect Cell Shape Changes in Invertebrate Immunocytes: The Role of Potassium Ion Channels. Bioelectromagnetics, 2002, 23:292~297
    [53] Stevenson AP, Tobey RA. Potassium ion influx measurements on cultured Chinese hamster cells exposed to 60-hertz electromagnetic fields. Bioelectromagnetics , 1985, 6:189~198
    [54] Jie-Fei Shen, Yong-Lie Chao, Li Du. Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons. Neuroscience Letters, 2007, 415:164~168
    [55] A. V. Cavopol, A. W. Wamil, R. R. Holcomb, et al. Measurement and analysis of static magnetic fields that block action potentials in cultured neurons. Bioelectromagnetics, 1995,16(3): 197~206
    [56]林宏.经颅重复性低频磁刺激治疗神经精神疾病的神经生物学机制研究. [博士学位论文].西安:第四军医大学图书馆,2003.
    [57]黄春明,叶晖,徐建华等.极低频弱磁场对PC-12瘤细胞胞内游离钙离子浓度的影响.生物医学工程学杂志, 2000,17(1):63~65
    [58] Myrtill Simkó, Doreen Richard, Ralf Kriehuber, et al. Icronucleus induction in Syrian hamster embryo cells following exposure to 50 Hz magnetic fields, benzo(a)pyrene, and TPA in vitro. Mutation Research, 2001, 495:43~50
    [59] D.C. Thomas, J.D. Bowman, L. Jiang, et al. Residential magnetic fields predicted from wiring configurations. II. Relationships to childhood leukaemia, Bioelectromagnetics, 1999, 20:414~422
    [60] N. Wertheimer, E. Leeper. Electrical wiring configurations and childhood cancer. Am. J. Epidemiol, 1979, 109:273~284
    [61] A. Ahlbom, M. Feychting. A Bayesian approach to hazard identification . The case of electromagnetic fields and cancer. Ann. N.Y. Acad. Sci., 1999, 895:27–33
    [62] L.S. Caplan, E.R. Schoenfeld, E.S. O’Leary,et al. Breast cancer and electromagnetic fields, Ann. Epidemiol, 2000, 10:31~44
    [63] A. Lacy-Hulbert, J.C. Metcalfe, R. Hesketh. Biological responses to electromagnetic fields, FASEB J., 1998, 12:395~420
    [64] Rene de Seze, SophieTuffet, Jacques-Marie Moreau,et al. Effects of 100 mT Time Varying Magnetic Fields on the Growth of Tumors in Mice. Bioelectromagnetics, 2000, 21:107~111
    [65] Tomonori Sakurai, Akira Satake, Shoichiro Sumi, et al. An Extremely Low Frequency Magnetic Field Attenuates Insulin Secretion From the Insulinoma Cell Line, RIN-m. Bioelectromagnetics, 2004, 25:160~166
    [66]张沪生.超低频脉冲磁场抑制癌瘤和提高细胞免疫功能的实验研究.中国科学C辑:生命科学,1997,27 (02):15~23
    [67]邱纪方.超低频磁场的生物效应和临床应用.中华物理医学与康复杂志, 2002, 24(4):247~249
    [68] Chernysheva ON. Status of the lipid phase of plasma membrance of the rat heart after repeated exposure to an altenate magnetic field of 50 Hz frequency[J]. Kosm Biol Aviakosm Med, 1990, 24: 30~31
    [69] Smith OM, Goodman EM, Greenebaum B, et al. An increase in the magnetic surface chop of U937 cells exposed to a pulsed magnetic field [J]. Bioelectromagnetics, l99l, 12:l97~202.
    [70] Grandolfo M, Santini MT, Vecchia P, et al. Non-linear dependence of the dielectric properties of chick embryo myoblast membranes expoed to a sinusoidal 50 Hz magnetic field [J]. Int J Radiat Biol, 1991, 60:877~890.
    [71] Paradisi S, Donelli G, Santini MT, et al. A 50 Hz magnetic field induces structural and biophysical changes in membmes [J]. Bioelectromagnetics, 1993,13:247~255.
    [72] Santoro N, Lisi A, Pozzi D, et al. Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lympoid cell line(raji)[J]. Biochim Biophys Acta, 1997, 1357:281~290
    [73] Lisi A, Pozzi D, Pasquali E, et al. Three dimensional (3D) analysis of the morphological changes induced by 50 Hz magnetic field exposure [J]. Bioelectromagnetics, 2000, 21: 46~51
    [74] Ramundo OA, Morbiducci U, Mossa G, et al. Effect of low frequency low amplitude magnetic fields on the permeability of catoinic liposomes entrapping carbonic anhydrase:Evidence for charged lipid involvement[J]. Bioelectromagnetics, 2000, 21: 491~498
    [75] Liburdy RP. Calcium signaling in lymphocytes and ELF fields, evidence for an electric field metric and a site of interaction involving the calcium ion channel[J]. FEBS Lett, 1992, 301:53~59
    [76] Ikehara T, Park KH, Yamaguchi H, et al. Effects on Rb+(K+) uptake of Hela cells in high K+ medium of to a switched 1.7 TeSa magnetic field[J]. Bioelectromagnetics, 2000, 2l: 228~237
    [77] Goodman EM, Greenebaum B, Marron MT. Altered protein synethesis in a cell-free system exposed to a sinusoidal magnetic field [J].Biochim Biophys Acta.1993,1202:107~112.
