用户名: 密码: 验证码:
大壁虎运动人工诱导的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维空间无障碍TDOF(Three Dimensional Obstacle-Free)机器人作为机器人领域的一个重要分支,一直是仿生机器人研究关注的重点。然而TDOF机器人在运动稳定性、灵活性、可靠性、电源使用时间、简约的控制系统等方面还存在着难于在短期内突破的技术瓶颈,因此对生物运动规律和生物机器人的研究近年来受到更多的重视。生物机器人已经成为机器人技术领域的重要研究方向之一。产自我国广西、云南等地和东南亚的大壁虎(Gekko gecko)体态大、行动迅速、负重能力强,适合作为生物机器人的目标对象,大壁虎卓越的运动能力,使得人工诱导大壁虎运动成为TDOF生物机器人研究的重点。像机器老鼠那样成功实现大壁虎运动的人工诱导将对TDOF机器人的研究产生深远影响!为此,作为行为诱导的基础,就需要了解和研究大壁虎脑区运动相关核团的功能、空间分布、相互联系及其神经电信号的时空编码。然而,目前罕见大壁虎运动相关脑区的研究报道,现有对大壁虎脑的研究也绝大部分集中在端脑和间脑的神经解剖方面,这促使我们对其运动方面的中枢调控系统开展一系列的基础研究。
     本工作首次建立了大壁虎脑立体定位方法,研制了相应的定位夹持装置,填补了该领域的空白。通过大壁虎脑图谱的初步制作、脑内核团的损毁以及脑内特异性运动核团的空间定位等诸多实验验证:该装置与通用脑立体定位仪相匹配,定位准确、操作简单,适于不同大小的成年大壁虎的脑部实验,能够满足大壁虎脑功能的研究需要。
     以所建立的大壁虎脑立体定位技术为基础,本文探索了大壁虎脑图谱制作的一些关键技术,进行了大壁虎脑图谱的初步制作;采用电生理学方法,运用金属微电极对大壁虎脑区施加电刺激,详细观测了浅麻醉状态下电刺激大壁虎中脑相关脑区对运动行为的影响,初步确定了大壁虎中脑参与运动行为的发起和转向调控;根据麻醉状态下的实验结果,进行了脑内微电极刺激对自由状态下大壁虎运动行为人工诱导的探索,成功地诱导出左、右转向的运动行为。实验进一步采用辣根过氧物酶(horseradish peroxidase,HRP)束路示踪和谷氨酸化学刺激等方法,对中脑运动区域的细胞构筑进行了研究,初步确定了大壁虎中脑运动区,证实中脑在大壁虎运动调控中起着重要作用。
     本文建立的大壁虎脑立体定位的方法和装置为大壁虎脑功能的相关研究奠定了基础;通过急性、慢性实验进行了大壁虎中脑运动脑区的探索,初步实现了大壁虎左右转向的运动诱导;研究首次发现大壁虎中脑与运动行为密切相关,通过刺激脑内相关的核团可能实现对大壁虎部分运动行为的人工诱导,这为揭示大壁虎运动行为的神经调控和人工诱导大壁虎运动提供了重要的信息。
The motion ability of a modern mobile robot system in an un-structured environment lags far behind animals in stability, flexibility, robust, environmental adaptation and efficiency of energy sources. So, biological robotics, which is to modulate animal’s locomotion and makes it like a robot, has become a new attractive direction in robotics researches.
     Animals have wonderful locomotion abilities, especially those that can move on three-dimensional, complex terrain. The remarkable motion capability of geckos has made them the hot spot for research. The lizard Gekko gecko, natively lived in south-west of China, such as Guangxi and Yunnan province, was chosen as the target animal and was studied for developing a bio-robot, because of its excellent locomotion abilities, higher load-carrying abilities. If we can modulate gekkos’locomotion just like the robo-rats, it will be a revolution of Three Dimensional Obstacle-Free (TDOF) robots!
     However, few literatures concerning the locomotion mechanism of this lizard have been found. Most research on gekko has been on its forebrain, especially the neuroanatomical functions. In order to reach our target, we must understand the brain structures of the Gekko‘s locomotion-related brain nucleus, their spatial distribution and the space-time patterns of their electroneurographic signals.
