用户名: 密码: 验证码:
巢湖北岸中东部水土迁移过程及规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巢湖位于安徽省中部,是中国五大淡水湖泊之一。20世纪80年代水体开始呈现富营养化状态,以后富营养化逐步加剧,现已演变成为全国富营养化最为严重的淡水湖泊之一。这严重影响了沿湖地区工农业生产发展和人民生活用水安全。虽然巢湖已经被列为国家重点治理湖泊之一,但到目前为止,巢湖水体富营养化状况依旧严重。造成这种现象的原因,是由于没有从根本上实行内源修复和外源防控的治理措施。而水土迁移作为非点源污染的主要途径和重要形式,可携带大量泥沙、氮、磷等物质进入巢湖水体,造成水体富营养化。本文通过对巢湖北岸典型地区水土迁移过程研究,揭示水土迁移和养分迁移的特征和规律,提出控制巢湖流域水土迁移的针对性措施,期望在治理巢湖水体富营养化过程中,能为外源防控决策提供理论依据和实际参考。
     本研究共分5个部分。第一部分,回顾分析水土迁移国内外研究进展和巢湖流域环境问题及研究状况。第二部分,通过野外调查和实验,对坡面土壤养分的时空变化和输出特征进行研究。第三部分,采用室内模拟实验,开展坡面径流、泥沙的产生过程和迁移规律研究,并对径流和泥沙中养分迁移过程和特征进行分析。第四部分,运用水土迁移模型和养分迁移模型,结合实测数据,进行水土迁移量和养分迁移量的估算和预测。第五部分,结合巢湖流域实际情况,对水土迁移的防控和治理技术进行了探讨。本研究取得如下成果:
     (1)野外调查和野外实验表明,由于水土迁移和养分迁移的影响,野外坡面土壤中氮磷元素含量总体上有随时间延长而降低,随空间高度增加而降低的趋势。在次降雨过程中,表层土壤中细小颗粒(粘粒和粉粒)与氮磷元素会移失,从而导致表层土壤中的养分含量都有不同程度的下降。其中,水解氮与速效磷的降低幅度较大(西瓜地、空闲地、油菜地水解氮和速效磷降雨前后降低幅度都在8.0%以上),而全氮和全磷养分含量降幅很小(西瓜地、空闲地、油菜地全氮降幅分别为2.17%、1.86%和1.54%,全磷降幅分别为0.27%、0.22%和0.20%)。在不同利用方式下,降雨后田间表土细小颗粒(粘粒与粉粒)相对减少,粗大颗粒(砂粒)相对增多的幅度是不同的,表现出西瓜地最大,油菜地最小的特征。实验进一步证实,流失泥沙具有富集粘粒和养分的特征。表现在,油菜地、西瓜地和空闲地粘粒的富集率都达到1.20以上,全氮与速效磷的富集率都在1.28-1.39之间,全磷和水解氮富集率基本处在1.13-1.30之间。马鞍山坡面氮元素的富集率是1.26,磷素的富集率为1.15。通过对马鞍山坡面土壤和氮磷元素迁移量的监测和估算显示,土壤的平均迁移量为5412t/km~2·a,土壤中氮元素和磷元素的平均迁移量分别为9.12t/km~2·a和2.30t/km~2·a。
     (2)首次利用巢湖北岸的主要土壤类型(黄棕壤、黄褐土、粗骨土)就坡面产流产泥沙过程和养分迁移过程进行了模拟实验。实验显示,坡面产流过程受降雨强度、坡面坡度、土壤类型、土壤前期含水量等因素的影响,坡面产流历时与降雨强度、坡面坡度、土壤前期含水量之间呈反相关,坡面产流量与降雨强度之间正相关,较大的稳定径流量出现时间与土壤前期含水量之间呈反相关;不同土壤类型,由于土壤质地和孔隙度等差异,坡面产流过程也不同。径流含沙量曲线变化特征是,在产流开始后逐渐上升,达到一个峰值后逐渐下降。其中,径流含沙量曲线的峰值出现时间与降雨强度、坡面坡度呈反相关;流失泥沙累积量与降雨强度、坡面坡度、径流累积总量之间呈正相关。坡面养分流失主要通过径流和泥沙两种形式来实现。其中,泥沙携带是养分迁移的主要形式。养分迁移总量与径流累积量、泥沙累积量之间都呈正相关。通过对黄褐土等的模拟实验还显示,流失泥沙中养分含量普遍高于原土壤对应的养分含量,即流失泥沙具有富集养分的特性。从三种土壤富集来看,粗骨土的富集率最高,黄褐土的富集率最低。从养分形态来看,三种土壤富集率大小规律总体是,速效磷>水解氮>全氮>全磷。
     (3)用SCS径流曲线参数法对龟山地区水土迁移中的径流进行了研究和预测。预测结果是,研究区的年径流量为470.0mm。
     (4)采用侵蚀针法和USLE模型对龟山地区进行了土壤侵蚀量的估算或预测,结果分别是4107.57t/km~2·a和3847.6t/km~2·a,显示了两种预测结果基本一致性,但也显示了USLE模型法较侵蚀针法预测结果要稍微偏大的特点。
     (5)利用公式E=(Er_1~*S+Er_2~*Q)~*C,对研究区养分迁移量进行了计算。结果显示,利用SCS曲线法结合USLE模型预测研究区内氮素迁移量为8.027t/km~2·a,磷素迁移量为2.903t/km~2·a。其中氮和磷元素通过泥沙携带造成的损失占养分迁移总量的90.92%和90.36%,进一步证实泥沙携带是养分迁移的主要形式。
     (6)根据水土迁移和养分流失的研究,提出了针对巢湖周边的农耕技术、生物技术和工程措施相结合的水土迁移防控和治理措施。在低山丘陵区,应该采用植树种草为主的生物措施,重点进行土壤侵蚀的控制;在丘岗地区,通过农林复合生产、等高种植、等高梯田等措施,以达到截流保土的目的;而在冲积平原区,提倡保护性耕作和多层次缓冲带建设,达到重点控制污染物或养分流失的目的。最终从根本上控制外源污染物对巢湖的输入,实现逐步改善巢湖水质的目标。
Lake Chaohu,located in middle of Anhui Province,is one of the five big fresh water lakes in China.In 1980s the water body of the lake started to present the eutrophication condition,later the eutrophication is intensified gradually,and it has already been evolved into one of most bad lakes,which has serious influence on industry,agriculture production and on the people's living water security along lake area.Lake Chaohu is already listed as one of key lakes to control,but so far the eutrophication condition in Lake Chaohu remains severe.This phenomenon is due to no fundamental control measure to implement the endogene repair and the extraneous source prevention.Soil and water migration is the main way and the important forms to the nonpoint source pollution and it can also create the water eutrophication of Lake Chaohu through carrying large sediment,nitrogen,phosphorus and other substances into the water body.In this article water and soil transition process and rugularity in north shore of lake Chaohu are discussed.It is revealed that water and soil migration and the nutrient migration characteristic.And it is proposed the comprehensive measures to control water and soil migration in order to provide the theory basis and the actual reference for preventing and controlling the extraneous source pollution to Lake Chaohu.
     The study includes five parts.The first part is not only the review of research development about water and soil migration in the domestic and foreign but also the analysis of the question and the research condition about Lake Chaohu basin.The second part is involved in the field investigation and experimentation so as to study the temporal and spatial variation of soil nutrients and output characteristics of hillslope.In the third part the hillslope runoff,sediment and the nutrient transition process and the characteristic are researched by lab simulation experiment.In the fourth part it is discussed that the water and soil and nutrient migration prediction by applying water and soil transport model and nutrient transport model with experimental data.In the fifth part,according to the research foundation of the Lake Chaohu basin,the water and soil migration's prevention technological measures are proposed.The research results are as follows:
