用户名: 密码: 验证码:
粉末高温合金材料的力学特性及其在涡轮盘上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡轮盘是燃气涡轮发动机关键件之一。涡轮盘材料是制约其技术性能、可靠性及安全性的关键因素。随着高性能航空发动机的发展,对涡轮盘材料的性能要求越来越高,也越来越严格,即要求更高的综合性能及长期工作的稳定性。本论文在目前国内外研究工作的基础上,对粉末冶金合金的力学性能进行了较为系统的研究,并结合工程实际,对粉末冶金盘件的疲劳寿命和破裂转速进行了较深入的研究,为粉末冶金合金在工程中的应用进行了有益的探索。论文的主要工作和贡献如下:
     1、开展了粉末高温合金材料FGH95力学特性试验,掌握了FGH95的基本力学性能。试验表明,镍基粉末高温合金是一种机械硬化材料,在温度420℃到650℃、应变率介于0.0001 s?1和0.01 s?1的情况下,对杨氏模量、屈服极限和塑性模量的影响并不明显。FGH95粉末合金的LCF试验表明,R=-1时,420℃~650℃范围内,温度对LCF寿命的影响可以忽略,但当R=0时,温度对LCF寿命有着较大的影响。与拉伸性能相比,镍基粉末冶金的压缩强度和压缩疲劳性能更加优异,材料的抗压缩疲劳能力远胜于抗拉疲劳能力。不同温度和不同应力水平的蠕变试验表明,温度和应力水平对FGH95的蠕变性能有明显影响,随着温度和应力水平的增加,材料抵抗蠕变变形的能力迅速下降。由材料的疲劳裂纹扩展试验可以看出,在不同温度下(430℃和600℃)测得的疲劳裂纹扩展速率基本在同一个数量级内,说明在测试的两种温度下,疲劳裂纹的扩展速率对温度不敏感。
     2、采用Gurson塑性理论研究了含夹杂粉末高温合金材料的细观力学行为。研究结果表明,空穴洞中心位置和空穴洞形状对空穴体积增长率和空穴体积成核率有着显著影响,夹杂位置和夹杂形状对空穴体积增长率和空穴体积成核率有着显著影响,因此,空穴洞和夹杂对粉末合金材料构件的寿命有明显的影响。夹杂物离基体表面的距离对材料损伤影响比较大,夹杂物离基体表面越近越容易引起基体的破坏,夹杂物引起的表面裂纹是材料损伤的主要原因。
     3、采用Gurson塑性理论研究了含夹杂粉末冶金材料的疲劳特性。研究结果表明,夹杂物的形状对疲劳寿命的影响比较大。同时,随着疲劳循环次数的增加,基体的最大空穴体积成核率不断增大,当积累到一定程度时,基体将发生断裂破坏。
     4、采用K-R蠕变损伤模型分析了粉末冶金材料在复杂应力下的蠕变损伤。研究结果表明,切口形状对切口试样的最大损伤位置分布有很大的影响。不同切口半径的试样蠕变寿命有很大区别。对于C型和U型切口试样,切口半径越大,寿命越短;V型切口试样,切口张开角度越大,寿命越短。采用光滑圆棒试样和带孔平板试样对处于不同温度复杂应力状态下的FGH95高温合金的低周疲劳(LCF)性能进行了研究,建立了疲劳寿命与循环应力范围的函数关系,并采用涡轮盘模拟件进行了验证。
     5、通过粉末冶金涡轮盘在试验状态下的有限元分析,确定了涡轮盘的危险位置,并根据建立的疲劳寿命与应力范围的关系,对涡轮盘的疲劳寿命进行了预测。计算与试验结果的误差值在工程允许范围之内,表明本文计算方法可以应用于工程设计。采用三种方法对粉末盘的破裂转速进行了计算,并与试验结果进行了对比。结果表明,三种方法的计算结果相差较小,该轮盘具有大于试验破裂转速(122%n设计)的储备能力。
     6、研究了粉末高温合金盘件的裂纹萌生和扩展寿命。采用两种不同模型对粉末冶金导流盘的应力和应变进行了分析,分别考虑了导流盘上通气孔和槽道对结果的影响。计算结果表明,由于在导流盘止口槽道根部没有采用圆角过渡,产生了很大的应力集中,出现明显的塑性应变,导致裂纹萌生与扩展,最终使导流盘断裂破坏。分析结果与试验结果吻合较好。采用数值模拟和断口观测技术对疲劳裂纹的扩展寿命进行了分析,建立了相关的疲劳裂纹扩展公式,得到了导流盘的疲劳裂纹萌生寿命和扩展寿命,二者所得结果具有较好的一致性。
Turbine disk is a key part of the gas turbine–engine, the material used by turbine disk is pivotal for the techno- performance,reliability and security. Following the development of high performance aero-engine, the material which is used in turbine disk is more and more stringent, namely, good integrative capability and long-term stability are demanded. In this dissertation the systemic study of powder metallurgy is performed. Based on the present study, the mechanics performances of Powder Metallurgy(PM) Ni-base Superalloy are systemic studied by experiment. And then, integrating with engineering, the fatigue life and burst speed of the real turbine disk are studied, and some useful exploring works of the applying of the PM is carried out. The main works and contributions of this dissertation are listed as follow.