     In this study, we first introduced a stereotaxic method and developed an apparatus suitable for Gekko gecko. The allocation and operation of the head holder is accurate and simple, and the device is low in cost and compatible with standard stereotaxic instrument. Based on the stereotaxic technology established for geckos, we studied the key technology for making gekko’s brain atlas, and applied the electrical stimulation to the lightly anesthetized gecko’s middle brain to locate the motor nucleus in its brain. Our acute experimental results showed the most effective points of stimulation for induced locomotion were located at the midbrain tegmentum near the midline, suggesting gecko’s midbrain is responsible for its locomotion. In the following awake studies, we delivered electrical stimulation through implanted electrodes at the certain regions of the gecko’s midbrain, and successfully elicited its some basic motor patterns, such as turning right and left, and crawling forward et al.
     Further more, the horseradish peroxidase (HRP) method and chemical stimulation were used to studying the cytoarchitectonics in geko’s midbrain. Similarly, the results suggested that the midbrain of gecko plays a key role in gekko’s locomotor modulation.
     In short, the stereotaxic method and the designed head holder have established a fundamental work for gekko’s brain research, and the research on gecko’midbrain enriched our understanding of its brain functions on locomotion modulation, and provided important information for artificial induction on gecko’s locomotion.
引文
[1]周群,何斌,岳继光.仿生微型机器人的研究与发展.机床与液压, 2007, 35(4): 225~228
    [2]王田苗,孟偲,裴葆青等.仿壁虎机器人研究综述.机器人, 2007, 29(3): 290~297
    [3]吉爱红,戴振东,周来水.仿生机器人的研究进展.机器人, 2005, 27(3): 284~288
    [4]张秀丽,郑浩峻,陈恳等.机器人仿生学研究综述.机器人, 2002, 24(02): 188~192
    [5]戴振东,孙久荣.壁虎的运动及仿生研究进展.自然科学进展. 2006, 16(5): 519~523
    [6] Dickinson M H, Farley C T, Full R J, et al. How animals move: an integrative view. Science, 2000, 288(7): 100~106
    [7]郭策,戴振东,孙久荣.生物机器人的研究现状及其未来发展.机器人, 2005, 27(2): 188~192
    [8] Autumn K, Peattie A M. Mechanisms of adhesion in geckos. Int Comp Biol, 2002, 42(6): 1081~1090
    [9] Talwar S K, Xu S H, Hawley E S, et al. Behavioral neuroscience: rat navigation guided by remote control. Nature, 2002, 417 (6884): 37~38
    [10] Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-Computer interface Technology: A review of the first international meeting. IEEE Transaction on Rehabilitation Engineering, 2000, 8(2): 164~173
    [11]官金安,林家瑞,赵婕.直接神经接口与控制技术.国外医学生物医学工程分册, 2004, 27(6): 337~341
    [12] Lebedev M A, Nicolelis M A. Brain-machine interfaces: past, present and future. Trends Neurosci, 2006, 29(9): 536~546
    [13]维基百科.脑机接口. http://wikientry.cn/wikientry/browse.php?u=aHR0cDovL3 poLndpa2lwZWRpYS5vcmcvd2lraS8lRTglODQlOTElRTYlOUMlQkElRTYlOEUlQTUlRTUlOEYlQTM%3D&b=93
    [14] Vaughan T M, Heetderks W J, Trejo L J, et al. Brain-computer interface technology: A review of the second international meeting. IEEE Trans Rehab Eng, 2003, 11(2): 94
    [15] Chapin J K, Moxon K A, Markowitz R S, et al. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci. 1999, 2: 664~670.
    [16] Wessberg J, Stambaugh C R, Kralik J D, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature, 2000, 408: 361~365.