     (1) The investigation and experimentation carried in the field show that nitrogen and phosphorus elements in the slope soil will be decreased in the overall with time and the altitude increasing,which is due to soil and water movement and migration of nutrients.In the process of rainfall,the clay,silt and the elements of nitrogen and phosphorus in the surface soil will migrate, so that the nutrient contents of the soil will decline.The declined ratio of hydrolysable nitrogen (>7.5%) and rapidly available phosphorus(>8.5%) is obvious,while that of total nitrogen (<2.17%) is low and that of total phosphorus(<0.27%) is lowest.The declined ratio of clay and silt and the increased ratio of sand are different with different land use after a rainfall,among which the change ratio in watermelon land is large,while in rape land is the small.The experiment further confirms that in sediment the clay and nutrient enrichment will occur.In watermelon land,rape land,and fallow land,the enrichment ratio of the clay is more than 1.20, and that of total nitrogen and rapidly available phosphorus is between 1.28-1.39,while that of the total phosphorus and hydrolysable nitrogen is basically between 1.13-1.30.The enrichment ratio of nitrogen is 1.26 and phosphorus 1.15 in Ma'anshan slope.Through monitoring and predicting, the transport estimation of soil is 5 412 t/km~2·a,nitrogen is 9.12 t/km~2·a,and phosphorus 2.30 t/km~2·a in Ma'anshan slope.
     (2) The simulation test has been carried on by using yellow brown earth,yellow cinnamon soil,fragmental soil for the first time,which are the main soil types in the middle of the north shore of Lake Chaohu.Experiments show that the process of runoff on the slope is related to rainfall intensity,slope,soil type,reliminary moisture content of soil and so on.The emerging time of runoff is remarkably negatively interrelated with the rainfall intensity,the slope,the preliminary water content of soil.Slope runoff has positive correlation to the rainfall intensity. The emerging time of the maximum runoff is negatively interrelated with the preliminary water content of soil.Different types of soil have different process of runoff because they have different texture and porosity.The emerging time of the maximum content of sediments in runoff is negatively interrelated with rainfall intensity and the slope.The sum of sediment is remarkably positively interlated with rainfall intensity,slope,and runoff sum.The slope nutrient lost is taken by runoff and sediment.Among them,nutrient transfer taken by sediment is the main form.The sum of the nutrient migration is positively interlated with the sum of runoff and sediment.The simulation test by using three types of soil(yellow brown earth,yellow cinnamon soil, fragmental soil) also shows that:The content of nutrients in sediment is generally higher than that of the original soil,in another word,sediment has the characteristics of nutrient enrichment.The enrichment rate of fragmental soil is the large,while that of yellow brown earth is the small.On the forms of nutrient,the regularity of enrichment rate is:rapidly available phosphorus>hydrolysable nitrogen>total nitrogen>total phosphorus.
     (3) In the studied area,the estimation of runoff is 470.0mm by utilizing SCS model.
     (4) The estimation of soil transportation is 4 107.57 t/km~2·a by utilizing nailing,and 3 847.6 t/km~2·a by utilizing USLE model,which demonstrates that the forecasting results have a basic consistency between nailing and USLE model.
     (5) Through using nutrient transportation formula E=(Er_1 ~*S+ Er_2 ~*Q)~*C,the forecast and estimation of nutrient transportation are conducted in the studied area.The results shows that the estimation of the nitrogen transportation is 8.027 t/km~2·a and that of phosphorus is 2.903 t/km~2·a. Nitrogen transportation in sediments accounts for 90.92%,and phosphorus transportation in sediments accounts for 90.36%,which further confirms that sediments carrying is the main form of nutrient loss.
     (6) On the basis of studying on soil and water transportation and nutrient transportation,the integration measures of the local farming technology,bio-technology and engineering is proposed to prevent and control the migration of water,soil,and nutrient in neighboring shore of Lake Chaohu.In hilly areas,by biological measures of planting trees and grass,in post areas,by agroforestry production,contour farming,contour terrace and other measures,in the alluvial plain areas,by conservation tillage and construction of multi-level buffer zone,the loss of pollutants or the nutrient could be controlled,which can fundamentally control the pollutants of the extraneous source to import to Lake Chaohu,so as to achieve a radical improvement of the water quality.
引文
安徽省农业生态环境总站.2005.巢湖流域农业面源污染调查报告[R].合肥:P19
    白占国.1993.从地貌空间结构特征预测土壤侵蚀的研究.以神府-东胜煤田区为例[J].中国水土保持,12:23-24
    鲍全盛,王华东.1996.我国水环境非点源污染研究与展望[J].地理科学,16(1):66-72
    鲍士旦.2000.土壤农化分析[M[。北京:中国农业出版社
    卜兆宏,刘绍清.1995.土壤流失量及其参数实测的新方法[J].土壤学报,32(2),210-219
    卜兆宏,孙金庄,周伏建,等.1997.水土流失定量遥感方法及其应用的研究[J].土壤学报,34(3):235-245.
    蔡博峰,卞有生,赵楠.2006.基于GIS的北京市妫水河流域水土流失的初步分析[J].环境科学研究,19(3):52-55
    蔡崇法,丁树文等.2000.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,14(2):19-24
    蔡崇法.2001.GIS支持下三峡库区典型小流域土壤养分流失预测模型[J].水土保持学报,15(1):9-12
    蔡强国.1998.坡面细沟发生临界条件研究[J].泥沙研究,(1):52-59
    蔡强国,刘纪根,刘前进.2004.岔巴沟流域次暴雨产沙统计模型[J].地理研究,23(4):434-439.
    曹慧,杨浩,店翔字.2001.~(137)Cs技术对长江三角洲丘陵区小流域土壤侵蚀的初步估算[J].水土保持学报,15(1):13-15
