用户名: 密码: 验证码:
松嫩平原羊草种群模拟放牧耐受性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物放牧耐受性是植物防御系统的重要组成部分,经历草食动物采食后的植物具有补偿性再生生长和提高繁殖水平的能力。本论文以羊草(Leymus chinensis)为对象,采用刈割模拟放牧干扰的手段,系统研究了植物耐牧性对模拟放牧强度、资源水平、竞争强度、克隆整合作用等因素的响应;深入探讨了在模拟放牧条件下,羊草启动补偿性再生效应的调节机制和生理基础。本文着重从植物对资源及非资源因素适应性的角度,阐释了在多个外部影响因子交互作用之下,羊草种群生长、发育、防御等不同功能之间的权衡,为进一步探讨动植物之间的协同进化与草地资源的合理利用提供一定的理论基础。本实验采用野外控制实验和盆栽控制实验相结合的方法,对羊草耐牧性的研究结果与主要结论如下:
     羊草具有极强的耐牧性,能够在不同条件下调整自身的适应性策略,面对外界放牧或刈割干扰等不利环境。天然草地上,生长季中后期的模拟放牧处理对羊草分蘖具有明显刺激作用。羊草增加了在冬性植株输出及休眠芽形成上的能量投入,其中,留茬8cm的中度模拟放牧处理对于翌年羊草的返青及种群的延续最为有利。人工草地上,羊草对于生长季前期的初次刈割处理、及生长季中后期的二次刈割处理做出了不同的响应。初次刈割后,羊草采取增加植株地上部分营养生长、控制新生分株数量的策略,种群得以迅速恢复。由于二次刈割处理后是羊草大量的芽和冬性植株形成阶段,因此,羊草此时采取先扩大种群密度、再增加新生植株或叶片生长的适应性策略。
     羊草种群密度对其营养生物量、繁殖生物量及芽的数量均有明显的制约效应,种群密度和刈割强度的交互作用(P≤0.05)共同影响着羊草的种群调节。轻度刈割处理后,羊草种群密度对地下生物量累积的限制作用增强(b=-0.9621)。在轻度放牧条件下,少量植物组织的损失并未威胁植物的存活,因此,羊草更多资源分配于植株地上部分恢复生长的需要;地上植株完全刈割(除去植株地上部分的100%)后,密度制约效应结果是对地上生物量累积的限制更为明显(b=-0.9929),更多资源分配于植株地下部分。此时,完全刈割直接影响到个体的存活及种群的延续,因此,高密度条件下加大对植物地上生物量累积的制约,目的是保证植株的存活及营养繁殖的顺利进行。
     植物生长发育需要光照、水分、营养等必需资源的供给,因此,环境中资源可利用性对植物生长、繁殖及防御有显著的影响效应。单一资源与模拟放牧处理之间交互作用的结果,在低水分条件下羊草耐牧值下降程度(0.57)大于高水分条件下羊草耐牧值的降低(0.32)。可见水分与刈割之间的“协同型交互作用”加剧了资源限制与刈牧干扰因素对植物种群所造成的负面效应;而营养与刈割之间的“拮抗型交互作用”则缓解了这种负效应,减小植物的适合度的降低程度。因此,我们在限制资源模型(Limiting Resource Model,LRM)基础上,假设植物表现对放牧强度做出线性反应,并提出了简化的限制资源模型,进一步发展了LRM模型。
     基于两个营养强度、两个光照条件及两个水分条件的模拟放牧实验结果表明,环境中资源因子之间多存在强烈的交互作用,共同影响着羊草的生长、繁殖和耐牧性。其中,光照资源是植物生长发育的首要影响因子。低光照条件下植物表现出地上部分徒长,缺少繁殖投入等特征,而且,受到刈牧干扰后恢复生长的能力差,生物量补偿指数(CI)与耐牧值(TS)都显著低于高光照条件下的植物。在光照充裕的生境中,决定羊草耐牧性大小的环境中的营养条件,其次才是水分条件。
     克隆整合作用是克隆植物的典型特征,有助于克隆植物在异质性较强的生境中生存和发展。羊草是典型的根茎型禾本科牧草,分株间具有地下相连的根茎,可以进行营养物质的转运和传递。在我们的研究中,羊草同一克隆片段的不同分株生长在土壤中营养水平不同的生境之中。实验结果显示,在无模拟放牧影响条件下羊草的根茎整合作用有利于羊草克隆片段整体生物量的累积,其收益(0.564±0.016)大于其成本投入(0.4838±0.0448);但在重度模拟放牧干扰处理组内,羊草克隆整合作用的成本收益(0.185±0.018)明显降低,低于其成本投入(0.583±0.019)。放牧强度过大导致克隆整合的能量投入远远大于该特征的正向产出。
     从表观来看,植物能够在草食动物采食之后能够进行补偿性再生生长,弥补动物采食所造成的损失。事实上,植物的补偿性效应是与碳水化合物和氮素在植物体各部分之间的转移,以及外界的环境干扰对植物体内源激素的产生及传递直接相关的。在模拟放牧处理后几个小时内,羊草贮存在根茎、分蘖节等储藏器官中的碳水化合物和氮素即开始迅速(刈割后5h内)向地上部分转移。可见,植物体地下部分贮存的碳水化合物和氮在短时间内向地上的迅速转移为羊草在模拟放牧后的恢复生长提供了物质和能量基础。而且,模拟放牧处理后植株生长促进型激素IAA和GA_3含量的增加,生长抑制型激素ABA含量的降低,羊草叶片及芽中IAA/ABA比值迅速上升,分别从无模拟放牧干扰时的1.32与0.86,升为1.66和3.80。其中,芽中IAA/ABA相对比例升高超过4倍。植物体内碳水化合物、氮素的迅速合成或吸收,并在植物不同部位间转移,以及植物内源激素含量变化及其相对消长平衡,均是植物在草食动物放牧干扰下再次进入生理活跃状态的生理基础和调节机制。
     通过本论文对羊草耐牧性的系统研究,我们确定羊草属于放牧耐受物种,在放牧利用后具有较强的补偿再生能力。羊草的耐牧性及适应性策略具有较强的可塑性和可调节性。羊草的耐牧性受到放牧强度、放牧时间、放牧频度等动物采食行为的影响,同时,随着环境中资源水平的变化、种内竞争强度的变化、及地下根茎克隆整合状态的变化,植物采取不同的耐牧性策略,力求使得自身适合度最大化。而且,羊草贮存的碳水化合物与氮素储备为羊草耐牧性提供物质和能量基础。植物体各部分内源激素的合成与传递,以及内源激素之间的相对消长关系为羊草耐牧性的生理调节机制。
Herbivory tolerance of plants is an importnat component of plant defensive system against herbivores.Plants have considerable ability to respond to herbivory with compensatory regrowth and increased reproduction.We selected Leymus chinensis as our study material,and simulated herbivory disturbance by removing above-ground biomass of plants.This study mainly focused on the responses of L.chinensis to simulated herbivory intensities,resource availability in environments,competition intensity,and clonal integration.We also studied the ecological and physiological mechanisms of controlling compensatory regrowth in L.chinensis.We analyzed the regrowth, reproduction,and grazing tolearance of L.chinensis under the interactions of many outside factors,and determined the trade-off among growth,reproduction and defence, which will provide theoretical basis for co-evolution between plants and herbivores,and reasonable utilization of grassland.Herbivory tolerance of L.chinensis was investigated by combining the results of controlled conditions in the natural grassland and in the pot experiments.The main results and conclusions which could be obtained from our experiments were as follows.