    [17] Carmena J M, Lebedev M A, Crist R E, et al. Learning to control a brain–machine interfacefor reaching and grasping by primates. PLoS Biology, 2003, 1(2): 193~208
    [18] Blakeslee S. Monkey’s thoughts propel robot, a step that may help humans. http://www.nytimes.com/2008/01/15/science/15robo.html.[2008-01-15]
    [19]生物谷.美FDA批准芯片植入人脑. http://www.bioon.com/industry/news/15097 2.shtml [2005-08-13]
    [20] Santhanam G, Ryu S I, Yu B M, et al. A high-performance brain–computer interface. Nature, 2006, 442, 164-171
    [21]清华研制成功脑机接口系统通过大脑控制外物. http://tech.xmnext.com/qianyan /2006/06/15/26280.html[2006-06-15]
    [22]维基百科.人工耳蜗. http://wikientry.cn/wikientry/browse.php?u=aHR0cDovL3po Lndpa2lwZWRpYS5vcmcvd2lraS8lRTQlQkElQkElRTUlQjclQTUlRTglODAlQjMlRTglOUMlOTc%3D&b=93
    [23] Kuwana Y, Shimoyama I, et al. Steering control of a mobile robot using insect antennae. Proceedings of the IEEE International Conference on Intelligent Robots and Systems. Pittsburgh 1995, 530—535
    [24] Hadfield P. Robo Roach is born. New Scientist magazine, 1997, 2074: 26
    [25] Kuwana Y, Ando N, Kanzaki R, et al. A radiotelemetry system for muscle potential recordings from freely flying insects. in Abstract Proc. IEEE BMES/EMBS Conf., Atlanta, GA, Oct. 1999: 846
    [26] Holzer R, Shimoyama I, et al. Locomotion control of a bio-robotic system via electric stimulation. Proceedings of the IEEE International Conference. France, 1997. 1514~1519
    [27] Miller P. Robo-roaches give robot armies new reproductive prowess. http://www.engadget.co m/2006/01/10/robo-roaches-give-robot-armies-new-reproductive-prowess/.[2006-01-10]
    [28] Talwar S K, Xu S H, Hawley E S, et al. Direct brain stimulation enables training of complex behaviors in freely roaming animals. Proceedings of the Second Joint EMBS/BMES Conference. 2002: 2706~2707
    [29] Lemonick M D. Send In The Roborats. Time Magazine, 2002, 159 ( 1): 61
    [30] Xu S H, Talwar S K, Hawley E S, et al. A multi-channel telemetry system for brain microstimulation in freely roaming animals. J Neurosci. Methods, 2004, 133(1-2): 57~63
    [31]尚玉昌.动物的经典条件反射和操作条件反射学习行为.生物学通报, 2005, 40(12): 7~9
    [32]王锦琰,罗非.遥控导航控制大鼠行为.生理科学进展, 2002, 33, (3): 204
    [33]郭志宏.经典性条件反射与操作性条件反射的比较.内蒙古科技与经济, 2005, 2: 101~103
    [34] Singer E. Rats' brain waves could find trapped people. http://www.newscientist.com/article/d n6429-rats-brain-waves-could-find-trapped-people.html.[2004-09-22]
    [35] Singe E. Send in the rescue rats. New Scientist, 2004, 2466: 21
    [36]郭絮文.五角大楼欲招鲨鱼当特工.中国国防报(http://www.chinamil.com.cn/site1/zbxl /2006-03/14/con tent_431388.htm) [2006-03-14]
    [37] Autonomous Shark Tag with Neural Reading and Stimulation Capability for Open-ocean Experiments. 2006 Ocean Sciences Meeting. Eos Trans. AGU, 87(36), Ocean Sci Meet Suppl, Abstract
    [38] Brown S. Stealth sharks to patrol the high seas. New Scientist magazine, 2006, 2541: 30
    [39] Hatch C. Sharks: Ocean spies of the future?. http://www.bu.edu/sjmag/scimag2005/features/s pysharks.htm
    [40] Lehmkuhle M J, Vetter R J, Parikh H, Carrier J C, et al. Implantable neural interfaces for characterizing population responses to odorants and electrical stimuli in the nurse shark, Ginglymostoma cirratum. Chem Senses, 2006, 31(5): A14~A14