    [78]孙文均,姜槐.电磁场生物效应的细胞膜及蛋白激酶信号转导机制研究.国外医学生物医学工程分册, 2004,27(5):260~263
    [79] Polson MJ, Barker AT, Freeston IL. Stimulation of nerve trunks with time-varying magnetic fields. Med & Biol Eng & Comput, 1982, 20(2):243~244
    [80] Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet, 1985,1:1106~1107
    [81] Cohen LG, Roth BJ l Nilsson J, Dang N, et al. Effects of coil design ondelivery of focal magnetic stimulation: technical considerations.Electroencephalogr Clin Neurophysiol, l990,75:350~357
    [82] Ueno S, Matsuda T. Magnetic stimulation of the hurnan brain.Ann N Y Acad Sci,1992,649:366~368
    [83] Jarmo R. Transcranial magnetic stimulation: modeling and new techniques. Bioelectromagnetics, 2000,2l: l75~l82
    [84] Chen R,Gerloffc, Classen J, Wassermann EM, et al. Cohen LG. Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. EIectroencephalogr Clin Neurophysiol, 1997,105(6):4l5~42l
    [85] Pascual-Leone A, Catala MD. Lasting beneficial effect of rapid rate transcranial magnetic Stimulation on slowness in Parkinson's disease. Neurology, 1995,45:550
    [86] George MS, Wassermam EM, Post RM. Transcranial magnetic stimulation: a neuropsychiatric tool for the 21se century. J Neuropsychiatry Clin Neurosci, l996, 8(4): 373~382
    [87] Malhi GS, Sachdev P. Novel physical treatments for the management of nearopsychiatric disorder. J Prychosom Res, 2002, 53(2):709~719
    [88]孙文均,余应年,付一提.工频磁场对细胞蛋白质酪氨酸磷酸化影响的研究.中国病理生理杂志, 1999,15(8): 732~735
    [89]黄永红,徐晓斌,陈照章等.生物体低温保存用低频磁场发生装置的研制与应用试验.农业工程学报, 2007,23(8): 150~154
    [90]陈照章,徐军,徐晓斌等.一种用于生物效应研究的电磁场发生装置.微计算机信息, 2006,22(11):310~312
    [91]赵文春,赵治华,马伟明等.基于综合补偿的磁场发生器的研制.电工电能新技术,2003,22(4):69~72
    [92]左公宁,夏平涛.强磁场发生器的设计.高电压技术, 2003,29(20)::46~49
    [93]刘春玲,王旭,张忠刚等.基于IGBT与可控硅控制的强脉冲磁场发生器的设计.仪表技术与传感器, 2006,12:56~59
    [94]张景鑫,许亚峰,刘明非等.一种宽量程磁场发生器的设计.现代科学仪器2007,3:57~60
    [95]林卫平,俞仁康,胡永善等. BME-1脉冲磁电刺激仪的研制.现代医学仪器与应用, 2003,1(15):4~5
    [96] Shadlen MN, Newsome WT. Noise, neural codes and cortical organization. Curr Opin Neurobiol, 1994, 4:569~579
    [97] Rhoades BK, Weil JC, Kowalski JM, etal. Distribution-free graphical and statistical analysis of serial dependence in neuronal spike trains. J Neuronsci Methods, 1996, 64:25~37.
    [98] A. M. H. J. Aertsen, G. L. Gerstein, M. K. Habib, G. Palm. Dynamics of Neuronal Firing Correlation: Modulation of "Effective Connectivity". J. Neurophysiol, 1989, 61(1):900~917.
    [99]陈力超,顾蕴辉.神经元放电串所含信息的编码理论和分析方法.生理科学进展,1999,30(2):101~106.
    [100] Mpitsos GJ, Burton RM, Creech HC. Evidence of chaos in spike trains of neurons that generate rhythmic motor patterns. BrainRes Bull, 1988,21, 529-538.