    曹慧,杨浩.2002.太湖丘陵地区典型坡面土壤侵蚀与养分流失[J].湖泊科学,14(3):242-246
    陈斌.2000.巢湖流域水土流失现状、成因和综合治理对策[J].华东森林经理,14(4):1-3
    陈法扬.1989.水土保持规划[M].北京:水利电力出版社,51
    陈明华,周伏建,黄炎和.1995.土壤可蚀性因子的研究[J].水土保持学报,9(1):19-24
    陈欣,姜曙千.1999.红壤坡地磷素流失规律及其影响因素[J].土壤侵蚀与水土保持学报,5(3):38-41
    单保庆,尹澄清,于静.2001.降雨-径流过程中土壤表层磷迁移过程的模拟研究[J].环 境科学学报,21(1):7-12
    邓玉林,李春艳,王玉宽.2005.长江上游典型小流域植被水土保持效应研究[J].水土保持学报,19(5):5-8
    樊萍,宋维秀.2004.降雨对黄河源区土壤溅蚀的影响研究[J].青海农林科技,(2):4-6
    范荣生,李长兴,李占斌.1994.考虑降雨空间变化的流域产流模型[J].水利学报,(3):33-39
    傅涛,倪九派.2002.雨强对三峡库区黄色石灰土养分流失的影响[J].水土保持学报,16(2):33-35,83
    傅涛,倪九派.2003.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报,9(1),71-74,101
    傅涛.2002.三峡库区坡面水土流失机理与预测评价建模[D].重庆:博士论文,55-57
    高超,朱建国,窦贻俭.2002.农业非点源污染对太湖水质的影响:发展态势与研究重点[J].长江流域资源与环境,11(3):260-263
    高学田,包忠谟.2001.降雨特性和土壤结构对溅蚀的影响[J].水土保持学报,15(3):24-26,47
    关君蔚.1996.水土保持原理[M].北京:中国林业出版社
    管新建,李占斌,王民,等.2007.坡面径流水蚀动力参数室内试验及模糊贴近度分析[J].农业工程学报,23(6):1-5
    郭伦,李佩武.1996.降雨-产流过程与氮、磷流失特征研究[J].环境科学学报,16(1):111-115
    郭雨华,赵廷宁,孙保平,等.2006.草地坡面水动力学特性及其阻延地表径流机制研究[J].水土保持研究,13(4):264-267
    贺宝根,高效江.2001.农田非点源污染研究中的降雨径流关系-SCS法的修正[J].环境科学研究,14(3):49-51
    洪华生,杨远,黄金良.2005.基于GIS和USLE的下庄小流域土壤侵蚀量预测研究[J].厦门大学学报(自然科学版),44(5):675-679
    胡宏祥,洪天求,刘坤.2007.土壤及泥沙颗粒组成与养分流失的研究[J].水土保持学报,21(1):26-29
    华东水利学院编.1981.简明水利水电词典[M].北京:科学出版社
    华孟.土壤物理学[M].北京:北京农业出版社,1993
    黄健,王爱文,张艳茹,等.2002.玉米宽窄行轮换种植、条带深松、留高茬新耕作制对土壤性状的影响[J].土壤通报,33(3):168-171
    黄金良,洪华生.2004.基于GIS的九龙江流域农业非点源氮磷负荷估算研究[J].农业环境科学学报,23(5):866-871
    黄金良,洪华生,张珞平.2006.基于GIS和模型的流域非点源污染控制区划[J].环境科学研究,19(4):119-124.
    黄丽.1999.紫色土坡地的水土流失与其物理性质的关系[J].华中农业大学学报,5(1):35-39
    黄满湘,章申,张国梁,等.2003.北京地区农田氮素养分随地表径流流失机理[J].地理学报,58(1):147-153
    黄绍文,金继运,杨俐苹,等.2002.粮田土壤养分的空间格局及其与土壤颗粒组成之间的关系[J].中国农业科学,35(3):77-81
    江忠善.1988.坡面流速研究[A].中国科学院西北水土保持研究所集刊[C],(7):46-52
    金相灿,卢少勇,胡小贞,等.2007.入湖河流对受纳湖湾水质的影响[J].环境科学研究,20(4):52-56.
    金相灿,屠清瑛,主编.1990.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社
    康玲玲,朱小勇,王云璋,等.1999.不同雨强下黄土性土壤养分流失规律研究[J].土壤学报,16(4):536-543
    雷阿林,唐克丽.1998.黄土坡面细沟侵蚀的动力条件[J].水土保持学报,4(3):39-43,72
    雷阿林,唐克丽.1997.坡沟系统土壤侵蚀研究回顾与展望[J].水土保持通报,17(3):37-43
    李根,毛锋.2008.我国水土流失型非点源污染负荷及其经济损失评估[J].中国水土保持,(2):9-11
    李俊然,陈利顶,傅伯杰,等.2002.于桥水库流域地表水非点源N时空变化特征[J].地理科学,22(2):239-242
    李如忠,汪家权.2004.巢湖流域非点源营养物控制对策研究[J].水土保持学报,18(1):119-122
    李裕元,邵明安,郑纪勇,等.2003.黄绵土坡耕地磷素迁移与土壤退化研究[J].水土保持学报,17(4):1-7
    李志军,周军.2003.巢湖富营养化及其非点源营养控制对策[J].安徽水利科技,(4):4,15
    林波,刘庆,吴彦,等.2004.亚高山针叶林人工恢复过程中凋落物动态分析[J].应用生态学报,15(9):1491-1496
    刘秉正,李光录.1995.黄土高原南部土壤养分流失规律[J].水土保持学报,9(2):77-86
    刘付程,史学正,潘贤章,等.2003.太湖流域典型地区土壤磷素含量的空间变异特征[J].地理科学,23(1):77-81
    刘贤赵,康绍忠.1997.黄土高原沟壑区小流域土壤入渗分布规律研究[J].吉林林学院学报,13(4):203-208
    刘玉生,郑丙辉.1992.滇池水污染控制系统规划[J].环境科学研究,5(2):1-7
    吕喜玺,沈荣明.1992.土壤可蚀性因子K值的初步研究[J].水土保持学报,6(1):63-70
    马琨,王兆骞,陈欣,等.2002.不同雨强条件下红壤坡地养分流失特征研究[J].水土保持学报,16(3):17-19
    毛战坡,单保庆,尹澄清,等.2003.磷在农 田溪流中的动态变化[J].环境科学,24(6):1-8
    苗晓靖,徐桂华,宋芳,等.2006.集流梯田工程水土保持效益试验浅析[J].水土保持研究,13(5):220-224
    牟金洋,盂庆牧.1981.陕北中小流域年产沙量计算[A].黄土高原水土流失综合治理科学讨论会资料汇编[C].陕西:中国科学院西北水土保持研究所,251-255
    倪九派,魏朝富,谢德体.2004.基于GIS的小流域养分流失预测[J].土壤学报,41(6):837-844
    潘剑君,赵其国,张桃林.2002.江西省兴国县、余江县土壤侵蚀时空变化研究[J].土壤学报,39(1):58-64.
    阮伏水,周伏建.1996.花岗岩不同土地利用类型坡地产流和入渗特征[J].土壤侵蚀与水土保持学报,2(3):1-7
    芮孝芳.1990.中国水利百科全书[M].北京:水利电力出版社,12月
    沙际德,蒋允静.1995.试论初生态侵蚀性坡面薄层水流的基本动力特征[J].水土保持学报,9(4):29-35
    邵明安,上官周平,康绍忠,等.1999.坡地水分养分动力学研究的基本思路[A].邵明安:黄土高原土壤侵蚀与旱地农业[C].西安:陕西科学技术出版社
    邵学军,王远航,胡慧武.2004.坡面细沟流侵蚀临界条件研究[J].水土保持学报,18(2):1-4
    史学正,于东升,邢廷炎.1997.用田间实测法研究我国亚热带土壤的可蚀性K值[J].土壤学报,34(4):399-405
    孙峰.2002.基于GIS的官厅水库流域非点源污染负荷计算研究[D].北京:北京师范 大学,25-42.
    孙峰,郝芳华.2004.基于GIS的官厅水库流域非点源污染负荷计算研究[J].北京水利,(2):16-18
    孙贤斌.2001.巢湖生态环境污染与防治对策[J].国土与自然资源研究,(3):50-52谭丁桃,颜健红.2006.杂交油菜-超级稻双免耕直播高产高效生态耕作技术[J].作物研究,(2):165-166
    汤立群.1996.流域产沙模型的研究[J].水科学进展,7(1):47-53
    唐泽军,雷廷,武干,等.2004.雨滴溅蚀和结皮效应对土壤侵蚀影响的试验研究[J].土壤学报,41(4):632-635
    屠清瑛,顾丁锡.1990.巢湖-富营养化的研究[M].合肥:中国科学技术大学出版社,1-100.
    王汉存.1992.水土保持原理[M].北京:水利电力出版社
    王洪杰,李宪文,等.2002.四川紫色土区小流域土壤养分流失初步研究[J].土壤通报,33(6),441-444
    王健,吴发启,孟秦倩.2004.农业耕作措施蓄水保土效益试验研究[J].水土保持通报,24(5):39-41
    王磊,章光新.2006.湿地缓冲带对氮磷营养元素的去除研究[J].农业环境科学学报,25(增刊):649-652
    王孟楼,张仁.1990.陕北岔巴沟流域次暴雨产沙模型的研究[J].水土保持学报,(2):11-18
    王全九,邵明安,汪志荣,等.1999.Green-Ampt公式在层状土入渗模拟计算的应用[J].土壤侵蚀与水土保持学报,5(4):66-70
    王全九,王文焰,邵明安等.1999.浑水入渗机制及模拟模型[J].农业工程学报,(1):135-138
    王晓辉.2006.巢湖流域非点源N、P污染排放负荷估算及控制研究[D].硕士论文,33-34
    王晓龙,李辉信,胡锋,等.2005.红壤小流域不同土地利用方式下土壤N,P流失特征研究[J].水土保持学报,19(5):31-34,55
    王晓燕,王晓峰,汪清平,等.2004.北京密云水库小流域非点源污染负荷估算[J].地理科学,24(2):227-231
    王晓燕,王峋.2003.密云水库小流域土地利用方式与氮磷流失规律[J].环境科学研究,16(1):30-33
    王秀英,曹文洪.1998.土壤侵蚀与地表坡度关系研究[J].泥沙研究,(2):36-41
    王绪伟,王心源,史杜芳.2007.巢湖污染现状与水质恢复措施[J].环境保护科学,33(4):13-15
    王佑民,刘秉正.1994.黄土高原防护林生态特征[M].北京:中国林业出版社
    邬伦,李佩武.1996.降雨.产流过程与氮、磷流失特征研究[J].环境科学学报,16(1):111-116
    吴发启,范文波.2001.土壤结皮与降雨溅蚀的关系研究[J].水土保持学报,15(3):1-3
    吴发启,赵晓光,刘秉正.2000.缓坡耕地降雨、入渗对产流的影响分析[J].水土保持研究,7(1):12-17
    吴开亚.2005.巢湖流域非点源污染的环境经济损失研究[D].博士后论文,4
    吴普特,周佩华.1994.雨滴击溅对薄层水流水力摩阻系数的影响[J].水土保持学报,8(2):39-42
    吴普特,周佩华.1996.黄土坡面薄层水流侵蚀实验研究[J].土壤侵蚀与水土保持学报,2(2):40-45
    吴普特.1998.黄土坡地径流冲刷与土壤抗冲动态响应过程研究[J].水土保持学报,4(2):92-94
    吴希媛,张丽萍,倪含斌.2008.青山湖流域不同地表覆盖降雨径流中氮磷流失过程研究[J].水土保持学报,22(1):56-59