    [41] Beneke M. Sharks: The initial frontier. http://media.www.michigandaily.com/media/storage/ paper851/news/2006/02/20/Science/Sharks.The.Initial.Frontier-1620047.shtml.[2006-02-02]
    [42]重庆晚报.最棒的特工. http://cqwb.cqnews.net/webnews/htm/2005/12/30/177565.shtml [2005-12-30]
    [43]赵凤华.我国研制成功全新“动物机器人”. http://61.135.129.207/gb/stdaily/2006-01/18/co ntent_ 478930.htm[2006-01-18]
    [44]王勇.基于BCI技术的动物机器人研究.山东科技大学:学位论文,2006:11-13
    [45]卞文超.苏学成:放飞世界首只机器人鸟.大众日报(http://dzrb.dzwww.com/dazk/dzzm/2 00703/t20070302_2026622.htm) [2007-03-02]
    [46]王勇,苏学成,槐瑞托,王敏.动物机器人遥控导航系统.机器人, 2006, 28(02): 183-186
    [47]杨俊卿,苏学成,槐瑞托等.基于新型多通道脑神经刺激遥控系统的动物机器人研究.自然科学进展, 2007, 17(03): 379~384
    [48]单泠,高楚清.浙大研究"动物导航系统"白鼠按人思维走.人民网(http://scitech.people.co m.cn/GB /5136171.html)[2006-12-07]
    [49] Zhou Y F, Chen W D, Ye X S. A remote control training system for rat navigation in complicated environment. Journal of Zhejiang University. A, Science, 2007, 8(2):1009-3095
    [50] Song W G, Chai J, Han T Z, et al. A remote controlled multimode micro-stimulator for freely moving animals. Acta Physiologica Sinica, 2006, 58 (2): 183~188
    [51]王永玲,原魁,李剑锋等.一种新型的动物机器人遥控训练系统.高技术通讯,2007,17(7):698~702
    [52] Christensen B. Hybrid insect MEMS sought by DARPA for bug army. http://www.technovel gy.com/ct/Science-Fiction-News.asp?NewsNum=571[2008-01-27]
    [53] Sato H, Christopher W B, Brendan E C. A cyborg beetle: Insect flight control through an implantable, tetherless microsystem. IEEE MEMS 2008 Conference, Tucson, Arizona, USA. 2008: 164~167
    [54] Bozkurt A, Gilmour R, Stern D. MEMS based bioelectronic neuromuscular interfaces for insect cyborg flight control. IEEE MEMS 2008 Conference, Tucson, Arizona, USA, 2008: 160~163
    [55] Marshall J. The cyborg animal spies hatching in the lab. New Scientist ( http://technology.ne wscientist.com/channel/tech/mg19726461.800-the-cyborg-animal-spies-hatching-in-the-lab.html)[2006-03-08]
    [56] Lima S Q, Miesenb?ck G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 2005, 121: 141–152
    [57] Davis D L. Remote control of fruit fly behavior. Cell, 121(1): 6~7
    [58] Boyden, E S, Zhang, F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci, 2005, 8: 1263~1268
    [59] Nagel G, Brauner M, Liewald J F, et al. Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses. Current Biology, 2005, 15: 2279~2284
    [60] Zhang F, Wang L P, Brauner M, et al. Multimodal fast optical interrogation of neural circuitry. Nature, 2007, 446: 633~ 639
    [61] Fox D. Remote control brains: a neuroscience revolution. New Scientist, 2007, 2613: 30-34 http://www.science.org.au/nova/newscientist/040ns_003.htm [2007-07-18]
    [62] Gradinaru V, Thompson K R, Zhang F, et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci, 2007, 27(52): 14231~14238
    [63]韩济生.神经科学原理(第二版).北京:北京医科大学出版社, 1999. 750~773
    [64] Ijspeert A J. Locomotion, Vertebrate. In: The handbook of brain theory and neural networks. ed. Arbib M A. Second edition, The MIT Press, 5 Cambridge Center, Cambridge, MA 02142, 2002: 375~654
    [65] Bear M F, Connors B W, Paradiso M A.(王建军主译).神经科学:探索脑.北京:高等教育出版社, 2004: 374~574