     L.chinensis,with great tolerance to herbivory,has the ability to adjust its adaptive strategies to cope with unfavorable environments such as grazing or clipping disturbance. In the middle of August,simulated grazing treatment in natural grassland improved the capacity of building new tillers of L.chinensis with the increased energy input for winter seedlings and dormant buds.The clipping treatment with 8 cm stubble height was most beneficial to the population development of L.chinensis in the next year.There were two different responses of L.chinensis to the first and second simulated grazing treatments. The first simulated grazing treatment was conducted in the beginning of June.After this, L.chinensis adopted the adaptive strategy that increased above-ground vegetative growth with the limitation of building new tamers.The second clipping treatment was conducted in the middle of August when a number of buds and winter seedlings were forming.Thus, the adaptive strategy of L.chinensis was to increase the growth of new seedlings or leaves following increasing population density.
     There were significantly limiting effects of population density on vegetative biomass, reproductive biomass,and bud number in L.chinensis.The interaction between density and clipping influenced the adjustment of L.chinensis population.The limiting effects of population density on under-ground biomass(b = -0.9621) increased with the light clipping treatment.Therefore,more energy was input for the regrowth of above-ground biomass.Removal of 25%shoots was not the lethal damage to L.chinensis seedlings.The limiting effects of population density on above-ground biomass(b = -0.9929) increased with the complete clipping treatment(removal of 100%shoot),which could lead to the death of seedlings.Therefore,the limiting effects on above-ground biomass under high density conditions were to ensure the survival of seedlings and vegetative propagation.
     The availability of light,water and nutrient in environments significantly affects plant growth and reproduction.They are the necessary resources for plant survival and growth.The results on the interactions between the availability of one resource and simulated grazing intensities showed that the "cooperative" interactions between water and simulated grazing aggravated the negative effects on tolerance scores,and the "antagonistic" interactions between nutrient and simulated grazing alleviated the negative effects of shoot removal on fitness reduction.Therefore,we assumed the linear responses of plant performance to herbivory intensity,and proposed a modified and simplified graphic model of the Limiting Resource Model(LRM).
     The pot experiment with two nutrient levels,two light levels,and two water treatments was conducted to study the interactions among several factors influencing regrowth,reproduction,and grazing tolearance of L.chinensis.The results showed that plants in low light environments increased the growth of leaves,and decreased reproduction input.What is more,plants under low light conditions always failed to recover from disturbance and damage,even lead to the death of seedlings.Thus,light energy is the most important key factors for plant growth and tolerance.For plants growing in sufficient light environments,nutrient level in the soil was more important in determining tolerance capacity of plants than water conditions.
     Clonal integration,as the typical characteristic of clonal plants,is helpful for the individual survival and population development of plants growing in the heterogeneous environments.L.chinensis is a typical clonal plant,depending mainly on vegetative propagation for regeneration.Its highly branched rhizomes can be used for reserving and transporting carbohydrate and minerals among different ramets.The ramets of L. chinensis in the same clones were grown in different nutrient environments in our study. The results showed that clonal integration could improve biomass accumulation without simulated grazing,while the benefit of clonal integration in L.chinensis significantly decreased after heavy simulated grazing treatment.
     Plants have the ability to regrow and recover following grazing disturbance, compensating for the loss of herbivory.This is directly relative with the transportation of carbohydrate and nitrogen among different organs of plants,and the inductive synthesis of endogenesis hormones.In the following hours after simulated grazing,the reservation of carbohydrate and nitrogen in the rhizomes and tillering nodes was immediately transported to the above-ground organs.Thus,the quick transportation of soluble sugar and nitrogen provides the energy basis for the regrowth and recovery from grazing. Furthermore,simulated grazing could improve the concentration of IAA and GA_3,and reduce the concentration of ABA.The increase of IAA/ABA ratio in leaves and buds of L. chinensis can be considered as the physiological mechanism for herbivory tolerance of plants.
     In conclusion,L.chinensis is determined as a tolerant species,based on our study on grazing tolerance.L.chinensis has strong compensatory regrowth ability,adapative plasticity and adjustment after herbivory.Herbivory tolerance of L.chinensis is influenced by grazing intensity,grazing frequency,and time of grazing.At the same time,the performance of L.chinensis can respond to the level of resource in the environments, intra-specific competition intensity,and clonal integration.Moreover,the reservation of carbohydrate and nitrogen in under-ground organs can provide energy basis for herbivory tolerance.The synthesis and transportation of endogenesis hormones,the relative concentration of different hormones can be regarded as the physiological mechanism of grazing tolerance in L.chinensis.
引文
[1]kada M,Asada M,Miyashita T.Regional differences in the morphology of a shrub Damnacantbus indicus:An induced resistance to deer herbivory[J].Ecological Research,2001,16:809-813.
    [2]王德利,王旭,刘颍,滕星.东北松嫩草地家畜放牧生态学的研究[C].生态安全与生态建设学术会议生态安全与生态建设,2002.
    [3]Juenger T,Lennartsson T.Tolerance in plant ecology and evolution:toward a more unified theory of plant-herbivore interaction[J].Evolutionary Ecology,2000,14:283-287.
    [4]Darwin,C.On the origin of species by means of natural selection[M].London:John Murray,1859.
    [5]王德利,高莹.竞争进化与协同进化[J].生态学杂志,2005,24(10):1182-1186.
    [6]Mode C J.A mathematical model for the coevolution of obligate parasites and their hosts[J].Evolution,1958,12:158-165.
    [7]Ehrlich P R,Raven P H.Butterflier and plants:a study in coevolution[J].Evolution,1964,18:586-608.