    [101] Celletti A, Villa AEP. Low-dimensional chaotic attractors in the rat brain. Biol Cybern, 1996,74:387~393
    [102] Hangartner RD, CullP. A ternary logic model for recurrent neuromime networks with delay. Biol Cybern, 1995, 73:177~188
    [103]朱俊玲,沈强,蒋大宗.正弦电流刺激下神经元的放电模式.航天医学与医学工程, 2002,15(2):108~111
    [104]金宏伟,张炜,屈林涛等. Kv4.2通道电流与大鼠海马神经元瞬间外向钾电流特性的比较.生物学报, 2003,55(6):711~716
    [105] Fernando Pe?na and No′e Alavez-P′erez. Epileptiform Activity Induced by Pharmacologic Reduction of MCurrent in the Developing Hippocampus in Vitro. Epilepsia, 2006;47(1):27~35
    [106]成波,黄曦,兰同汉等.基于微控制器的极低频磁场发生器的设计.计算机与数字工程(已经录用,还未发表)
    [107] Bo Cheng, Ahmed.N ABDALLA, Xi HUANG, et al. Design of a Multi-Wave Low Frequency Magnetic Fields Generator for Medical Applications. ICIEA 2007, HarBin,China. 2007.2851~2853
    [108] Intersil Corporation. Datasheet: ICL8038. USA: Intersil Corporation, 1999. 1, 6~8
    [109]谷新,曹云峰,梅劲松. 8038单片集成电路在舵机测试系统中的应用[J].电子技术, 2000(8): 38~40
    [110] Chuck Wojslaw, XICOR. A Primer on Digitally Controlled Potentiometers. USA: XICOR, 2002:1~2
    [111]肖明清,谭靖,王学奇等. DDS芯片AD9851及其应用[J].电子技术, 2001(2): 55~56
    [112] Texas Instruments. Datashet: TLV5616 . USA: Texas Instruments Incorporated, 2002:10~12
    [113] Bo Cheng, Xi Huang, Tonghan Lan, et al. Design of CHWHG Type Low Frequency Magnetic Fields Generator. Journal of Computer Sciences, 2007,3(2):81~83
    [114] Ganguli R. Noise and Outlier Removal From Jet Engine Health Signals Using Weighted for Median Hybrid Filters[J]. Mechanical Systems and Signal Processing, 2002,16(6): 967~978.
    [115] Cousens G, Otto TA. Induction and transient suppression of long-term potentiation in the peri-and postrhinal cortices following theta-related stimulation of hippocampal field.Brain Res,1998;780(1):95~101
    [116] Rivas J, Gaztelu. J.M, Carcia-Austt E. Changes in hippocampal cell discharge patterns and theta rhythm spectral propertities as a function of walking velocity in the guinea pig.Exp Brain Res,1996,108:113~118
    [117] Korshunov VA, Wiener SI, Korshunova TA, et al. Place and behavior independent sensory triggered discharges in rat hippocampal CA1 complex spike cells.Exp Brain Res 1996,109(1):169~173
    [118] Lisman JE. Bursts as a unit of neural information:making unreliable synapses reliable〔J〕.TINS, 1997, 20:38~43.
    [119] Menendez de la Prida L, Stollenwerk N, Sanchez-Andrez JV.Bursting as a source for predict ability in biological neural network activity〔J〕.PhydicaD, 1997, 110:323~331
    [120] Bair W, Koch C, Newsome W, etal. Power spectrum analysis of bursting cells inarea MT in the behaving monkey (J).J Neurosci, 1994,14:2870~2892.
    [121] Cazalis M, Dayanithi G, NordmannJJ. The role of patterned burst and interburst interval in the excitation-couplingmech-anism in the isolated rat neural lobe[J]. JPhysiol, 1985, 369:45~60.
    [122]段建红,段玉斌,韩晟等.藜芦碱引起神经元放电峰峰间期慢波振荡.生物物理学报, 2002, 18(1):49~52.
    [123] Kenneth D. Harris, Hajime Hirase, GyorgyBuzsaki, et al. Temporal Interaction between Single Spikes and Complex Spike Burstsing Hippocampal Pyramidal Cells. Neuron, 2001, 32:141~149.
    [124] Lisman, J.E. Bursts as a unit of neural information:making unreliable synapses reliable.Trends Neurosci,1997, 20:38~43.
    [125] Kaplan DT, Clay J R, Manning T, et al. subthreshold dynamics in periodically stimulated squid giant axons.Physi Rev Letter,1996,76:4074~4077.
    [126] Ranck, J.B.J. Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Exp. Neurol, 1973,41:461~531.
    [127] Michael S Lewickif. A review of methods for spike sorting:the detection and classification of neural action potentials. Network:Comput.Neural Syst,1998, 9:53-78
    [128] Thomas M.J., Watabe A.M., Moody T.D., et al. Post synaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. J.Neurosci.,1998, 18:7118~7126
    [129] Pike, F.G., Meredith, R.M., Olding, A.W., et al. Rapid report:post synaptic bursting is essential for‘Hebbian’induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J.Physiol, 1999, 518:571~576
    [130] Paulsen O., Sejnowski T.J. Natural patterns of activity and long-term synaptic plasticity. Curr. Opin. Neurobiol, 2000,10:172~179.