    [66] Swanson L W. Cerebral hemisphere regulation of motivated behavior. Brain Research, 2000,886: 113~164
    [67] Jordan L M. Initiation of Locomotion in Mammals. Ann N Y Acad Sci, 1998, 860: 83~93
    [68] Grillner S, Wallén P, Saitoh P, et al. Neural bases of goal-directed locomotion in vertebrates—An overview. Brain Res Rev, 2008, 57(1): 2~12
    [69] Shik ML, Severin FV, Orlovsky GN. Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics, 1966, 11: 756~765
    [70] Wilson D M. The central nervous control of flight in a locust. The Journal of Experimental Biology, 1961, 38(2): 471~490
    [71] Wilson D M, Wyman R J. Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophysical Journal, 1965, 5(2): 121~143
    [72] Grillner S, Debuc, R. Control of locomotion in vertebrates: Spinal and supraspinal mechanisms. In: Waxman SG, Advances in Neurology, Vol. 47: Functional Recovery in Neurological Disease. Raven Press, New York. 1988; 425~453
    [73] Grillner S, Ekeberg O, El Manira A, et al. Intrinsic function of a neuronal network– a vertebrate central pattern generator. Brain Research Reviews. 1998, 26: 184~197
    [74] Shepherd R, Carr J. Treadmill walking in neuro rehabilitation. Neuro rehabilitation and Neural Repair. 1999, 13: 171~173
    [75] J. Duysens, H.W.A.A. Van de Crommert. Neural control of locomotion: Part 1: The central pattern generator from cats to humans, Gait and Posture, 1998(7): 131~141
    [76] Dimitrijevic M R, Gerasimenko Y, Pinter M M. Evidence for a Spinal Central Pattern Generator in Humans. Ann N Y Acad Sci, 1998, 860: 360~376
    [77]郑浩峻,张秀丽,李铁民,等.基于CPG原理的机器人运动控制方法.高技术通讯, 2003, 7: 64~68
    [78] Delcomyn F. Neural basis of rhythmic behavior in animals. Science, 1980, 210(4469): 492~498
    [79] Marder E, Bucher D. Central pattern generators and the control of rhythmic movements. Current Biology, 2001, 11(23): 986~996
    [80]郑浩峻,张秀丽,关旭,等.基于生物中枢模式发生器原理的四足机器人.清华大学学报(自然科学版) , 2004,44(2): 166~169
    [81] Ijspeert A J. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biological Cybernetics, 2001, 84: 331~348
    [82] Ijspeert A J, Crespi A, Ryczko D, et al. From swimming to walking with a salamander robot driven by a spinal cord model. Science, 2007, 315(5817): 1416~1420
    [83] Billard A, Ijspeert A J. Biologically inspired neural controllers for motor control in a quadruped robot. Proceedings of the International Joint Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 2000. 637~641
    [84]唐明.解读人体:生理现象及机制.上海:上海科技教育出版社, 2001. 15~21
    [85] Ferrier D. Experimental researches in cerebral physiology and pathology. West Riding Lunatic Asylum Med Rep, 1873, 3: 30~96
    [86] Adams D B. The Activity of Single Cells in the Midbrain and Hypothalamus of the Cat during Affective Defense Behavior. Archives Italiennes de Biologie, 1968, 106: 243~249,
    [87] Foerster O. The motor cortex of man in the light of Hughlings Jackson’s doctrines. Brain, 1936, 59: 135~159
    [88]李建宇,李勇杰.神经电刺激治疗癫痫.立体定向和功能性神经外科杂志, 2006, 19(4): 248~252
    [89]人民网.《自然》:深部脑刺激的工作原理. http://scitech.people.com.cn/GB/6751667.html [2008-01-09]
    [90] Maloney L D.神经电刺激治疗新时代.工业设计, 2007, 10: S1~S7
    [91]吴伟农.美:批准使用“大脑定速器”技术. http://news.xinhuanet.com/st/2002-02/26/con tent_290086.htm [2002-02-26]