    [8]Jazen D H.When is it coevolution[J].Evolution,1980,34:611-612.
    [9]张昀.生物进化[M].北京:北京大学出版社出版,1998.
    [10]Scriber J M.Sequential diets,metabolic costs and growth of Spodopteraerd ania feeding upon dilllima bean and cabbage[J].Oecologia,1981,51:175-180.
    [11]Iason G R,Murray A H.The energy costs of ingestion of naturally occurring plant phenolics by sheep[J].Physiological Zoology,1996,69:532-546.
    [12]Abrahamson W G.Plant-Animal Interrelations[M].New York:McGraw-Hill,1989.
    [13]Hatanaka A.The biogeneration of green odour by green leaves[J].Phytochemistry,1993,34(5):1202-1218.
    [14]Pare P W,Tumlinson J H.Induced synthesis of plant volatiles[J].Nature,1997,385(2):30-31.
    [15]Karban R,Agrawal A A,Thaler J S,et al.Induced plant responses and information content about risk of herbivory[J].Tree,1999,14(11):443-446.
    [16]Lou Y G,Cheng J A.Herbivore-induced plant volatiles:primary characteristics,ecological functions and its release mechanism[J].Acta Ecologica Sinica,2000,20(6):1097-1106.
    [17]Shonle I,Bergelson J.Interplant communication revisited[J].Ecology,1995,76:2660-2663.
    [18]Pare P W,Turmlinson J H.Cotton volatiles synthesized and released distal to the site of insect damage[J].Phytopchemistry,1998,47(4):521-526.
    [19]Dicke M,Takabayashi J,Posthumus M,et al.Plant-phytoseiid interactions mediated by herbivore-induced plant volatiles:variation in production of cues and in responses of predatory mites[J].Experimental and Applied Acarology,1998,22:311-333.
    [20]Shulaev V,Sllverman P,Raskin L.Airborne signaling by methylsalicy late in plant pathogen resistance[J].Nature,1997,385(20):718-721.
    [21]Stotz H U,Pittendrigh B R,Kroymann J,et al.Induced plant defense responses against chewing insects.Ethylene signaling reduces resistance of arabidopsis against Egyptian cotton worm but not diamondback moth[J].Plant Physiology,2000,124:1007-1018.
    [22]Kessler A,Baldw L T.Defensive function of herbivore-induced plant volatile emissions in nature[J].Science,2001,291:212-215.
    [23]Sabelis M W,Janssen A,Kant M R.The enemy of my enemy is my ally[J].Science,2001,291:204-205.
    [24]DeMoraes C M,Mescher M C,Tumlinson J H.Caterpillar-induced nocturnal plant volatiles repel conspecific females[J].Nature,2001,410:577-580.
    [25]Agrawal A A.Induced responses to herbivory and increased plant performance[J].Science,1998,279:1201-1202.
    [26]Agrawal A A,Strauss S Y,Strout M J.Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish[J].Evolution,1999,53:1093-1104.
    [27]Rhodes D F.Offensive-defensive interactions between herbivores and plants:Their relevance in herbivore population dynamics and ecological theory[J].American Naturalist,1985,125:205-238.
    [28]Karban R,Byers J H.Induced plant responses to herbivory[J].Annual Review of Ecology and Systematics,1989,20:331-348.
    [29]Loreau M,Mazancourt C.Should plants in resource-poor environments invest more in antiherbivore defence?[J].Oikos,1999,87(1):195-201.
    [30]李俊年,刘季科.植食性哺乳动物与植物协同进化研究进展[J].生态学报,2002,22(12):2186-2193.
    [31]McNaughton S T.Adaptation of herbivore to seasonal changes in nutrient supply[M].In:Hacker J B,Ternouth J H,eds.The nutrition of herbivores.Sydney:Academic press,1987:391-408.
    [32]J(a|")remo J,Tuomi J,Nilsson P,et al.Plant adaptation to herbivory:Mutualistic versus antagonistic coevolution[J].Oikos,1999,84(2):313-321.
    [33]刘方邻.花蜜中次生代谢物质及其对传粉的影响[D].上海:中国科学院上海生命科学研究院植物生理生态研究所,2004.
    [34]Georgiadis N J,McNaughton S J.Interactions between grazers and a cyanogenic grass,Cynodon plectostachyus[J].Oikos,1988,51(3):343-350.
    [35]Panter K E,Bunch T D,James L F,et al.Ultrasonographic imaging to monitor fetal and placental developments in ewes fed locoweed[J].American Journal of Veterinary Research,1987,48:686-690.
    [36]Ellis L F,James L F,Mcmullen R W,et al.Reduced progersterone and altered cytoledonary prostagland in levels induced by locoweed in sheep[J].American Journal of Veterinary Research,1985,46:1903-1907.
    [37]Atchley W R,woodruff D S.Evolution and speciation[M].Cambridge:Cambridge University Press,1981.
    [38]Bailey D W,Gross J E,Laca E A,et al.Mechanisms that result in large herbivore grazing distribution patterns[J].Journal of Range Management,1996,49:386-400.
    [39]Howe G A.Cyclopentenone signals for plant defense:remodeling the jasmonic acid response [C].Proceeding of the National Academy of Sciences of the United States of American,2001,98:12317-12319.
    [40]Crawley M J.Life history and environment[M].In:Crawley M J,ed.Plant Ecology.Oxford:Blackwell Science,1997:73-131.
    [41]Lennartsson T,Tuomi J,Nilsson P.Evidence for the evolutionary history of over-compensation in the grassland biennial Gentianella campestris(Gentianaceae)[J].American Naturalist,1997,149:1147-1155.
    [42]Dyer M I,Tumer C L,Seastedt T R.Herbivore and its consequences[J].Ecological Application,1993,3(1):10.
    [43]王德利.植物与草食动物之间的协同适应与进化[J].生态学报,2004,24(11):2641-2648.
    [44]Strauss S Y,Agrawal A A.Ecology and Evolution of Plant tolerance to herbivory[J].Trends in Ecology & Evolution,1999,14(5):179-185.
    [45]Belsky A J.Does herbivory benefit plants? A review of the evidence[J].American Naturalist,1986,127:870-892.
    [46]Verkaar H J.When dose grazing benefit plants?[J].Trends in Ecology and Evolution,1986,1:168-169
    [47]卫智军,高雅代,袁晓冬,等.典型草原种群特征对放牧制度的响应[J].中国草地,2003,25:1-5.
    [48]Sosebee R E,Wester D B,Villalobos J C.et al.How grasses grow-how plant growth relates to grazing management[J].Acta Prataculturae Sinica,2005,14:117-125.