    吴志峰,卓慕宁,王继增,等.2004.珠海正坑小流域土壤与氮、磷养分流失估算[J].水土保持学报,18(1):100-102,114
    夏立忠,杨林章,李运东.2007.生草覆盖与植物篱技术防治紫色土坡地土壤侵蚀与养分流失的初步研究[J].水土保持学报,21(2):28-31
    肖波,赵允格,邵明安.2007.陕北水蚀风蚀交错区两种生物结皮对土壤饱和导水率的影响[J].农业工程学报,23(12):35-40
    肖波,赵允格,邵明安.2008.黄土高原侵蚀区生物结皮的人工培育及其水土保持效应[J].草地学报,16(1):28-33
    许炯心.2004.水沙条件对黄河下游河道输沙功能的影响[J].地理科学,24(3):275-280
    阎伍玖,鲍祥.2001.巢湖流域农业活动与非点源污染的初步研究[J].水土保持学报,15(4):129-132.
    阎伍玫,陈飞星.1998.巢湖流域不同土地利用类型地表径流污染特征研究[J].长江流域资源与环境,7(3):27 4276
    阎伍玖,王心源.1998.巢湖流域非点源污染初步研究[J].地理科学,18(3):263-267
    杨林章,周小平,王建国,等.2005.用于农田非点源污染控制的生态拦截型沟渠系 统及其效果[J].生态学杂志,24(11):1371-1374
    杨文治.1996.黄土高原的水分研究[A].盂庆枚主编.黄土高原水土保持[C].郑州:黄河水利出版社
    杨曾奖,徐大平,刘玉,等.2001.套种模式对水土保持效应的影响[J].土壤与环境,10(4):293-296
    姚文艺.1996.坡面流阻力规律试验研究[J].泥沙研究,(1):74-82
    姚志宏,杨勤科.2007.区域尺度侵蚀产沙估算方法研究[J].中国水土保持科学,5(4):13-17
    殷福才,张之源.2003.巢湖富营养化研究进展[J].湖泊科学,15(4):377-384.
    游松财,李文卿.1999.GIS支持下的土壤侵蚀量估算[J].自然资源学报,14(1):62-680
    俞红卫,王锡东.2006.桃形李林下套种茶树的水土保持效果分析[J].中国水土保持,(4):29-30
    翟丽华,刘鸿亮,席北斗,等.2008.沟渠系统氮、磷输出特征研究[J].环境科学研究,21(2):35-39.
    张刚,王德建,陈效民.2007.太湖地区稻田缓冲带在减少养分流失中的作用[J].土壤学报,44(5):873-877
    张光辉.2002.土壤侵蚀模型研究现状与展望[J].水科学进展,13(3):389-395
    张国华,张展羽,左长清,等.2007.红壤坡地不同类型梯田的水土保持效应[J].水利水电科技进展,27(2):77-79,84
    张科利.1998.黄土坡面细沟侵蚀中的水流阻力规律研究[J].人民黄河,20(8):13-15
    张科利,唐克丽.2000.黄土坡面细沟侵蚀能力的水动力学实验研究[J].土壤学报,37(1):9-15
    张科利.1991.黄土坡面侵蚀产沙分配及其降雨特征关系的研究[J].泥沙研究,(4):39-46
    张科利.1999.黄土坡面发育的细沟水动力学特征的研究[J].泥沙研究,(1):56-61
    张克林,程秀英.2005.秸杆覆盖的水土保持生态环境效应[J].水利科技与经济,11(7):434-435
    张乃明,余扬,洪波.2003.滇池流域农田土壤径流磷污染负荷影响因素[J].环境科学,24(3):155-157
    张生根.2007.基于GIS的巢湖流域考古信息系统研究与建设[J].测绘与空间地理信息,30(4):28-32
    张兴昌,刘国彬.2000.不同植被覆盖度对流域氮素径流流失的影响[J].环境科学,21(6):16-19
    张兴昌,邵明安,黄占斌.2000,不同植被对土壤侵蚀和氮素流失的影响.生态学报,20(6):1038-1044
    张兴昌.2002.耕作及轮作对土壤氮素径流流失的影响[J].农业工程学报,18(1):70-73
    张岩,袁建平,等.2002.土壤侵蚀预报模型中的植被覆盖与管理因子研究进展[J].应用生态学报,13(8):1033-1036.
    张燕,张洪,彭补拙,等.2003.不同土地利用方式下农地土壤侵蚀与养分流失[J].水土保持通报,23(1),23-26,31
    张永涛,王洪刚,李增印,等.2001.坡改梯的水土保持效益研究[J].水土保持研究,8(3):9-11,21
    张玉斌,郑粉莉,武敏.2007.土壤侵蚀引起的农业非点源污染研究进展[J].水科学进展,18(1):123-132.
    张之源,王培华,张崇岱.巢湖富营养化状况评价及水质恢复探讨[J].环境科学研究,1999,12(5):45-48.
    张忠民.2006.安康市农作物免耕栽培技术推广应用现状与发展对策[J].中国农技推广,22(12):21-22
    章明奎,方利平.2005.河岸水稻缓沖带宽度对排水中氮磷流失的影响[J].水土保持学报,19(4):10-13
    章文波,谢云,刘宝元.2003.中国降雨侵蚀力空间变化特征[J].山地学报,21(1):33-40
    郑粉莉.1 998.坡面侵蚀分带侵蚀过程与降水-土壤水转化、土壤退化关系研究[J].土壤侵蚀与水土保持学报,4(4):92-95
    郑国萍,赵立强,俞百印,等.2007.多元线性回归模型参数估计的递推算法及误差分析[J].大学数学,23(3):78-82
    郑良勇,李占斌,李鹏.2004.黄土区陡坡径流水动力学特性试验研究[J].水利学报,(5):46-51
    郑香英,殷国庆,王建军,等.2006.低丘红壤开发与复合农林业对土壤侵蚀的影响[J].亚热带水土保持,18(3):16-18,22
    中国大百科全书总编辑委员会.1992.中国大百科全书·水利卷[M].北京,中国大百科全书出版社
    周伏建.1995.福建省天然降雨雨滴特征的研究[J].水土保持学报,9(1):8-12
    周为峰,吴炳方.2005.基于遥感和GIS的密云水库上游土壤侵蚀定量估算[J].农业工程学报,21(10):46-50
    周跃,付玉彬,徐清艳,等.2005.林草植被土壤侵蚀控制作用的初步研究[J].昆明 理工大学学报(理工版),30(6):68-72
    邹清,周连凤,吴生桂.2007.巢湖周年水质的综合评价[J].水利渔业,27(4):57-59
    Abrahams A D.1993.Reladon between Grain velocity and sediment concentration in overland flow[J].Water Resource Research,29(9):1919-1927
    Abrahams A D,Gang L,Parsons A J.1996.Rill hydraulics on a semiarid hill slope,Southern Arizona[J].Earth Surface Processes and Landforms,21:35-47
    Abrahams Athol D,Anthony J,Parsons,Paul J.1992.Field and laboratory studies of resistance to inter rill overland flow on semi-arid hill slopes,southern Arizona[A].In Overland Flow[C],edited by A.J.Parsons &A.D.Abrahams,UCL Press,1-23
    Alberts,E.E.,G.E.Schumann,andR.E.Burwell.1978.Seasonal runofflosses of nitrogen and phosphorus from Missouri Valley loess watershed[J].J.Environ.Qual.7:203-208.
    Alabed M,Zhou S,Y-shi A,et al.2001.An integrated GIS / RS approach for soil erosion assessment and modeling in Syrian coastal soils[J].Pedosphere,11(2):167-174
    Allan C,Curtis A,Stankey G,ect.2008.Adaptive management and watersheds:a social science perspective[J].Journal of the American Water Resources Association,44:166-174
    Al-Soufi R.2004.Soil erosion and sediment transport in the Mekong basin.In:Proc.of 2nd APHW conference,Singapore,47-56
    Amold J G,Williams J R,Nicks A D,et al.1990.SWRRB:A Basin Scale Simulation Model for Soil and Water Resources Management[R].Texas:A&M University Press
    Andrew N Sharpley,Richard W McDowell,Peter J A Kleinman.2001.Phosphorus loss from land to water:integrating agricultural and environmental management[J].Plant and Soil,273(2):287-307
    Antanas Sigitas Sileika,Kazimieras Gaigalis,Ginutis Kutra.2005.Factors affecting N and P losses from small catchments[J].Environmental Monitoring and Assessment,102(1-3):359-374
    Anton V.2006.Satellite remote sensing for water erosion assessment:a review[J].Catena,65:2-18
    Arbelo C D,Rodriguez-Rodriguez A,Guerra J A,ect.2006.Soil degradation processes and plant colonization in abandoned terraced fields overlying pumice tufts[J].Land Degrad Dev,17:571 -588
    Arnold J G.,J R williams,R.Srinivasan.1996.SWAT:Soil and Water Assessment Tool [M],T & M University Press,Texas
    Avnimelech Y, McHenry J R. 1984. Enrichment of transported sediment with organic carbon, nutrients and clay [J]. Soil Sci Soc Am J, 48: 259-266
    