     1、The experiment study of high temperature alloy material FGH95 is carried out,and the basic mechanical performances are griped. From the experiment study, it can be seen that nickel-base powder metallurgy (PM) FGH95 superalloy is strain hardening material. The experimental results of tensile testing show that the effect of strain rate on the Young’s modulus, tensile yield strength, and plastic modulus can be neglected at temperature from 420℃to 650℃. On mode R=-1, the influence of temperature on low cycle fatigue life can be ignored. But on mode R=0, the influence of temperature on low cycle fatigue life is serious. Compared with the tensile test results, the compressive strength limit and the compression fatigue life of PM is very high, and exceed a half of the tensile strength limit of PM. From the experiment results of creep, it show that the influence of temperature and stress level on FGH95 is evident. Along with the increasing of the temperature and stress level, the resistance of creep deformation of PM decreases quickly. Form the fatigue crack expand test it concludes that the fatigue crack expand speed is closed between the test temperature 420℃and 650℃.
     2、Based on Gurson’s model, analysis of finite deform plastically damage for tension specimen has been analyzed in PM alloys including inclusions. Special attentions have been paid on the influence of the location and shape as well as size of the inclusions on the void enlargement, nucleation and stress redistributing. It has been found that the influence is much high. Therefore the life of the PM alloys is also influenced by the above inclusion information. The simulation results shows that the distance between inclusion and surface have much influence on the damage of matrix. The inclusion nearest surface is the main factor that causes the fracture of the powder metallurgy materials.
     3、The fatigue study is carried out on the powder metallurgy materials with inclusion using Gurson model. The research shows that the shape of inclusion has strong influence on the fatigue strength of matrix. The max VVFG of matrix decreases with the increasing of the cycle loading. The result shows that the accumulation of VVFN is the main reason which causes damage of material.
     4、Numerical calculation with K-R damage law has been performed to study the creep damage of power metallurgy material under multiaxial stress states. The calculation results show that the notch shape has much influence on the maximum creep damage distribution. Notch radius has a great influence on creep life. For C-type and U-type notched specimen, the creep life decreases with notch radius increasing. For the V-type notched specimens, the rupture life decreases with increasing the notch angle. The low-cycle fatigue (LCF) behavior of smooth round specimen and a plate containing holes specimens made of powder metallurgy superalloys (FGH95) is studied by experiment and finite element method at different temperatures. A low-cycle fatigue life model has been proposed for the powder metallurgy superalloys under multiaxial stress states. The LCF life is a power function of true stress range corresponding to the maximum and minimum loadings. Further, a simulating specimen of turbine disk has been studied to validate the LCF life model. Good agreement has been obtained between finite element analysis and experimental results.
     5、In order to assure the security of PM turbine disk, the stress distributing of turbine disk is calculated by FEM. The danger point of turbine disk is found. Based on the formulation of stress range and fatigue life, the cycle number of turbine disk is estimated, which is accordant with the test result. The burst speed of turbine disk is calculated by the use of three different methods, those are the equality stress method, the small deformation analytic method and the large deformation analytic method, and the results are compared with the test. The calculation results show that the values of numeration are closed to the experiment value, and the value of large deformation analytic method is more secure.
     6、The distributing of stress and strain of turbine disk is computed using of two different FEM models, which are calculated the effection of ventilating hole and the cut of the disk. The results of calculation show that the stress concentration is serious because of the lack of circle angle in the root of the cut. This is the main factor for the sprout of crack, and finally induces the breakage of the disk. This conclusion is consistent with the experiment result. At the same time, the fatigue life of the disk is analyzed by numerical simulation and the photo of SEM. From the interval of fatigue strip, the formulation of the extend velocity of fatigue crack can be established, which can be used to estimate the sprout life and the extend life of the fatigue.