    [49]Briske D D,Richards J H.Plant Responses to Defoliation:A Physiological,Morphological and Demographic Evaluation[M].In:Bedunah D J,Sosebee R E,eds.Physiological Ecology and Developmental Morphology,Denver:Society for Range Management,1995:635-670.
    [50]Simms E L.Defining tolerance as a norm of reaction[J].Evolutionary Ecology,2000,14:563-570.
    [51 ] Crawley M J. Benevolent herbivores? [J]. Trends in Ecology and Evolution, 1987, 2: 167-168.
    [52] Bejer B. The nun moth in European spruce forests [M]. In: Berryman A A, ed. Dynamics of Forest Insect Populations: Patterns, Causes, Implications. New York: Plenum Press, 1988:211-231.
    [53] Mattson W J, Simmons G A, Witter J A. The spruce budworm in eastern North America [M]. In:Berryman A A, ed. Dynamics of Forest Insect Populations: Patterns, Causes, Implications. New York: Plenum Press, 1988: 309-330.
    [54] Haukioja E, Koricheva J. Tolerance to herbivory in woody vs. herbaceous plants [J].Evolutionary Ecology, 2000, 14: 551-562.
    [55] Feeny P. Plant apparency and chemical defense [J]. Recent Advances of Animal Ecology, 1976,10: 1-40.
    [56] Dangerfield J M, Modukanele B. Overcompensation by Acacia erubescens in response to simulated browsing [J]. Journal of Tropical Ecology, 1990, 12: 905-908.
    [57] Hjalten J. Willow response to pruning: the effect on plants growth, survival and susceptibility to leafgallers [J]. Ecoscience, 1999, 6: 62-67.
    [58] Vanderklein D W, Reich P B. The effect of defoliation intensity and history on photosynthesis,growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits [J].New Phytologist, 1999, 14: 121-132.
    [59] Lehtila K, Haukioja E, Kaitaniemi P, et al. Allocation of resources within mountain birch canopy after simulated winter browsing [J]. Oikos, 2000, 90: 160-170.
    [60] Van der Heyden F, Stock W D. Regrowth of a semiarid shrub following simulated browsing: the role of reserve carbon [J]. Functional Ecology, 1996, 10: 647-653.
    [61] Bilbrough C J, Richards J H. Growth of sagebrush and bitterbrush following simulated winter browsing: mechanisms of tolerance [J]. Ecology, 1993, 74: 481-492.
    [62] Ernest K A. Resistance of creosotebush to mammalian herbivory: temporal consistency and browsing-induced changes [J]. Ecology, 1994, 75: 1684-1692.
    [63] Weltzin J F, Archer S R, Heitschmidt R K. Defoliation and woody plant (Prosopis glandulosa) seedling regeneration potential vs realized herbivory tolerance [J]. Plant Ecology, 1998,138:127-135.
    [64] Reichenbacker R R, Schultz R C, Hart E R. Artificial defoliation effect on Populus growth,biomass production, and total nonstructural carbohydrate concentration [J]. Environmental Entomology, 1996, 25: 632-642.
    [65] Obeso J R. Does defoliation affect reproductive output in herbaceous perennials and woody plants in different way? [J]. Functional Ecology, 1993, 7: 150-155.
    [66] Rogers W E, Siemann E. Invasive ecotypes tolerate herbivory more effectively than native ecotypes of the Chinese tallow tree Sapium sebiferum[J].Journal of Applied Ecology,2004,41:561-570.
    [67]Fernando S,Marina F,Sonia M,et al.Effects of simulated herbivory on photosynthesis and N resorption efficiency in Auereus pyrenaica Wild,saplings[J].Trees,2008,DOI:10.1007/s00468-008-0239-2.
    [68]Tiffin P.Mechanisms of tolerance to herbivore damage:what do we know?[J].Evolutionary Ecology,2000,14:523-536.
    [69]张红梅,赵萌莉,李青丰,等.放牧条件下大针茅种群的形态变异[J].中国草地,2003,25:13-17.
    [70]夏景新,樊奋成,王培.刈牧对禾草草地的再生和生产力影响的研究进展[J].草地学报,1994,2:45-55.
    [71]刘颖,王德利,韩士杰,等.放牧强度对羊草草地植被再生性能的影响[J].草业学报,2004,13(6):39-44.
    [72]Parsons A J,Leafe E L,Collett B,et al.The physiology of grass production under grazing I.Characteristics of leaf and canopy photosynthesis of continuously-grazed swards[J].Journal of Applied Ecology,1983,20:117-126.
    [73]Parsons A J,Penning P D.The effects of the duration of regrowth on photosynthesis,leaf death and average rate of growth in a rotationally grazed sward[J].Grass and Forage Science,1988,44:16-38.
    [74]Welter S C.Arthropod impact on plant gas exchange[M].In:Bernays E A,ed.Insect-Plant Interactions Boca Raton.FL:CRC Press,1989,1:135-150.
    [75]Whitham T G,Maschinski J,Larson K C,et al.Plant responses to herbivory:the continuum form negative to positive and underlying physiological mechanisms[M].In:Price P W,Lewisohn T M,Ferriandes G W,Bensons W W,eds.Plant-Animal Interactions:Evolutionary Ecology in Tropical and Temperate Regions.New York:John Wiley and Sons,1991:227-256.
    [76]Van der Meijden E,Wijn M,Verkaar H J.Defense and regrowth,alternative plant strategies in the struggle against herbivores[J].Oikos,1988,51:355-363.
    [77]Thomson V P,Cunningham S A,Ball M C,et al.Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency[J].Oecologia,2003,134:167-175.
    [78]Lennartsson T J,Nilsson P,Tuomi J.Induction of overcompensation in the field gentian,Gentianella campestris[J].Ecology,1998,79,1061-1072.
    [79]原保忠,王静,赵松岭.植物受动物采食后的补偿作用.影响补偿作用的因素[J].生态学杂志,1997,16:41-45
    [80]Richards J H,Caldwell M M.Soluble carbohydrate,concurrent photosynthesis and efficiency in regrowth following defoliation:A field study with Agropyton species[J].Journal of Applied Ecology,1985,22:907-920.
    [81]汪诗平.刈牧对草原植物的影响[J].生态学杂志,2000,19:34-39.
    [82]Ourry A,Kim T H,Boucaud J.Nitrogen reserve mobilization during regrowth of Medicago sativa L.(Relationships between availability and regrowth yield)[J].Plant Physiology,1994,105:831-837.
    [83]包国章,李向林,谢忠雷,等.放牧对鸭茅能量积累及分配的影响[J].草业科学,2001,18:7-10.