    [92]吕国蔚.实验神经生物学.北京:科学出版社,2002. 108~241
    [93] Mary A B.勃雷兹尔(王雨芳等译) .神经系统的电活动.北京:科学出版社,1984
    [94] Tehovnik E J. Electrical stimulation of neural tissue to evoke behavioral responses. J Neurosci Meth, 1996, 65(1): 1~17
    [95] Graziano M S A. The Organization of Behavioral Repertoire in Motor Cortex. Annu. Rev. Neurosci, 2006, 29: 105~34
    [96] Tolias A S, Sultan F, Augath M, et al. Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron, 2005, 48(6): 901~911
    [97] Distel H. Behavior and electrical brain stimulation in the green iguana, Iguana iguana L. I. Schematic brain atlas and stimulation device. Brain Behav Evol, 1976, 13: 421~450
    [98] Distel, H. Behavior and electrical brain stimulation in the green iguana, Iguana iguana L. 11. Stimulation effects. Exp Brain Res, 1978, 31: 353~367
    [99] Tarr R S. Species typical display behavior following stimulation of the reptilian striatum. Physiology & Behavior, 1982, 29(4): 615~620
    [100] Finkenst?dt T, Ewert J P. Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recordingstudy in Salamandra salamandra. J Comp Physiol 1983, 153(1): 99~110
    [101] Livingston C A, Leonard R B. Locomotion evoked by stimulation of the brain stem in the Atlantic stingray Dasyatis sabina, J Neurosci, 1990, 10(1): 194~204
    [102] McClellan A D, Grillner S. Activation of“fictive swimming”by electrical microstimulation of brainstem locomotor regions in an in vitro preparation of the lamprey central nervous system. Brain Res. 1984, 300: 357~36
    [103] Kennedy M C. Vocalization elicited in a lizard by electrical stimulation of the midbrain. Brain Res, 1975, 97: 321~3251
    [104]蓝书成,张桂琴,刘振寰.刺激爬行类动物大壁虎中脑引起鸣叫反应的研究.动物学报, 1982, 28(1): 15~221
    [105]蓝书成,刘振环,张桂琴,等.刺激大鲵中脑引起发声反应的研究东北师大学报(自然科学版). 1989, 2: 81~87
    [106]唐振杰,李汉华,陈日文,等.广西蛤蚧的分布及生态调查.广西科学, 1997, 4(4): 259~263
    [107]黄乘明,唐振杰,李汉华等.蛤蚧的数量统计及生态习性的初步研究.广西师范大学学报(自然科学版), 1995, 13(3): 88~92
    [108] Autumn K, Liang Y A, Flsieh S T, et al. Adhesive force of a single gecko foot-flair. Nature, 2000, 405: 681~685
    [109] Autumn K, Sitti M, Liang Y A, et al. Evidence for van der Waals adhesion in gecko setae. PNAS, 2002, 99(19):12252~12256
    [110] Zaaf A, Van D R. Limb proportions in climbing and grounddwelling geckos (Lepidosauria, Gekkonidae): A phylogenetically informed analysis. Zoomorphology, 2000, 121: 45~53
    [111] Alibardi L. Ultrastructural autoradiographic and immunocytochemical analysis of setae formation and keratinization in the digital pads of the gecko Hemidactylus turcicus (Gekkonidae, Reptilia). Tissue & Cell, 2003, 35: 288~296
    [112] Rizzo N W, Gardner K H, Walls D J, et al. Characterization of the structure and composition of gecko adhesive setae. J R Soc Interf, 2006, 3: 441~451
    [113] Sitti M, Fearing R S. Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs. IEEE Conference on Nanotechnology Aug 26-28, Washington D C. 2002: 137~140
    [114] Geim A K, Dubonos S V, Grigorieva I V, et al. Microfabricated adhesive mimicking gecko foot-hair. Nature Mater, 2003, 2(7): 461~463
    [115]肖世旭.大壁虎的三维步态实验及分析.硕士学位论文.南京:南京航空航天大学, 2006
    [116] Smeets W J. A forebrain atlas of the lizard Gecko gecko. J Comp Neurol, 1986, 254: 1~19