    Baets S D, Poesen J, Knapen A, ect. 2007. Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff [J]. Plant Soil, 294: 169-183
    
    Bakker M M, Govers G, Kosmas C, ect. 2005. Soil erosion as a driver of land-use change[J]. Agric Ecosyst Environ, 105: 467-481
    
    Bewket W, G Sterk. 2002. Farmers participation in soil and water conservation activities in the Chemoga watershed. Blue Nile basin, Ethiopia[J]. Land Degradation and Development, 13(3): 189-200
    
    Bochet E, Poesen J, Rubio J L. 2006. Runoff and soil loss under individual plants of a semi-arid Mediterranean shrubland, influence of plant morphology and rainfall intensity[J]. Earth Surf Process Landf, 31: 536-549
    
    Brakensick. D L. 1977. Estimating the Effective Capillary Pressure in the Green and Ampt Intiltration Equation[J]. Water Resour. Res. 13(3): 680-682
    
    Casermeiro M A, Molina J A, de la Cruz Caravaca M T, ect. 2004. Influence of scrubs on runoff and sediment loss in soils of Mediterranean climate[J]. Catena, 57: 91-107
    
    Cerda A. 1997. Soil erosion after land abandonment in a semiarid environment of southern Spain[J]. Arid Soil Research and Rehabilitation, 11: 163-176
    
    Chambers B J. Garwood T W and Unwin R J. 2000. Controlling soil water erosion and phosphorus losses from arable land in England and Wales [J]. J. Environ.Qual. 29: 145-150
    
    Chen W H, Liu LY, Zhang C, ect. 2005. The fast method of soil erosion investigation based on remote sensing [J]. Res Soil Water Conserv , 12: 8-10
    
    Chowdary V M, Yatindranath Kar S, Adiga S. 2004. Modelling of non-point source pollution in a watershed using remote sensing and GIS[J]. J Indian Soc Remote Sensing, 32(1): 59-73
    
    Chung S W, Gassman P W, Gu R, ect. 2002. Evaluation of EPIC for assessing tile flow and nitrogen losses for alternative agricultural management systems [J]. Trans ASAE, 45(4): 1135-1146
    
    Chu S T. 1978. Infiltration during an unsteady rain [J]. Water Resour Res, 14(3): 461-466
    
    Covers Gerard. 1992. Evaluation of transporting capacity formulae for overland flow [A]. In: Parsons AD , Abrahams AD, eds. Overland Flow [C]. UCL Press, 243-273
    
    Croke J, Mokler S. 2001. Gully initiation and road-to-stream linkage in a forested catchment, south-easteru Australia[J]. Earth Surface Processes and Landforms. 26: 205-217.
    
    Cuiling Jiang, Xiaoqiu Fan, Guangbo Cui, ect. 2007. Removal of agricultural non-point source pollutants by ditch wetlands: implications for lake eutrophication control[J]. Hydrobiologia, 581: 319-327
    
    De Roo A P J. 1996. Validation problems of hydrologic and soil-erosion catchment models: examples from a Dutch erosion project[A]. In: Advances in Hillslope processes[C]. (Anderson MG, Brooks SM, eds. ), Wiley, Chichester, UK: 669-683.
    