    [84]王静,杨持,王铁娟.放牧退化群落中冷蒿种群生物量资源分配的变化[J].应用生态学报,2005,16:2316-2320.
    [85]Boschma S P,Hill M J,Scott J M,et al.Carbohydrate reserves of perennial grass:Effect of drought and defoliation intensity[C].Winnipeg:Proceeding 18th International.Grassland Congress,1997,22:41-42.
    [86]Hodgson J,Illius A W.The Ecology and Management of Grazing Systems[M].Wallingford:Cab International,1996.
    [87]Georgiadis N J,Ruess R W,McNaughton S J,et al.Ecological conditions that determine when grazing stimulate grass production[J].Oecologia,1989,81:316-322.
    [88]Alward R D,Joern A.Plasticity and overcompensation in grass responses to herbivory[J].Oecologia,1993,95:358-364.
    [89]Hicks S L,Reader R J.Compensatory growth of three grasses following simulated grazing in relation to soil nutrient availability[J].Canadian Journal of Botany,1995,73:141-145.
    [90]Briske D D,Boutton T W,Wang Z.Contribution of flexible allocation priorities to herbivory tolerance in C4 perennial grasses:an evaluation with ~(13)C labeling[J].Oecologia,1996,105:151-159.
    [91]Vail,S G.Selection for overcompensatory plant responses to herbivory:a mechanism for the evolution of plant-herbivore mutualism[J].American Naturalist,1992,139:1-8.
    [92]McNaughton S J.Laboratory-simulated grazing:interactive effects of defoliation and canopy closure on Serengeti grasses[J].Ecology,1992,73:170-182.
    [93]Oesterheld M,McNaughton S J.Intraspecific variation in the response of Themeda triandra to defoliation:the effect of time of recovery and growth rates on compensatory growth[J].Oecologia,1988,77:181-186.
    [94]王静,程积民,万惠娥.芨芨草产量结构及刈割强度对其再生性影响的初步探讨[J].水土保持学报,2002,16(1):121-137.
    [95]刘文高.不同刈割强度对柱花草自身生生及其土壤微生态的影响[D].广州:华南农业大学博士学位论文,2003.
    [96]戎郁萍,韩建国,王培,等.刈割强度对新麦草产量和贮藏碳水化合物及含氮化合物影响的研究[J].中国草地,2000,(2):28-34.
    [97]王明根.优质牧草高效栽培[M].安徽:科学技术出版社,2003.15-16.
    [98]内蒙古农牧学院.牧草及饲料作物栽培学[M].内蒙古:农业出版社,2000.
    [99]刘振国,李镇清,Nijs I,等.糙隐子草种群在不同放牧强度下的小尺度空间格局[J].草业学报,2005,14:11-17.
    [100]汪诗平,李永宏,王艳芬,等.不同放牧率对内蒙古冷蒿草原演替规律的影响[J].草地学报,1998,6:299-305.
    [101]董全民,赵新全,马玉寿.放牧强度和放牧时间对高寒混播草地牧草营养含量的影响[J].中国草地学报,2007,4:
    [102]干友民,Schnyder H,Vianden H,等.多年生黑麦草刈后再生草碳水化合物及氮素的变化[J].草业学报,1999,8(4):65-70.
    [103]石凤翎.豆科牧草栽培[M].北京:中国林业出版社,2003.
    [104]Peterson M.L.Production and quality of irrigated pasture mixtures as influence clipping frequency[J].Agronomy Journal,1953,(45):283-287.
    [105]Maschinski J,Whitham T G.The continuum of plant responses to herbivory:the influence of plant association,nutrient availability,and timing[J].American Naturalist,1989,134,1-19.
    [106]Huhta A P,Hellstróm K,Rautio P,et al.A test of the compensatory continuum,fertilization increased and below-ground competition decreases the grazing tolerance of tall wormseed mustard(Erysimum stricture)[J].Evolutionary Ecology,2000,14,353-372.
    [107]Steinger T,M(u|¨)ller-Sch(a|¨)rer H.Physiological and growth responses of Centaurea maculosa (Asteraceae) to root herbivory under varying levels of interspecific plant competition and soil nitrogen availability[J].Oecologia,1992,91:141-149.
    [108]Houle G,Simard G.Additive effects of genotype,nutrient availability and type of tissue damage on the compensatory response of Salix planifolia ssp.planifolia to simulated herbivory[J].Oecologia,1996,107:373-378.
    [109]Ferraro D O,Oesterheld M.Effect of defoliation on grass growth:a quantitative review[J].Oikos,2002,98:125-133.
    [110]Prins A H,Verkaar H J.Defoliation:do physiological and morphological responses lead to over-compensation?[M].In:Ayres P G,ed.Pests and Pathogens:Plant Responses to Foliar Attack.Oxford:Bios Scientific Publishers,1992:13-31.
    [111]Rosenthal J P,Welter S C.Tolerance to herbivory by a stem-boring caterpillar in architecturally distinct maizes and wild relatives[J].Oecologia,1995,102:146-155.
    [112]Lehtil(a|¨) K,Syrjanen K.Compensatory responses of two Melampyrum species after damage[J].Functional Ecology,1995,9:511-517.
    [113]Welter S C,Steggall J W.Contrasting the tolerance of wild and domesticated tomatoes to herbivory:agroecological implications[J].Ecological Applications,1993,3:271-278.
    [114]Byington T S,Gottschalk K W,McGraw J B.Within-population variation in response of red oak seedlings to herbivory by gypsy moth larvae[J].American Midland Naturalist,1994,132:328-339.
    [115]Escarre J,Lepart J,Sentuc J J.Effects of simulated herbivory in three old field Compositae with different inflorescence architectures[J].Oecologia 1996,105:501-508.
    [116]Cheplick G P.Genotypic variation in the regrowth of Lolium perenne following clipping:effects of nutrients and endophytic fungi[J].Functional Ecology,1998,12,176-184.
    [117]Small E.Adaptations to herbivory in alfalfa(Medicago sativa)[J].Canadian Journal of Botany,1996,74,807-822.
    [118]Fry J D.The mixed-model analysis of variance applied to quantitative genetics:biological meaning of the parameters[J].Evolution,1992,46:540-550.
    [119]Reznick D.Cost of reproduction:an evaluation of the empirical evidence[J].Oikos,1985,44:257-267.
    [120]Mauricio R,Rausher M D,Burdick D S.Variation in the defense strategies of plants:are resistance and tolerance mutually exclusive?[J].Ecology,1997,78:1301-1311.