    [117] Smeets W J, Medina L. The efferent connections of the nucleus accumbens in the lizard Gekko gecko. A combined tract-tracing/transmitter-immunohistochemical study. Anatomy and Embryology, 1995, 191(1): 73~81
    [118] Smeets W J, Steinbusch HW. Distribution of noradrenaline immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko. J Comp Neurol, 1989, 285(4): 453~466
    [119] Smeets W J, Steinbusch HW. Distribution of serotonin immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko. J Comp Neurol, 1988, 271(3): 419~434
    [120] Hoogland P V, Vermeulen-Vanderzee E. Efferent connections of the lateral cortex of the lizard Gekko gecko: evidence for separate origins of medial and lateral pathways from the lateral cortex to the hypothalamus. J Comp Neurol, 1995, 352(3): 469~480
    [121] Hoogland P V, Martinez-Garcia F, Vermeulen-Vanderzee E. Are rostral and caudal parts of the hippocampus of the lizard Gekko gecko related to different types of behaviour? Eur J Morphol, 1994, 32(2-4): 275~278
    [122] Hoogland P V, Vermeulen-VanderZee E. Distribution of choline acetyltransferase immunoreactivity in the telencephalon of the lizard Gekko gecko. Brain Behav Evol,1990,36(6): 378~390
    [123] Fokje T. Russchen, Allert J. Jonker. Efferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko. J Comp Neurol, 1988, 276(1): 61~80
    [124] Gonzalez A, Russchen F T, Lohman A H. Afferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko.Brain Behav Evol, 1990, 36(1): 39~58
    [125] Bruce L L, Neary T J. Afferent projections to the lateral and dorsomedial hypothalamus in a lizard, Gekko gecko. Brain Behav Evol.1995, 46(1): 30~42
    [126] Bruce L L, Neary T J. Afferent projections to the ventromedial hypothalamic nucleus in a lizard, Gekko gecko. Brain Behav Evol. 1995, 46(1): 14~29
    [127]姜世英,唐宗湘,杨盛昌等.鸟类和爬行类离顶盖通路的电生理研究.广西师范大学学报(自然科学版), 2000, 18(2): 67~72
    [128]唐宗湘,姜世英,施敏.蛤蚧端脑前背侧室嵴Golgi—Cox研究.解剖学研究, 2000, 22(1): 1~4
    [129]李桂芬,蒙绍权.蛤蚧前背侧室脊嘴外侧区的投射研究.玉林师范学院学报(自然科学版), 2001, 22(3): 95~97
    [130]李桂芬,蒙绍权,姜世英.蛤蚧圆核一前背侧室嵴通路研究.广西师范大学学报(自然科学版), 2000, 18(4): 78~81
    [131]李桂芬,蒙绍权,李桂芬.蛤蚧前背侧室脊嘴外侧区的纤维联系.动物学研究,2001,22(1):74~77
    [132] Horsley V, Clarke R H. The structure and functions of the cerebellum examined by a new method. Brain, 1908, 31: 45~124
    [133] Karten H J, Hodos W. A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia). Baltimore: Johns Hopkins University Press, 1967
    [134]李永材,马际春.动物生理及比较生理实验.北京:高等教育出版社, 1989. 275—279
    [135]刘晓燕.鳄蜥、大壁虎内耳的解剖学研究.解剖学研究, 1999, 21(1): 4~7
    [136] Greenberg N. A forebrain atlas and stereotaxic technique for the lizard, Anolis carolinensis. J Morphol, 1982, 174: 217~236
    [137] Del Corral J M, Miralles A, Nicolau M C, et al. Stereotaxic atlas for the lizard Gallitia Galloti. Prog Neurobiol, 1990, 34(3): 185~196
    [138] Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 5th ed. San Diego: Academic Press, 2004. 7~12
    [139]陈振昆,丁光.大壁虎(Gekko gecko)骨骼系统的解剖.云南农业大学学报, 1990, 5(1): 1~6
    [140]杨安峰,程红.脊椎动物比较解剖学.北京:北京大学出版社, 1999. 109~128
    [141]李永项,薛祥煦,李晓晨,等.部分蜥蜴类牙齿特征补充.动物学报, 2003, 49(4): 547~550
    [142]王文波,戴振东,郭策,等.壁虎脑立体定位方法及装置.中国专利, CN1887238, 2007-01-03