引文
[1] Ralph Anderson,Power Matallurgy at Pratt & Whitney,The International of Powder Matallurgy,1990, 26 (2 )
    [2]粉末冶金手册,北京:冶金工业出版社,1993
    [3]汪武祥,俄国粉末高温合金研究和应用现状,北京:621所赴俄考察技术总结之一,1992.3
    [4] Aerospace American,Amer. Inst. Aero & Astronautics,June,1986,PP40-43
    [5]方昌德,世界航空发动机手册,航空工业出版社,1996.4
    [6]航空航天工业部《高效节能发动机文集》编委会,《高效节能发动机文集》第五分册涡轮设计和试验,航空工业出版社,1991
    [7] ASM Metals Handbook,Powder Metallurgy,Aerospace Applications,1984,Vol.7:646-656
    [8] New Fuel Efficient Jet Engines to Contain PM Superalloys,MPR,April,1982,P202
    [9] P. S. Mathur and J. L. Bartos,Development of HIP Rene’95 Turbine Parts,AD-A069979
    [10] W. R. Pfouts etc,Powder Metallurgy Rene’95 Rotating Turbine Parts,NASA-CR-159802,1981
    [11] Analysis of Life Prediction Method for Time-dependent Fatigue Crack Initiation Nickel-base Superalloys,NMAB-347,1980
    [12]吴富民,结构疲劳强度,西北工业大学出版社,1985
    [13]张行、赵军,金属构件应用疲劳损伤力学,国防工业出版社,1998
    [14]曾春华、邹十践,疲劳分析方法及应用,国防工业出版社,1997
    [15]程育仁、缪龙秀,疲劳强度,中国铁道出版社,1997
    [16] A. K. Miller,Unified Constitutive Equation for Creep and Plasticity,American:Elsevier Applied Science Publication Litd.,1987
    [17] S. R. Bonder,Tepresentation of Time Dependent Mechanical Behavior of Rene95 by Constitutive Equations,AFMAL-TR-79-4116,1979
    [18] D. C. Stouffer,L. Papernick and H. L. Bernstein,Prediction of the Mechanical Response of a High Temperature Superalloy Rene95,AFMAL-TR-80-4148,1980
    [19] J.L.Chaboche,Continuum Damage Mechanics:Part1—General Concepts,Office National d’Etudes et de Recherches Aerospatiales F-2320 Chatillon Cedex,France
    [20] Turbine Engine Hot Section Technology(HOST),1982,NASA CP-83022,PP257-267
    [21] K. S. Chan ,ect,Constitutive Modeling for Isotropic Materials,NASA-CR-179522,1986
    [22] K. P. Walker,Research Development Program for Nonlinear Structural Modeling with Advanced Time-temperature Dependent Constitutive Relatongshiops,NASA-CR-165533,1981
    [23] R. H. Vanstone,O. C. Gooden,Advanced Cumulative Damage Modeling,AFWAL-CR-88-4146,1988
    [24] T. Nicholas,Damage Tolerant Design Approach to Turbine Life Prediction,Conference on Life Prediction for High-temperature Gas Turbine Material,New York,1985
    [25] S. Small,T. Nicholas,Elevated Temperature Crack Growth,ASME MD-Vol.18,1986
    [26] J. M. Larson and T. Nicholas,Cumulative Damage Modeling of Fatigue Crack Growth in Turbine Engine Material,Enginerring Fracture Machanics,1985,Vol.22,PP77-91
    [27] Bussac Ade,Lautridou J C,A Probabilistic Model for Prediction of LCF Surface Crack Initiation in PM Alloys,[ J ] .Fatigue Fract Engeng Mater Struct, 1993, 16 (6):861-874
    [28] Grison J., Remy L.,Fatigue Failure Probability in a Powder Metallurgy Nickel-base Superalloy [ J ] .Engineering Fracture Mechanics, 1997, 57(1) :41-45
    [29] A.H.Rosenberger And H.Ghonem, High Temperature Elastic Plastic Small Crack Growth Behavior in Nickel-base Superallloy [ J ] .Fatigue Fract Engeng Mater Struct, 1994,17(5):509-521