    [121]Tiffin P,Rausher M D.Genetic contraints and selection acting on tolerance to herbivory in the common morning glory Ipomoea purpurea[J].The American Naturalist,1999,154:700-715
    [122]Simms E L,Triplett J.Costs and benefits of plant responses to disease:resistance and tolerance [J].Evolution,1994,48:1973-1985.
    [123]Shen C S,Bach C E.Genetic variation in resistance and tolerance to insect herbivory in Salix cordata[J].Ecological Entomology,1997,22:335-342.
    [124]汪诗平.草原植物的放牧抗性[J].应用生态学报,2004,3:162-167.
    [125]中华人民共和国农业部畜牧兽医司,全国畜牧兽医总站.中国草地资源[M].北京:中国农业科学技术出版社,1996.1.
    [126]王仁忠.放牧干扰对松嫩平原羊草草地的影响[J].东北师大学报(自然科学版),1996,4:77-82.
    [127]郑树峰,张柏,王宗明,等.松嫩平原西部草地退化研究[J].农业系统科学与综合研究2008,24(2):223-226.
    [128]Wang D L,Ba L.Ecology of meadow steppe in northeast China[J].The Rangeland Journal 2008,30:247-254.
    [129]Shi D C,Wang D L.Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag[J].Plant and Soil,2005,271:15-26.
    [130]Ba L,Wang D L,Hodgkinson K,et al.Competitive relationships between two contrasting but coexisting grasses,Leymus chinensis and Phragmites communis[J].Plant Ecology,2006,183:19-26.
    [131]Saville D J.Multiple comparison procedures:the practical solution[J].The American Statistician,1990,44:174-180.
    [132]中国科学院上海植物生理研究所和上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999:127-128.
    [133]丁静,沈镇德,方亦雄.植物内源激素的提取分离和生物鉴定[J].植物生理学通讯,1979,(2):27-39.
    [134]Belsky A J.Does herbivory benefit plants? A review of the evidence[J].American Naturalist,1986,127:870-892.
    [135]刘军萍、王德利、巴雷.不同刈割条件下的人工草地羊草叶片的再生动态研究[J].东北师范大学学报,2003,35(1):117-124.
    [136]Muir J P,Pitman W D.Grazing tolerance warm-season legumes in Peninsular Florida[J].Agronomy Jounal,1991,83:297-302.
    [137]Schuman G E,Reeder J D,Manley J T,et al.Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland[J].Ecological Application,1999,9:65-71.
    [138]孙德智,李凤山,杨恒山,等.刈割次数对紫花苜蓿翌年生长及草产量的影响[J].中国草地,2005,27:33-37.
    [139]Hickman K R,Hartnett D C.Effects of grazing intensity on growth,reproduction,and abundance of three palatable forbs in Kansas tallgrass prairie[J].Plant Ecology,2002,159:23-33.
    [140]Begon M,Harper J L,Townsend C R.Ecology Individuals,Populations,and Communities[M].Sunderland,Massachusetts:Sinauer Associates Inc,1986.
    [141]Leibold M A.A graphical model of keystone predators in food webs:trophic regulation of abundance,incidence,and diversity patterns in communities[J].American Naturalist,1996,147:784-812.
    [142]Huisinan J,Grover J P,Van der Wal R,et al.Competition for light,plant species replacement,and herbivore abundance along productivity gradients[M].In:Olff H,Brown V K,Drent R H,eds.Herbivores:Between Plants and Predators.Oxford:Blackwell Science,1999:239-269.
    [143]Van Der Wal R,Egas M,Van Der Veen A,et al.Effects of resource competition and herbivory on plant performance along a natural productivity gradient[J].The Journal of Ecology,2000,88(2):317-330.
    [144]王昱生,盖晓春.羊草无性系植物种群觅养生长格局与资源分配的研究[J].植物生态学报,1995,19(4):293-301.
    [145]钟章成.植物种群生态学适应机理研究[M].北京:科学出版社,2000:2-14.
    [146]Briske D D,Butler D.Population structure and tiler demography of the bunchgrass Schizachyrium scoparium in response to herbivory[J].Oikos,1988,51:306-312.
    [147]Watkinson A R.Yield-density relationships:the influence of resource availability on growth and self-thinning in populations of Vulpia fasciculate[J].Annals of Botany,1984,53:469-482.
    [148]Turkington R,Goldberg D E,Olsvig-Whittaker L,et al.Effects of density on timing of emergence and its consequences for survival and growth in two communities of annual plants [J].Journal of Arid Environments,2005,61:377-396.
    [149]Linhart Y B.Density-dependent seed germination strategies in colonizing versus non-colonizing plant species[J].Journal of Ecology,1976,64:375-380.
    [150]Waite S,Hutchings M J.The effects of sowing density,salinity and substrate upon the germination of seeds of Plantago coronopus L[J].New Phytologist,1978,81:341-348.
    [151]Waite S,Hutchings M J.A comparative study of establishment of Plantago coronopus L.from seeds sown randomly and in clumps[J].New Phytologist,1979,82,575-583.
    [152]Tiainen M,Pusenius J,Julkunen-Tiitto R,et al.Intraspecific Competition,Growth,Chemistry,and Susceptibility to Voles in Seedlings of Betula pendula[J].Journal of Chemical Ecology,2006,32:2287-2301.
    [153]Ogawa K.Size dependence of leaf area and the mass of component organs during a course of self-thinning in a hinoki(Chamaecyparis obtusa) seedling population[J].Ecological Research,2003,18:611-618.
    [154]朱志红,刘建秀,郑伟.资源获得性和种内竞争对垂穗披碱草生长繁殖的影响[J].西北植物学报,2005,10:131-136.
    [155]祝廷成.羊草生物生态学[M].长春:吉林科学技术出版社,2004.
    [156]Marquis,R J.Leaf herbivores decrease fitness of a tropical plant[J].Science,1984,226:537-539.
    [157]Nilsson,P.,Tuomi,J,Astr(o|")m,M.Even repeated grazing may select for overcompensation[J].Ecology,1996,77:1942-1946.
    [158]Christel G,Roger B.Compensatory growth of fast-growing willow(Salix) coppice in response to simulated large herbivore browsing[J].Oikos,2006,113:33-42.
    [159]Karban R.,Courtney S.Intraspecific host plant choice:lack of consequences for Streptanthus tortuosus(Cruciferae) and Euchloe hyantis(Lepidoptera,Pieridae)[J].Oikos,1987,48:243-248.
    [160]Hilbert,D W,Swift,D M,Detling,J K,et al.Relative growth rates and the grazing optimization hypothesis[J].Oecologia,1981,51:14-18.