    [143]伍冠一.蛤蚧皮质加厚区的细胞构筑与纤维联系研究.硕士学位论文.广西:广西师范大学, 2003. 24~27
    [144] Pellegrino L J, Pellegrino A S, Cushman AJ. A stereotaxic atlas of the rat brain. Plenum Press. New York and London, 1979
    [145] Konig J F R, Klippel R A. The rat brain: A stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and wilkins. Baltimore, 1963
    [146] Verhaart W J C. A stereotaxic atlas of the brain stem of the cat. The State University of Leyden Press, 1964
    [147] Joseph S A, Knigge KA, Kalejs LM, et al. A stereotaxic atlas of the brain of the 13-line ground squirrel Citellus tridecem lineatus). US Army Edgewood Arsend Special Publication. Maryland, 1966
    [148] Snider R S. A stereotaxic atlas of the monkey brain(Macaca Mulatta). University of ChicagoPress, 1961
    [149] Robert K S, Liu C. A stereotaxic atlas of the dog`s brain. Spring field Illinois. USA, 1960
    [150]包新民,舒斯云.大鼠脑立体定位图谱.北京:人民卫生出版社, 1991
    [151]陈红岩.达乌尔黄鼠脑立体定位图谱的研制.北京大学生物系硕士论文, 1991
    [152]薛龙增,陈进贵,孙文陵等.四季鹅(雌)脑立体定位图谱的建立.海军医高专学报, 1994,16(2):97-100
    [153]陈志宏,张一模,张宝琳.脑立体定位方法及图谱研究进展.承德医学院学报, 1999, 16(1): 68~70
    [154]张才乔.动物生理学实验教程.浙江:浙江大学出版社,2004. 19~21
    [155]王文波,郭策,孙久荣等.大壁虎脑立体定位的方法与装置.科学通报, 2007, 52(21): 2524~2528
    [156]李海鹏.基于BCI的壁虎动物机器人遥控刺激系统研究.硕士学位论文.南京:南京航空航天大学, 2008. 15~24
    [157] Ritter, D A. Lateral bending during lizard locomotion. J exp Biol, 1992, 173, 1~10
    [158]成佳伟.大壁虎运动步态与体态特征研究.硕士学位论文.南京:南京航空航天大学, 2007. 39~42
    [159] Mori S, Sakamoto T, Ohta Y, et al. Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem. Brain Res, 1989, 505: 66~74
    [160] Steeves J D, Sholomenko G N, Webster D M S. Stimulation of the pontomedullary reticular formation initiates locomotion in decerebrate birds. Brain Res, 1987, 401: 205~212
    [161] Kashin S M, Feldman A G, Orlovskv G N. Locomotion of fish evoked by electrical stimulation of the- brain. Brain Res, 1974, 82: 41~471
    [162]王锦琰,罗非,韩济生.中枢神经元放电的在体多通道同步记录技术.生理科学进展, 2003, 34(4): 356~358
    [163]陶锋,孙凤艳.谷氨酸载体在中枢神经系统中的作用.中国神经科学杂志, 1999, 3: 252~256
    [164]刘凤莲.谷氨酸能神经传递系统研究进展.长春师范学院学报(自然科学版), 2005, 24(3):93~96
    [165]白宝丰,张蕴琨.谷氨酸及其受体与运动.南京体育学院学报(自然科学版), 2002, 1(1): 34~37
    [166] Goodchild A K, Dampney R A, Bandler R. A method for evoking physiological responses by stimulation of cell bodies, but not axons of passage, within localized regions of the central nervous system, J. Neurosci. Methods, 1982, 6(4): 351–363
    [167] Livingston C A, Leonard R B. Locomotion evoked by stimulation of the brain stem in the Atlantic stingray Dasyatis sabina, J Neurosci, 1990, 10(1): 194~204
    [168] Uematsu K, Todo T. Identification of the midbrain locomotor nuclei and their descending pathways in the teleost carp, Cyprinus carpio. Brain Res, 1997, 773(1-2): 1~7
    [169] Michael M, Sinnamon H M. Locomotor stepping initiated by glutamate injections into the hypothalamus of the anesthetized rat. Behav Neurosci, 1990, 104(6): 980~990
    [170] Hoffmann A, Romero S M B, Menescal de Oliveira L. Agonistic Behavior and Its Cardiovascular Components Elicited by Microinjection of L-glutamic Acid into the Basal Midbrain of the Toad Bufo paracnemis. Brain Behav Evol, 1993, 41(6): 316~325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700