    [30] D.N.Dai, D.A.Hills, G. H?rkegard and J. Pross,Simulationof the Growth of Near Surface Defects [J ] .Engineering Fracture Mechanics, 1998, 59 (4) :415-424
    [31]宋迎东,粉末冶金涡轮盘强度与寿命研究[D ] .南京航空航天大学博士学位论文, 1997
    [32]汪武祥、杨治国等,热等静压FGH95粉末涡轮盘研制与应用研究(鉴定文集),1997.10
    [33]吕震宙、徐友良、杨治国、岳珠峰,粉末冶金涡轮盘寿命稳健性分析与设计,稀有金属材料与工程,2004,33(1):87-90
    [34]王安强、岳珠峰、杨治国,镍基粉末冶金高温合金的压缩疲劳性能研究,航空动力学报,2005,20(3):440-443
    [35]侯静泳,粉末冶金的疲劳断裂性能研究[A ] .第七届航空发动机结构强度振动学术会论文集[C ],洛阳, 1994,PP61-66
    [36]《工程材料实用手册》编辑委员会,工程材料实用手册,北京,中国标准出版社,2002. 8
    [37]徐凌志、吕文林,粉末冶金涡轮盘裂纹扩展失效概率分析,机械科学与技术,2000,19(2):210-212
    [38]赵勇铭,夹杂对粉末高温合金裂纹扩展寿命的影响,航空动力学报,2005,20(5):772-777
    [39]陈勇,含夹杂粉末高温合金涡轮盘裂纹扩展寿命研究[D],南京航空航天大学博士学位论文,2003
    [40]张国栋、何玉怀、刘绍伦,粉末冶金材料FGH95热/机械疲劳微裂纹损伤行为研究,航空科学基金研究报告,00B21008,2003
    [41]刘成立、吕震宙、徐有良,粉末冶金涡轮盘裂纹扩展可靠性分析方法,稀有金属材料与工程,2006,35(2):232-236
    [42] Track W.,Beta W.,Effects of Defects on Fatigue Properties of P/M Disk Alloy,Modern Devalp in P/M,1980,P15-19
    [43] Meethan G. W. ,High Temp Alloys for Gas Turbine,Applied Science Pub London,1978,P837-859
    [44] Miner R. V. and Dreshfied R. L. ,Effect of Fine Porosity on Fatigue Behavior of a Powder Metallurgy Super Alloy,Met Trans,1981,Vol.12A
    [45]汪武祥、周瑞发等,FGH95粉末高温合金论文集,北京航空材料研究院,1990.8
    [46]马振,F404发动机故障分析,国际航空,1981,No4,P30
    [47] C. E. Shamblen and D. R. Chang,Effect of Inclusions on LCF of HIP Plus Heat Treated Powder Metal Rene95,Metallurgical Transactions B, 1985,16B:775-784
    [48] C. Marguezetal,Prior Particle Boundary Precipitation in Ni-base Superalloys, International Journal of Powder Metallurgy,1989,25(4):301-308
    [49] W. R. Pfouts,C. E. Shamblen,J. S. Mosier,R. E. Peebles,R. W. Gorsler,Materials for Advanced Turbine Engines Project Completion Report Project 1:Powder Metallurgy Rene’95 Rotating Turbine Engine Parts,June,1979,NASA-CR-159802
    [50]陈国样、葛立强,FGH95粉末冶金高温合金中的夹杂物,钢铁研究学报,1995,7(3 ):35-39
    [51]国为民、吴剑涛、张凤戈等,FGH95镍基高温合金粉末中的夹杂及其对合金疲劳性能的影响[J] .粉末冶金工业,2000,10(3):23-28
    [52] Laitinen A.and Hanninen H. Effect of Nonmetallic Inclusion in Corrosion Fatigue Resistance of P/M Duplex Stainless Steels,Fatigue & Fracture of Engineering Materials and Structures 1996,19 (8):1045–1053
    [53] R. Hefele,Zur Berechung der Schaedigung Hochbelasteter Fluggasturbinen Scheiben Unter Realen Fllugbedingungen,Doctoral thesis:Germany F. R. :Technische Univ. Muenchen,1985
    [54] R. Hefele,Comparision of Life Prediction Methods for High Loading Gas Turbine Engine Disks,Journal of Engineering for Gas Turbine and Power,July 1986,Vol.108
    [55] M. N. Menson,W. H. Reimann,Low Cycle Fatigue Crack Initiation Study in Rene95,AFMAL-TR-75-1,1975
    [56] M.N.Menson,Life Prediction Techniques for Analysis Creep-fatigue Interaction in Advanced Nickel-base Superalloys,AFMAL-TR-76-172,1976