    [161]Wise M J,Abrahamson W G.Beyond the compensatory continuum:environmental resource levels and plant tolerance of herbivory[J].Oikos,2005,109:417-428.
    [162]Proulx M,Mazumder A.Reversal of grazing impact on plant species richness in nutrient-poor vs.nutrient-rich ecosystem[J].Ecology,1998,79:2581-2590.
    [163]Wilson S D,Tilman D.Quadratic variation in old-field species richness along gradients of disturbance and nitrogen addition[J].Ecology,2002,83:492-504.
    [164]Foster B L,Dickson T L,Murphy C A,et al.Propagule pools mediate community assembly and diversity-ecosystem regulation along a grassland productivity gradient[J].Journal of Ecology,2004,92:435-449.
    [165]Fynn R W S.,Morris,C D,Kirkman K P.Plant strategies and trait tradeoffs influence trends in competitive ability along gradients of soil fertility and disturbance[J].Journal of Ecology,2005,93:384-394.
    [166]Vesk P A,Westoby M.Predicting plant species' response to grazing[J].Journal of Applied Ecology,2001,38:897-909.
    [167]Haag J J,Coupe M D,Cahill J F.Antagonistic interactions between competition and insect herbivory on plant growth[J].Journal of Ecology,2004,92:156-167.
    [168]Worm B,Lotze H K,Hillebrand H,et al.Consumer versus resource control of species diversity and ecosystem functioning[J].Nature,2002,417:848-851.
    [169]Del-Val E,Crawley M J.What limits herb biomass in grasslands:competition or herbivory?[J].Oecologia,2005,142:202-211.
    [170]Hodgkinson K C,M(u|")ller W J.Death model for tussock perennial grasses:a rainfall threshold for survival and evidence for landscape control of death in drought[J].The Rangeland Journal,2005,27:105-115.
    [171]Gao Y.Wang D L,Ba L,et al.Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis[J].Environmental and Experimental Botany,2008,63:113-122.
    [172]Chapin III F S,Bloom A J,Field C B,et al.Plant responses to multiple environmental factors[J].Bioscience,1987,37:49-57.
    [173]Oesterheld M,McNaughton S J.Effect of stress and time for recovery on the amount of compensatory growth after grazing[J].Oecologia,1991,85:305-313.
    [174]Simms E L.Growth response to clipping and nutrient addition in Lyonia lucida and Zenobia pulverata[J].American Midland Naturalist,1985,114:44-50.
    [175]Gassmann A J.Effect of photosynthetic efficiency and water availability on tolerance of leaf removal in Amaranthus hybridus[J].Journal of Ecology,2004,92:882-892.
    [176]J(a|")remo J,Palmqvist E.Plant compensatory growth:a conquering strategy in plant-herbivore interactions?[J].Evolutionary Ecology,2001,15:91-102.
    [177]陈国菊,刘厚诚,杨瑞陶,等.遮荫对大花山牵牛和桂叶老鸭嘴生长及叶片组织结构的影 响[J].2001,22:56-59.
    [178]潘声旺,王海洋,杜国桢等.补偿能力和适口性对放牧群落植物优势度的影响[J].应用生态学报,2008,19:1682-1687.
    [179]Jackson R B,Mooney H A,Schiile E D.A global budget for fine root biomass,surface area,and nutrients contents[J].Ecology,2001,94:7362-7366.
    [180]扎西.四种豆科牧草根系统观测[J].中国草业科学,1987,4:56-57.
    [181]孙启忠,韩建国,桂荣,等.科尔沁沙地苜蓿根系和根颈特性[J].草地学报,2001,9(4):269-272.
    [182]杨锦忠.刈割强度对多年生黑麦草和高羊茅再生能力影响的研究[J].中国草地,1997,(4):33-36.
    [183]章家恩,刘文高,陈景青,等.不同刈割强度对牧草地上部和地下部生长性状的影响[J].应用生态学报,2005,16(9):1740-1744,
    [184]郭正刚,刘慧霞,王彦荣.刈割对紫花苜蓿根系生长影响的初步分析[J].西北植物学报,2004,24(2):215-220.
    [185]赵明轩,谭成虎,何德元.驴驴蒿根系的研究[J].草业科学,1990,7(3):55-57.
    [186]Alpert P,Mooney H A.Resource sharing among ramets in the clonal herb,Fragaria chiloensis [J].Oecologia,1986,70:227-233.
    [187]Stuefer J F,During H J,De Kroon H.High benefits of clonal integration in two stoloniferous species,in response to heterogeneous light environments[J].Journal of Ecology,1994,82:511-518.
    [188]Alpert P.Nutrient sharing in natural clonal fragments of Fragaria chiloensis[J].Journal of Ecology,1996,84:395-406.
    [189]Alpert P.Clonal integration in Fragaria chiloensis differs between populations:ramets from grassland are selfish[J].Oecologia,1999,120:69-76.
    [190]Saitoh T,Seiwa K,Nishiwaki A.Effects of resource heterogeneity on nitrogen translocation within clonal fragments of Sasa palmate:an isotopic(~(15)N) Assessment[J].Annals of Botany,2006,98:657-663.
    [191]Pitelka L F,Ashmun J W.Physiology and integration of ramets in clonal plants Population Biology and Evolution of Clonal Organisms[M].In:Jackson J B C,Buss LW,Cook R E,eds.New Haven,CT:Yale University Press,1985:399-435.
    [192]Schmid B,Puttick G M,Burgess K H,et al.Clonal integration and effects of simulated herbivory in old-field perennials[J].Oecologia,1988,75:465-471.
    [193]Chapman D F,Robson M J,Snaydon R W.Physiological integration in the clonal perennial herb Trifolium repens L[J].Oecologia,1992,89:338-347.
    [194]Landa K,Benner B,Watson M A,et al.Physiological integration for carbon in mayapple (Podophyllum peltatum), a clonal perennial herb [J]. Oikos, 1992, 63: 348-356.
    [195] Olson B E, Wallander R T. Carbon allocation in Euphorbia esula and neighbours after defoliation [J]. Canadian Journal of Botany, 1999, 77: 1641-1647.
    [196] Wang Z W, Li L H, Han X G, et al. Do rhizome severing and shoot defoliation affect clonal growth of Leymus chinensis at ramet population level? [J]. Acta Oecologica, 2004, 26, 255-260.
    [197] Liu H D, Yu F H, He W M, et al. Are clonal plants more tolerant to grazing than co-occurring non-clonal plants in inland dunes? [J]. Ecological Research, 2007, 22: 502-506.