    De Roo A P J. 1998. Modelling runoff and sediment transport in catchment using GIS[J]. Hydrological Processes, 12: 905-922.
    
    De Roo A P J, Jetten V G. 1999. Calibrating and validating the LISEM model for two data sets from the Netherlands and South Africa[J]. Catena, 37: 477-493.
    
    Dean, D.J. 1983. Potency factor and loading functions for predicting agricultural no point pollution in agricultural management and water quality. F. W.Schaller and G.W.Bailey (Eds.). Iowa State University Press, Ames.
    
    Douglas C L, King J K A, Zuzel J F. 1998. Nitrogen and phosphorus in surface runoff and sediment from a wheat-Pea rotation in northeastern Oregon[J]. J Environ Qual. 27: 1170-1177
    
    Edwards C L, Shannon R D, Jarrett A R. 1999. Sedimentation basin retention efficiencies for sediment, nitrogen and phosphorus from simulated agricultural runoff [J]. Transactions of the ASAE, 42(2): 403-409
    
    Fan J R, Zhang J H, Zhong X H, ect. 2004. Monitoring of soil erosion and assessment for contribution of sediments to rivers in a typical watershed of the upper Yangtze river basin [J]. Land Degrad Dev, 15: 411-421
    
    Filippo Onori, Piero De Bonis, Sergio Grauso. 2006. Soil erosion prediction at the basin scale using the revised universal soil loss equation (RUSLE) in a catchment of Sicily. Environ Geol, DOI 10.1007/s00254-006-0286-1
    
    Flanagan D C, Foster G R. 1989. Storm pattern effect on nitrogen and phosphorus losses in surface runoff[J]. Trans ASAE, 32: 535-544
    
    Flanagan D C. 1995. Nearing M A. (eds), USDA. Water Erosion Prediction Project : Hillslope Profile and Watershed Documentation, NSERL Report No.10[M]. USDA-ARS National Soil Erosion ResearchLaboratory, West lafayette, Indiana.
    
    Flanagan D C. 2001. Ascough J C Ⅱ, Nearing M A. et al. The Water Erosion Prediction Project(WEPP)[A]. In: Landscape Erosion and Evolution Modeling[C]. New York: Kluwer Academic / Plenum Publishers, 145-199.
    Foster G R , Nearing M A, Laflen J M, et al. 1995. Hillslope erosion component. USDA-water erosion prediction project , hillslope profile and watershed model doctmtentation[R]. West Lafayette: USDA-ARS Purdue Univ, 15-45.
    
    Freedman P L, Nemura A D. 2004. Viewing total maximum daily loads as a process, not a singular value: adaptive watershed management[J]. Journal of Environmental Engineering, 130: 695-702
    
    Fu B J. Ma k M、 Zhou H F. 1999. The effect of land-use structure on the distribution of soil nutrients in the hilly area of the loess plateau. China[R]. Chinese Sciences Bulletin. 44(8): 732-736
    
    Fu B J, Zhao W W, Chen L D, ect. 2005. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A Case Study in Loess Plateau of China[J]. Land Degradation and Development, 16: 73-85
    
    Gao H, Li R. 2006. Analysis on regional soil and water loss based on geological scale in Guizhou Province[J]. Bulletin of Soil and Water Conservation, 3: 118-121
    
    Gallegos C L, Lewis E A, Kim H C. 2006. Coupling Suspended Sediment Dynamics and Light Penetration in the Upper Chesapeake Bay[M]. Smithsonian Environmental Research Center, Edgewater, MD, 36
    
    G Arhonditsis, C Giourga, A Loumou, ect. 2002. Quantitative Assessment of Agricultural Runoff and Soil Erosion Using Mathematical Modeling: Applications in the Mediterranean Region[J]. Environmental Management, 30 (3): 434-453
    
    Georgios D Gikasa, Trisevgeni Yiannakopouloua, Vassilios A. Tsihrintzisb. 2006. Modeling of non-point source pollution in a Mediterranean drainage basin[J]. Environmental Modeling and Assessment, 11: 219-233
    
    Ghadiri, H. and C. W Rose (Eds.). 1992. Modeling chemical transport in soils: natural and applied contaminants. Lewis Publishers, Boca Raton.
    
    Ghulam M Hashim, W Y Wan Abdullah. 2005. Prediction of Soil and Nutrient Losses in A Highland Catchment[J]. Water, Air, & Soil Pollution: Focus, 5 (1): 103-113
    
    Gilly J E. Risse L M. 2000. Runoff and soil loss as affected by the application of manure [J]. Transactions of the ASAE, 43(6): 1583-1588.
    
    Govers Gerard. 1992. Relationship between discharge, velocity, and flow area for rills eroding in loose, non-layered materials [J]. Earth Surface Processes and Landforms, 17: 515-528
    
    Grizzetti B, Bouraoui F, De Marsily G. 2005. Modelling nitrogen pressure in river basins: a comparison between statistical approach and the physically-based SWAT model[J]. Phys Chem Earth, 30: 508-517
    
    Grosh J L. 1994. Interval erosion and runoff on very steep slopes-Trans [J]. Of ASAE, 37(4): 1127-1133
    
    Gyssels G, Poesen J. 2003. The importance of plant root characteristics in controlling concentrated flow erosion rates[J]. Earth Surf Process Landf, 28: 371-384
    
    Hashim G M, Wan Abdullah W Y. 2001. Soil erosion processes and nutrient loss in highland agricultural areas. in R. B. Salama and R. S. Kookana (eds). Agrochemical Pollution of Water Resources, ACIAR Proceedings, 104,17-25
    
    Horton R E. 1945. Erosional development of streams and their drainage basins: hydro physical approach to quantitative morphology [R]. Bull Geol Soc Am, 56: 275-370
    
    Hrissanthou V, Mylopoulos N, Tolikas D. 2003. Simulation modeling of runoff, groundwater flow and sediment transport into Kastoria Lake, Greece[J]. Water Resour Manage, 17: 223-242
    
    Huang M B, Jacques Gallichand, Dong C Y, et al. 2007. Use of soil moisture data and curve number method for estimating runoff in the Loess Plateau of China[J]. Hydrological Processes, 21: 1471-1481.
    
    Jae Young Cho. 2003. Seasonal runoff estimation of N and P in a paddy field of central Korea[J]. Nutrient Cycling in Agroecosystems, 65 (1): 43-52
    
    Jen C H, Lin J C, Hsu M L, ect. 2006. Fluvial transportation and sedimentation of the Fu-shan small experimental catchments[J]. Quaternary International, 147: 34-43
    
    Jetten V, Covers G, Hessel R. 2003. Erosion models: quality of spatial predictions [J]. Hydrological Proeess. 17: 887-900.
    
    John B, Peter Saunders. 2006. Rapid Assessment of Soil Erosion in the Rio Lempa Basin, Central America, Using the Universal Soil Loss Equation and Geographic Information Systems[J]. Environmental Management, 36(6): 872-885
    
    John I, Jeffrey L, Christian V. 1996. The GCTE soil erosion network: A multi-participatory research program [J]. Journal of Soil and Water Conservation. 51(5): 377-380
    
    J Vuorenmaa, S Rekolainen, A Lepist(o|¨), ect. 2002. Losses of Nitrogen and Phosphorus from Agricultural and Forest Areas in Finland during the 1980s and 1990s [J]. Environmental Monitoring and Assessment, 76 (2): 213-248
    
    K Abe, Y Ozaki. 2006. Removal of N and P from eutrophic pond water by using plant bed filter ditches planted with crops and flowers[J]. Hydrobiologia, 956-957
    
    Kinnell P I A. 1990. The mechanics of raindrop induced flow transport [J]. Aust J Soil Res. 28: 497-516
    
    Kireet Kumar, Deep Pant, Y S Panda. 2002. Runoff and soil loss from steep slopes treated with low cost bioengineering measures[J]. The Environmentalist, 22 (2): 133-141
    
    Knisel, W.G. (Ed.). 1980. CREAMS: A Field Scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems [R]. USDA Conservation Research Report, No.26.
    