    [57] H.L.Bernstein,An Evaluation of Four Current Models to Predict the Creep-fatigue Interaction in Rene95,AFWAL-79-4075,1975
    [58] H.L.Bernstein,A Stress-strain-time Model for High-temprature Low Cycle Fatigue,AFMAL-TR-79-4114,1979
    [59] J. S. Cargirl,etc. Disk Residual Life Studies,PartⅠ:F100 1st-stage Turbine Disk(IN 100),1979
    [60] H. Hoff and G. W. Konig,用地坑内低循环旋转试验评定盘的损伤容限,AD-A169693
    [61] J. Gay,T. P. Gabb,R. V. Miner,Crack Growth of Rene95,NASA-TM-87150,1985
    [62] R. M. Pelloux,G. R. Romanoski and J. Feng,Study of the Fatigue Behavior of Short Cracks in Nickel-based Superalloys,AFOSR-TR-86-0224,1986
    [63] R. M. Pelloux,Study of Fatigue Behavior of Small Cracks in Nickel-based Superalloys,AFOSR-TR-88-0457,1988
    [64]张学仁、聂景旭、丁英俊,粉末冶金涡轮盘蠕变/疲劳寿命预测中的几个问题,中国航空学会《第九届发动机结构强度振动学术会议论文集》,1998.10
    [65]宋迎东、温卫东、高德平,粉末冶金涡轮盘的应用和寿命研究(综述),航空动力学报,1996,11(3):294-298
    [66]蔚夺魁、王国栋,粉末冶金材料轮盘定寿方法初探,中国航空学会《第九届发动机结构强度振动学术会议论文集》,1998.10
    [67]李浩悦、阎晓军、张学仁,聂景旭,蠕变/疲劳交互作用下粉末合金(FGH95)的寿命预测方法,中国航空学会《第十一届发动机结构强度振动学术会议论文集》,2002.10
    [68]宋迎东、高德平,一种适用于粉末冶金盘的可靠性定寿方法,中国航空学会《第九届发动机结构强度振动学术会议论文集》,1998.10
    [69]宋迎东、高德平,基于夹杂的粉末冶金涡轮盘疲劳定寿的概率方法,航空发动机,1998,(2):49-52
    [70]魏大盛、杨晓光、王延荣,基于缺陷概率特点的粉末冶金材料寿命预测概率模型,航空动力学报,2005,20(6):951-957
    [71]温志勋、岳珠峰、万建松,粉末冶金涡轮盘简单模拟件低周疲劳寿命研究[J],实验力学,2007,22(1):90-96
    [72]张丽娜、张麦仓、李晓等,粉末高温合金中非金属夹杂物问题的研究进展[J],兵器材料科学与工程,2001,24(3):64-68
    [73]何成群、余泉茂、胡本芙,FGH95合金LCF断裂寿命与夹杂特征关系的研究[J] .金属学报,2001, 3(3):247-252
    [74]曾燕屏、张麦仓、董建新,镍基粉末高温合金中夹杂物导致裂纹萌生和扩展行为的研究[J] .材料工程,2005, 8(3):10-13
    [75]何晋瑞,金属的高温疲劳,北京.科学出版社,1988
    [76]王永廉,高温低循环疲劳寿命预测模型,南京航空航天大学学报,1994,26(3):311-378
    [77]王万鹏、岳珠峰、杨治国,含夹杂粉末冶金材料拉伸试件的损伤分析[J] .中国有色金属学报,2004,14(6),949-955
    [78] (美)S.T.罗尔夫、J.M.巴逊姆著,刘文珽、仇仲翼、黄乃人、张诚文译,结构中的断裂与疲劳控制——断裂力学的应用,机械工业出版社,1985
    [79] (美)R.W.赫次伯格著,王克仁、罗力更、姚蘅、刘国玺译,工程材料的变形与断裂力学,机械工业出版社,1982
    [80] Herbert Danninger, Brigitte Weiss. The Influence of Defects on Gigh Cycle Fatigue of Metallic Materials[J] . Journal of Materials Processing Technology,2003,143-144
    [81] J.R.Rice and D.M.Tracey.On the Ductile Enlargement of Voids in Triaxial Stress Field [J],J.Mech. Phys. Solids, 1969,17(2):201-217
    [82] A.L.Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media[J] .Engineering Fracture Mechanics,1977,99:2-15
    [83] Z.L.Zhang,C.Thaulow, J.Qdegard,A Complete Gurson Model Approach for Ducitile Fracturee,[J] .Engineering Fracture Mechanics, 2000,67:155-168
    [84] F. Reusch,B. Svendsen, D.Kingbel,A Non-local Extension of Gurson-based Ductile Damage Modeling,[J].Computational Materials Science, 2003,26:219-229
    [85] Tvergaard V.,Needleman A., Analysis of the Cup-Cone Fracture in a Round Tensile Bar,ACTA Metallurgical, 1984, 32(2):157-169
    [86]丁英俊,含夹杂的粉末合金材料的损伤力学分析,北京航空航天大学硕士论文,1999.3
    [87] Hyzak, J. M. and Bernstein, I. M.. The Effect of Defects on the Fatigue Crack Initiation Process in Two P/M Superalloys: Part I. Fatigue Origins. Metall. Trans. A, 1982. 13A,33-43..