    [198] Shumway S W. Physiological integration among clonal ramets during invasion of disturbance patches in a New England salt marsh [J]. Annals of Botany, 1995, 76: 225-233.
    [199] Oborny B, Czaran T K. Exploration and exploitation of resource patches by clonal growth: a spatial model on the effect of transport between modules [J]. Ecological Modeling, 2001, 141:151-169.
    [200] Hartnett D C, Bazzaz F A. Physiological integration among intraclonal ramets in Solidago canadensis [J]. Ecology, 1983, 64: 779-788.
    [201] Dong M, Alaten B. Clonal plasticity in response to rhizome severing and heterogeneous resource supply in the rhizomatous grass Psammochloa villosa in an Inner Mongolian dune,China [J]. Plant Ecology, 1999, 141: 53-58.
    [202] Wang N, Yu F H, Li P X , et al. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress [J]. Annals of Botany, 2008, 101: 671-678.
    [203] Zhang C, Yang C, Dong M. The significance of rhizome connection of semi-shrub Hedysarum laeve in an Inner Mongolian dune, China [J]. Acta Oecologica, 2002, 23: 109-114.
    [204] Cline M G. Exogenous auxin effects on lateral bud outgrowth in Decapitated Shoots [J]. Annals of Botany, 1996,78:255-266.
    [205] Turnbull CNG, Raymond M A A, Dodd I C, et al. Rapid increases in cytokinin concentration in lateral buds. of chickpea (Cicer arietinum L.) during release of apical dominance [J]. Planta,1997,202:271-276.
    [206] Amsberry L, Baker M A, Ewanchuk J, Bertness M D. Clonal integration and the expansion of Phragmites australis [J]. Ecological Applications, 2000, 10: 1110-1118.
    [207] Pennings S C, Callaway R M. The advantages of clonal integration under different ecological conditions: a community-wide test [J]. Ecology, 2000, 81: 709-716
    [208] Iwasa Y, Kubo T. Optimal size of storage for recovery after unpredictable disturbances [J].Evolutionary Ecology, 1997, 11:41-65.
    [209] Suzuki J I, Stuefer J F. On the ecological and evolutionary significance of storage in clonal plants [J]. Plant Species Biology, 1999, 14: 11-17.
    [210]Slade A J,Hutchings M J.An analysis of the costs and benefits of physiological integration between ramets in the clonal perennial herb Glechoma hederacea[J].Oecologia,1987,73:425-431.
    [211]Salzman A G,Parker M A.Neighbors ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment[J].Oecologia,1985,65:273-277.
    [212]Xiao K Y,Yu D,Xu X W,et al.Benefits of clonal integration between interconnected ramets of Vallisneria spiralis in heterogeneous light environments[J].Aquatic Botany,2007,86:76-82.
    [213]Christiansen S O,Srejcor T.Grazing effects on shoot and root dynamics and below ground non-structure carbohydrate in Caucasian bluestem[J].Grass and Forage Science,1988,43(2):111-119.
    [214]Ourry A,Kim T H,Boucaud J.Nitrogen reserve mobilization during regrowth of Medicago sativa[J].Plant Physiology,1994,105:831-837.
    [215]白可喻,赵萌莉,卫智军,等.刈割对荒漠草原中牧草储藏碳水化合物的影响[J].草地学报,1996,4(2):127-132.
    [216]刘颖,王德利,韩士杰,等.不同放牧率下小花碱茅可溶性碳水化合物和氮素含量的变化[J].草业科学,2003,12(4):40-44.
    [217]Olson B E,Wallander R T.Biomass and carbohydrates of spotted knapweed and Idaho rescue after repeated grazing[J].Journal of Range Management,1997,50:409-412.
    [218]Ward C Y,Blaster R E.Carbohydrate food reserves and leaf area in regrowth of orchadgrass[J].Crop Science,1961,(1):366-370.
    [219]Buwai M,Trlica M J.Multiple defoliation effect s on herbage yield,vigor,and total nonstructural carbohydrates of five-range species[J].Journal of Range Manage,1977,30:164-171.
    [220]Davies A.Carbohydrate levels and regrowth in perennial ryegrass[J].Journal of Agricultural Science,1965,65:213-222.
    [221]Jameson D C.Reponses of individual plants to harvesting[J].The Botanical Review,1963,29:532-594.
    [222]许志信,巴图朝鲁,卫智军,等.牧草再生与贮藏碳水化合物含量变化关系的研究[J].草业科学,1993,2(4):13-18.
    [223]刘颖,王德利,韩士杰,等.不同放牧率下羊草和芦苇可溶性碳水化合物和氮素含量的变化[J].应用生态学报,2003,14:86-89.
    [224]Mckell C M.Yield survival and carbohydrate reserve of hard grass in relation to herbage removal[J].Journal of Range Management,1966,9(2):35.
    [225]Smith L H,Marten G C.Foliar regrowth of alfalfa utilizing ~(14)C labeled carbohydrates stored in root s[J].Crop Science,1970,10:146-150.
    [226]Feltner K C,Massengale M A.Influence of temperature and harvest management on growth,level of carbohydrates in roots,and survival of alfalfa[J].Crop Science,1965,(5):585-588.
    [227]Cralle H T,Heichel G H.Nitrogen fixation and vegetative regrowth of alfalfa and birdsfoot trefoil after successive harvests or floral debudding[J].Plant Physiology,1981,67:889-905.
    [228]Walton P D.Production &management of cultivated for ages[M].Reston,Virginia:Reston Publishing Company Inc,1983:144-160.
    [229]Ourry A,Bigot J J,Boucaud J.Protein mobilization from stubble and roots,and proteolytic activities during post-clipping regrowth of perennial ryegrass[J].Journal of Plant Physiology,1989,134:298-303.
    [230]中国农业大学.草地学[M].北京:中国农业出版社,1992:5.
    [231]马兴林,梁振兴.冬小麦分蘖衰亡过程中内源激素作用的研究[J].作物学报,1997,23:200-207.
    [232]Donaghy D J,Fulkerson W J.Priority for allocation of water-soluble carbohydrate reserves during regrowth of Lolium perenne[J].Grass and Forage Science,1998,53:211-218.
    [233]潘庆民,白永飞,韩兴国,等.羊草根茎的贮藏碳水化合物及对氮素添加的响应[J].植物生态学报,2004,28(1):53-58.
    [234]黄顶,王堃,典型草原常见牧草春季萌动期可溶性糖及内源激素动态研究[J].应用生态学报,2006,17:210-214.
    [235]王白坡,程晓建,戴文圣.银杏实生树不同发育阶段个体内源激素含量的变化[J].果树学报,2002,19(6):395-398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700