    Kutra G., Rackauskaite A. 2002. Farming impact on rivulets water quality[J]. Water Manage. Eng. Trans. 16, 34-38
    
    Lee G S, Lee H S. 2006. Scaling effect for estimating soil loss in the RUSLE model using remotely sensed geospatial data in Korea [J]. Hydrology and Earth System Sciences Discussions, 3, 135-157
    
    Line D E. 1999. Non point source [J]. Water Environ. Research, 70 (4), 356-378
    Liu B Y,Nearing M A, Shi L M.. 2000. Slope length effects on soil loss for steep slopes [J] . Soil Sci. Soc.of Am. J., 64(5) : 1759-1763
    
    Lu T, Ma K M, Zhang W H, ect. 2006. Differential responses of shrubs and herbs present at the Upper Minjiang River basin (Tibetan Plateau) to several soil variables [J]. J Arid Environ, 67: 373-390
    
    Lufafa A, Tenywa M M, Isabirye M, et al. 2003. Prediction of soil erosion in a lake victoria basin catchment using a GIS based universal soil loss model [J]. Agricultural Systems, 76: 883-894.
    
    Luk S H, Cai Q G. 1990. Laboratory experiments on crust development and rains plash erosion of loess soils, China[J]. Catena, 17: 261-276
    
    Machito Mihara, Naoyuki Yamamoto, Takashi Ueno. 2005. Application of USLE for the prediction of nutrient losses in soil erosion processes [J]. Paddy Water Environ, 3 (2): 111-119
    
    Mahaney W M, Wardrop D H, Brooks R P. 2005. Impacts of sedimentation and nitrogen enrichment on wetland plant community development [J]. Plant Ecology, 175: 227-243
    
    Mandal U K, Rao K V, Mishra P K, ect. 2005. Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain [J]. Eur J Soil Sci, 56: 435-443
    
    Martha M Bakker, Gerard Govers, Robert A Jones, ect. 2007. The Effect of Soil Erosion on Europe's Crop Yields[J]. Ecosystems, 10: 1209-1219
    
    Massey H F. 1952. Selective erosion of soil fertility constituents [J]. Soil Science Society proceedings. 16: 353-356
    
    Medowell L L. 1984. Plant nutrient yields in runoff from a Mississippi delta watershed [J]. Trans. ASAE, 27: 1059-1066
    
    Meyer L D, W H Wischmeier. 1969. Mathemenatical simulation of the process of soil erosion by water[J]. Transactions of ASAE, 12(6): 754-758
    
    Meyer L D, Line D E, Harmon W C. 1992. Size characteristics of sediment from agriculture soils[J]. J. Soil and Water cons., 47(1): 107-111
    
    Miroslav Kutilek. 2003. Time-dependent hydraulic resistance of the soil crust: Henry's law [J]. Journal of Hydrology, 272: 72-78
    
    Moore I D, and C L Larson. 1979. Estimating micro-relief surface storage from point data [J]. TRANSACTIONS of the ASAE, 20(5): 1073-1077
    
    Morgan R P C, Quinton J N, Rickson R J. 1994. Modelling methodology for soil erosion assessment and soil conversion design: the EUROSEM approach[J]. Outlook Agric., 23: 5-9.
    
    Morgan R P C, Quinton J N, Smith RE, et al. 1998. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Process and Landforms. 23: 527-544.
    
    Morgan R P C, Quinton J N. 2001. Erosion modeling[A]: In: Landscape erosion and evolution modeling[C]. New York: Kluwer Academic / Plenum Publishers. 118-126.
    
    Morin J. van Winkel J. 1996. Effect of rain drop impact and sheet erosion on infiltration rate and crust formation [J]. Soil Sci. Soc. Am. J. 60: 1223-1227
    
    Mutua B M, Klik A . 2005. Development of a Physically based Model for Estimation of Spatial Sediment Delivery Ratio for Large Remote Catchments[J]. Journal of Spatial Hydrology, 5: 45-59
    
    Natural Resources Conservation Service , USDA . 1998 . Bufcommon sense conservation[R]. Washingto. D. C
    
    Nearing M, Simanton R, Norton D, et al. 1999. Soil erosion by surface water flow on a stony, semiarid hill slope [J]. Earth e Processes and landforms, 24: 677-686
    
    Neuman S P. 1976. Wetting front Pressure Head in the Infiltration Model of Green and Ampt[J]. Water Resour. Res. 12(3): 564-566
    
    Nicholen Barger, Jeffreye Herrick. 2006. Impacts of biological soil crust disturbance and composition on C and N loss from water erosion [J]. Biogeochemistry, 77: 247-263
    
    Novotny V, Gordon Chester. 1989. Delivery of sediment and pollutants from non-point sources: A water quality perspective [J]. Journal of Soil and Water Conservation, 44: 563-576.
    
    Nunes J P, Renschler C S, Souchere V, ect. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover[J]. Catena, 61: 131 -154
    Oenema O. 1998. Nitrogen and phosphorus losses from agriculture into surface waters [J]. Water Sci, Tech, 37 (2), 23-30
    
    Onyando J O, Kisoyan P, Chemelil M C. 2005. Estimation of potential soil erosion for River Perkerra catchment in Kenya [J]. Water Resour Manag, 19: 133-143
    
    Pandey A, Chowdary V M, Mal B C. 2007. Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing [J]. Water Resour Manag, 21: 729-746
    
    Parsons A J, Abraham s A D. 1992. Overland Flow, Hydraulic sand Erosion Mechanics [M]. London: UCL Press.
    
    Peng L, J Z Wang, and C Z Yu. 1995. Nutrient losses in soils on Loess Plateau [J]. Pedosphere, 5: 83-92
    
    Peter Houk, Guy Didonato, John Iguell. 2005. Assessing the effects of non-point source pollution on american samoa's coral reef communities [J]. Environmental Monitoring and Assessment, 107: 11-27
    
    Philip J R. 1998. Infiltration into surface-sealed soils [J]. Water Resour Res, 34: 1919-1927
    
    Pickup G, Marks A. 2001. Beglonal scale sedimentation process models from airborne gammaray remote sensing and digital elevation data[J]. Earth Surface Proceses and Landformls, 26: 273-293.
    
    Pode DH. 1999. Relationship between phosphorus levels in three ultimo and phosphorus concentration in runoff [J]. J of Environ Qual, 28 (2), 170-175
    
    Rabin Bhattarai, Dushmata Dutta. 2007. Estimation of Soil Erosion and Sediment Yield Using GIS at Catchment Scale [J]. Water Resour Manage, 21: 1635-1647
    
    Renard K G, Foster G R, Weesies G A. et al. 1997. Predicting soil erosion by water-a guide conservation planning with the Revised Universal Soil Loss Equation (RUSLE) . (USDA -ARS) Handbook. No 703 [M]. Washington, DC: United States Government Printing Office.
    