    [131] Magee, J.C., Johnston. A synaptically controlled associative signal for Hebbian plasticity in hippocampal neurons. Science, 1997:275:209~213.
    [132] Otto T, Eichenbaum H, Wiener SI, et al. Learning-related patterns of CA1 spike trains parallel stimulation parameters optimal for inducing hippocampal long-term potentiation.Hippocampus,1991, 1:181~192
    [133] O’Keefe J, Recce ML. Phase relationship between hippocampal place units and theEEG theta rhythm.Hippocampus,1993,3:317~330
    [134] Kudrimoti HS, Barnes CA, McNaughton BL. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics.J Neurosci., 1999,19:4090~4101
    [135] Nadasdy Z, Hirase H, Czurko A, et al. Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci.,1999,19:9497~9507.
    [136] T. R. Chay, T. Rinzel. Bursting, beating and chaos in an excitable membrane model. J. Biophys, 1985, 47:357~366.
    [137] T. Rinzel, A. Shorman, C.L.Strokes. Channels, coupling and synchronized rhythmic bursting activity in“Analysis and Modeling of Neural System”. F. H. Eckman, eds, Kluner Academic Publishers, 1989, 29~45
    [138]郑素玲.钾通道的种类和功能.唐山师范学院学报,第26卷,第2期,2004,26(3): 66~67
    [139]于耀清,陈军.电压门控性钾、钙、离子通道的结构及分类.中华神经医学杂志, 2005,4(5):515~520
    [140]兰同汉.在药物作用下细胞离子通道门控机制动力学模型的分析研究-以大鼠背根神经节为研究对象.[博士学位论文].武汉:华中科技大学图书馆,2003.
    [141]熊小芸.子波变换--一种新的信号处理方法.电子技术应用, 1998, 1: 4~7
    [142]崔锦泰.小波分析导论.第一版.西安:西安交通大学出版社, 1991.20~35
    [143] Mallat SG. Multiresolution approximation and wavelet orthonormal bases of L2(R). Trans Amer Math Soc, 1989, 315: 69~ 87
    [144] A.Hosein-Sooklal, A. Kargol. Wavelet Analysis of Nonequilibrium lonic Currents in Human Heart Sodium Channel (hH1a). J. Memhrane Biol., 2002,188:199~212
    [145] Donoho DL. De-noising by soft-threshholding. IEEE Trans Information Theory, 1995, 41(3):613~627
    [146] Mallat SG. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans Pat Anal Mach Intell, 1989, 11: 674~693
    [147]陈良洲,施文康.时间序列分析随机集方法.上海交通大学学报, 2005, 39(3):100~404
    [148] Broersen PMT, Waele S. Frequency selective time series analysis.IEEE In strumentation and Measurement Technology Conference.Anchorage,AU:IM TC,2002:775~780
    [149] Martin L.J, Frei J. Forecasting supply chain components with time series analysis.Electronic Components and Technology Conference.New Orleans: ECTC., 2003:269~278.
    [150]秦川,王志中,王刚等.利用AR模型参数分析损伤神经的针电极肌电信号.生物医学工程杂志,2004,21(4):636~639
    [151] Bagmajian JV, Deluca CJ. Muscles alive. The Willams&Wilkins, 1985:224~228
    [152]孙希平.频谱分析的一类新算法.湖北汽车工业学院学报,1999,13(1):40~43
    [153]王飞,罗志增.基于功率谱的表面EMG信号运动模式识别.杭州电子科技大学学报,2005,25(2):37~40
    [154] Saridis G, Gootee T.P. EMG pattern analysis and classification foraprothetic arm.IEEE Transactions on Biomedical Engineering,1982,29(6):403~412
    [155] Boardman A, Schlindwein FS, Rocha AP, et al. A study on the optimum order of autoregressive models for heart rate variability. Physiol Meas, 2002, 23(2): 325~336
    [156]刘向明,林家瑞.求解离子通道开关持续时间概率密度函数的Q2矩阵法.中南民族学院学报(自然科学版), 2001,20(4):48~51
    [157]吴鸿修,仇建斌,陈良怡等.一种遗传算法的细胞跨膜信号传递调控模型.华中理工大学学报, 1999,27(9):52~54
    [158]李彩霞,黎培兴,关永源等.离子通道的混合密度参数估计与状态判别.数理统计与管理,2005,24(6):62~66
    [159]姚天任,孙洪.现代数字信号处理.第一版.武汉:华中科技大学出版社,1999. 121~160
    [160] Levitan,I.B., Kaczmarek,L.K.著.神经元:细胞和分子生物学.第二版.舒斯云,包新民译.北京:科学出版社,2001.42~43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700