    [88] J.S.Wan,Z.F.Yue,A low-cycle Fatigue Life Model of Nickel-based Single Crystal Superalloys Under Multiaxial Stress State[J] .Materials Science and Engineering,A392(2005) 145-149
    [89] Wang Xishu,Li Yongqiang,Characteristics of Fatigue Surface Microcrack Growth in Vicinal Inclusion for Powder Metallurgy Alloys,Acta Mechanica Solid Sinic, 2003,16(4):327-333
    [90] Yokomaku T.Takigawa H.and Toyoda H.Effects of Defects and Microstructure on the Elevated Temperature Fatigue Properties of P/M Superalloy Merl 76[J],J. Soc. Mater. Sci., 1990,39(437):188-194 (in Japanese) International Journal of Fatigue, 1991,13(1):91-92
    [91] Bussac Ade,Prediction of Competition Between Surface and Internal Fatigue Initiation in PM Alloys[J].Fatigue Fract Engeng Mater Struct,1994,17(11):1319-1325
    [92]张都清、张广成、丁辉,电站高温金属构件的蠕变损伤模型和寿命预测,山东电力技术[J], 1996(6),7-9
    [93]穆霞英,蠕变力学,西安交通大学出版社,西安,1990
    [94]吴鸿遥,损伤力学[M],国防工业出版社,北京,1990
    [95]李兆霞,损伤力学及其应用[M],科学出版社,北京,2002
    [96]余寿文、冯西桥,损伤力学[M],清华大学出版社,北京,1997
    [97]李景,损伤力学基础[M].山东科学技术出版社,济南,1992
    [98] Y.P. Jiang, W.L. Guo, Z.F. Yue. On the Study of the Creep Damage Development in Circumferential Notch Specimens [J]. Computational Materials Science 38 (2007) 653–659
    [99] Q.M. Yu, Z.F. Yue, Y.S. Liu. Numerical Study on the Sreep Damage Development in Circumferential Notched Specimens Under Cyclic Loading [J]. Materials Science and Engineering A 406 (2005) 166–171
    [100] Y.P. Jiang , W.L. Guo, X.J. Shao. On the Study of the Effects of Notch Shape on the Creep Damage Under Cyclic Loading [J]. International Journal of Fatigue 29 (2007) 836–842
    [101] ZF Yue, ZZ Lu, XM Wang, A Numerical Study of Damage Development and Creep Life in Circular Notched Specimens During Creep, Mat.At High Temp, 19(2002), 147-152
    [102] ZF Yue, ZZ Lu, Finite element Creep Damage Study of Nickel-base Single Crystal Structures under Multiaxial Stress States, Mat. Sci. Tech,2003, 19 (8): 1012-1016
    [103] Y.P. Jiang, W.L. Guo, Z.F. Yue, J. Wang. On the Study of the Effects of Notch Shape on Creep Damage Development Under Constant Loading [J]. Materials Science and Engineering A 437 (2006) 340–347
    [104]万建松,有限变形晶体塑性滑移理论单晶力学行为的研究[D] .西北工业大学博士论文,2004
    [105]王屏,轮盘破裂转速的预测方法和试验评定,北京航空航天大学硕士学位论文,1987
    [106]姬守忠,涡轮盘破裂转速的计算和试验,北京航空航天大学硕士学位论文,1989
    [107]古爱军,轮盘破裂转速预测的数值方法及试验研究,北京航空航天大学硕士学位论文,1987
    [108]宋兆泓,航空燃气涡轮发动机强度设计,北京航空学院出版社,1988.11
    [109]吕文林,航空涡喷、涡扇发动机结构设计准则(研究报告)第二册轮盘,中国航空工业总公司发动机系统工程局,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700