    Renard K G, Foster G R. et al. 1991. RUSLE: Revised Universal Soil Loss Equation [J]. J Soil Water Conserv. 46: 30-33
    
    Restrepo J D, Syvitski JPM. 2006. Assessing the Effect of Natural Controls and Land Use Change on Sediment Yield in a Major Andean River: The Magdalena Drainage Basin, Colombia[J]. Ambio, 35: 65-74
    
    Ruan H X, Ahuja L R, Green T R. 2001. Residue cover and surface-sealing effects on infiltration numerical simulations for field applications [J]. Soil Science Society of America Journal, 65: 853-861
    Saro Lee. 2004. Soil erosion assessment and its verification using the Universal Soil Loss Equation and Geographic Informarion System: a case study at Boun, Korea[J]. Environmental Geology45: 457-465.
    
    Savat J. 1977. The hydraulics of sheet flow on a smooth surface and the effect of simulated rainfall [J]. Earth Surface Processes and Landforms, 125-140
    
    Schulze R. 2000. Trancending scales of space and time in impact studies of climate and climate change on agrohydrologlcal responses[J]. Agriculture, Ecosystems and Environment, 82; 185-212.
    
    Scoging Helen. 1992. Modelling overland-flow hydrology for dynamic hydraulics[A]. In: Parsons A J, Abrahams A D, eds. Overland Flow[C]. London: UCL Press, 89-103
    
    Sharpley A N, Daniel T C, Sims T J. 1996. Determining environmentally sound soil phosphorus levers [J]. J Soil Water Conserv, 51: 160-166
    
    Sharpley A N, Gburek W J, Folmar G, et al. 1999. Sources of phosphorus exported from an agricultural watershed in Pennsylvania[J]. Agri Water Manage. 41: 77-89
    
    Sharpley A N. 1985b. Depth of surface soil-runoff interaction as affected by rainfall, soil, slope, and management[J]. Soil Sci Soc Am J, 49: 1010-1015.
    
    Sharpley, A N. 1983. Efect of soil properties on the kinetics of phosphorus adsorptions [J]. Soil Sci. Soc.Am. J, 47: 462-467
    
    Slattery M C, Burr T P. 1997. Particle size characteristics of suspended sediments in hill slope runoff and stream flow [J]. Earth Surface Process and Landforms, 22: 705-719.
    
    Smith R E, Corradini C, Melone F. 1999. A conceptual model for infiltration and redistribution in surface! sealed soils [J]. Water Resour Res, 35: 1385-1393
    
    Smith R E, Parlange J Y. 1978. A Parameter-efficient Hydrologic Infiltration Model. Water Resour Res, 14(3): 533-538
    
    Takken l, Beuselinck L, Nachtergaele J. 1999. Spatial evaluation of a physically-based distributed erosion model(LISEM)[J]. Catena, 37(3-4): 431-447.
    
    Tenge A J, Kaihura F B S, Lal R, et al. 1998. Erosion effects on soil moisture and corn yield On two soils at Mlingano, Tanzania [J]. America Journal of Alternative Agriculture, (13): 83-89
    
    United States Department of Agnculture. 1986. Natural Resources Conservation Service and Conservation Engineering Division. Urban Hydrology for Small Watersheds-Technical Release 55 second Edition[M]. 13-27
    
    Victor Hugo Durán Zuazo, Armando Martínez Raya, José Aguilar Ruiz. 2004. Nutrient Losses by Runoff and Sediment from the Taluses of Orchard Terraces [J]. Water, Air, & Soil Pollution, 153 (14): 355-373
    
    Wang X D, Zhong X H, Fan J R. 2005. Spatial on the distribution of soil erosion sensitivity on the Tibet Plateau[J]. Pedosphere, 15: 465-472
    
    Watson A A, Kiker J M, Odhiambo B K. 2007. Spatial Analysis and Radiogenic Characterization of Sediments to Identify Potential Pollutant Pathways in Remote Sub-watersheds of the Rappahannock River[J]. Geological Society of America Abstracts with Programs, 39: 2, 87
    
    William H Schlesinger, T J Ward, John Anderson. 2000. Nutrient losses in runoff from grasslandand shrubland habitats in southern New Mexico: Ⅱ. Field plots[J]. Biogeochemistry, 49 (1): 69-86
    
    Williams J R . 1980. SPNM, A model for prediction sediment, phosphorus, and nitrogen yields from agricultural basins[R]. Water Resources Bulletin 16: 843-848
    
    Williams J R., C A Joncs, and P T Dyke. 1984. A modeling approach to determine the relationship between erosion and soil productivity [J]. Trans. of the ASAE, 27: 129-144.
    
    Wilkinson B H, McElroy B J. 2007. The impact of humans on continental erosion and sedimentation [J]. Geol Soc Am Bull, 119: 140-156
    
    Wischmeier W H. 1971. A soil erodibility nom orgraph farm land and const ruction sites [J]. Soil and Water Conservation , 26 : 189-193
    
    Wischmeier W H, Smith D D. 1971. A soil credibility monograph farm land and construction sites [J]. Journal of Soil and Water Conservation, 26, 189-193.
    
    Wischmeier W H , Smith D D. 1958. Rain Energy and Its Relation to Soil Loss [J]. Trans Am Geography, Union. 39, 285-291
    
    Wischmeier W H, Smith D D. 1978. Predicting Rainfall Erosion Losses-A Guide to Conservation Planning [R]. Agriculture Handbook No.537, United States, Dept. Of Agriculture 12-72
    
    Xian Li Xu, Ke Ming Ma, Bo Jie Fu. 2007. Soil and water erosion under different plant species in a semiarid river valley, SW China: the effects of plant morphology. Ecol Res, DOI 10.1007/s11284-008-0479-z
    
    Xu Fuliu, Shu Tao and Xu zhou-ran. 1999. The Restoration of riparian wetlands and macrophysics in Lakes Chao, an eutrophic Chinese lake, possibilities and effects., Hydrobiologia, 169-178
    
    XuYue-Qing, Shao Xiao-Mei, Kong Xiang-Bin. 2008. Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province. China [J]. Environ Monit Assess, 141: 275-286
    
    Yang D Z, Xu X D, Liu X D, ect. 2005. Complex sources of air soil-water pollution processes in the Miyun reservoir region [J]. Sci China Ser D Earth Sci 48((Supp. Ⅱ)): 230-245
    
    Yang Q K, Li R, Cao M M. 2006. Advances of quantitative assessment on regional soil erosion[J]. Adv Earth Sci, 21: 848-855
    
    Yan W J, Yin C Q, Zhang S N. 1999. nutrient budgets and biogeochemistry in an experimental agricultural watershed in South-eastern China[J]. Biogeochemistry, (45): 1-19
    
    Yin C Q, Shah B Q. 2001. Malt-pond systems: A sustainable way to control difuse phosphorus pollution. AMBIO, 30(6): 369-375
    
    Yoshino K, Ishioka Y. 2005. Guidelines for soil conservation towards integrated basin management for sustainable development: a new approach based on the assessment of soil loss risk using remote sensing and GIS [J]. Paddy and Water Environment, 3: 235-247
    
    Young R A, C A Onstad, D D Bosch. 1989. AGNPS: A non point-source pollution model for evaluating agricultural watersheds [J]. Journal of Soil and Water Conservation 44: 168-173
    
    Yu X X, Niu J Z, Xu J L. 2004. Effects of closing mountain for forest restoration in the watershed of Miyun reservoir Beijing[J]. For Stud China, 6: 28-35
    
    Zhang X C, Nearing M A. 2005. Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma[J]. Catena, 61: 185-195

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700