用户名: 密码: 验证码:
采油井测试联作中的减振及压力传感技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地层射孔和地层数据测试有机联系在一起的测试联作技术,是石油工程中的一项新的施工技术。为了准确测出原始地层压力并防止射孔造成的冲击波对测试仪器产生损害,迫切需要对测试联作中的减振器和压力传感器进行研究。本文基于行波法分析井下测试管柱的减振模型,基于有限元软件ANSYS/LS-DYNA研究冲击载荷下石油测试管柱减振系统的动力学性质。在模拟过程中涉及几何非线性、材料非线性、状态非线性和动态加载等问题。最后利用小增量场理论,对压力传感器的工作原理以及灵敏度的改善进行了分析。本文主要研究工作体现在以下几个方面:
     (1)考虑上层管柱从减振器系统的吸能效果,建立了适合分析长测试管柱冲击载荷下减振问题的模型——行波法模型,分析了长测试管柱的材料参数对减振效果的影响。得到了选择较大的折合阻力系数(上层管柱材料系数和减振器参数比值)α,可以增强减振效果等有意义的结论。
     (2)建立了新设计研制的减振器和以往现场用的减振器三维有限元模型,并藉此进行了仿真计算,讨论了在冲击强度一定的条件下,三种不同主瓣频率的半正弦脉冲力对减振效果的影响,通过减振器减振效果的比较,新型减振器的减振效果很好,尤其是在中高频段。
     (3)对已建立的新型减振器模型,采用有限元系统研究了弹簧刚度、橡胶Mooney-Rivlin参数、橡胶和外套管的动摩擦系数、下接头质量以及脉冲力的冲击强度和冲击波形对系统减振效果的影响。
     (4)采用均匀设计法,选取新型减振器的24组不同结构参数,建立了三维有限元分析模型,用LS-DYNA计算减振系统的最大位移和最大地基扰动力分布情况,然后对最大位移和最大地基扰动力进行多元线性回归,得到了最大位移和最大地基扰动力影响因素的拟合特性。
     (5)对西安213所出产的液压、橡胶减振器和新型减振器进行了动态模拟实验,将实验结果与有限元分析计算结果进行比较,验证了有限元分析结果的正确性。
     (6)分析了几类常见的基于偏场原理而设计的压力传感器,分别得到了面内偏场与频率漂移的表达式。考虑到压电板的面内刚度远大于弯曲刚度,为了提高这类基于偏场原理而设计的压力传感器的灵敏度,最后计算分析了初始场或偏场对力电耦合因子的影响。
Continuous Operation of Test and measurement is a new operating technique in petroleum production,which combines perforation with test and measurement effectively. In order to measure the original pressure of stralayer exactly and prevent testing instrument from impairation,it is urgently necessary to research a suitable shock absorber and pressure sensors.Base on traveling wave method,a model is set up to analyse vibration of a tubular column for continuous operation of test and measurement of the petroleum production.Dynamic characters of shock absorber system for well testing tubular column under impact load were researched which were based on finite element analysis software ANSYS/LS-DYNA.Geometry nonlinear,material nonlinear,state nonlinear and dynamic load are involved in the analysis.By using the theory of small fields superposed on finite biasing fields in an electroelastic body,the principle of pressure sensor and its sensitivity are researched.Several aspects such as follows are discussed in this paper:
     (1) Considering effect of topper long column absorbing energy from shock absorber system,model basing on traveling wave method has been proposed,which suits to analyze problem on absorbing vibration of long column of test and measurement under shock load. It is found that bigger aspect ratioα,i.e.ratio of material coefficient of topper long column to parameters of shock absorber,can strength effect of damping on vibration.
     (2) Establish 3D finite element model of new designed shock absorber and local shock absorber former used,and simulating calculation is also carried on with this model, discuss the effect of shock absorber impact by half sinusoidal pulse force under three different main lobe frequencies.After comparation,we found performance of the new type shock absorber is better than the old one,especially under the middle and high frequencies.
     (3) The new type of shock absorber are simulated by change spring rigidity,rubber Mooney-Rivlin parameter,dynamic friction coefficient of rubber,outer cannula and the mass of lower contact.The effects of these parameters to the shock absorber are discussed. By changing work condition,impact strength and waveform of pulse force,the effects of the new shock absorber are analyzed respectively.
     (4) A 3D finite element analysis model was established by adopting uniform design method with twenty-four groups of different structural parameters of the new type shock absorber.The maximum displacement and distribution of the soil-structure maximum disturbing force for the shock absorber system were calculated with LS-DYNA.The multivariate linear regression was performed on the maximum displacement and the maximum soil-structure disturbing force.The fitting property of seven influence factors act on the maximum displacement and the maximum soil-structure disturbing force was obtained.
     (5) By doing signal input and output attenuation experiment on long and short shocker absorber of xi'an 213 graduate school and new type of shock absorber,their shock absorber coefficient are compared.The new type of shock absorber is simulated and analyzed with finite element method,and then compared it with experiment result.
     (6) After analyzing on some kinds of common pressure sensors base on biasing field principle,expressions between in-plane biasing field and frequency shift have been obtained.Because in-plane stiff of piezoelectric plate is much higher than that of flexural stiff,in order to improve sensitivity of this kind of pressure sensor which base on biasing field principle,this paper futher analyze a type pressure sensor which is designed basing on flexural biasing field.Charaters of pressure sensor are computed which under three common bending modes of pure bending,bending under a concentrate load,and bending under a uniformly load.At last,we study effects of initial or biasing fields on electromechanical coupling factors of electroelastic materials.
引文
[1] D. P. Hess, A. Soom, Normal vibrations and friction under harmonic loads, Trans. oftheASME, 1991,113:80-92.
    
    [2] Velichkovich A. S. Shock absorber for oil-well sucker-rod pumping unit, Chemical and Petroleum Engineering, 2005,41 (9): 545-546.
    [3] H. E. Karrer, J. Leach. A quartz resonator pressure transducer.IEEE Trans. Ind. Electron. Contr. Instrum., 1969,16 : 44-50.
    [4] H. E. Karrer, R. Ward. A low-range quartz resonator pressure transducer. ISA Trans., 1977,16:90-98.
    [5] R. J. Besson, J. J. Boy, B. Glotin, Y. Jinzaki, and B. Sinha. A dual-mode thickness-shear quartz pressure sensor. IEEE Trans.Ultrason., Ferroelect., Freq. Contr., 1993,40:584-591.
    [6] L. D. Clayton and E. P. EerNisse. Quartz thickness-shear mode pressure sensor design for enhanced sensitivity. IEEE Trans.Ultrason., Ferroelect., Freq. Contr., 1998,45:1196-1203.
    
    [7] L. D. Clayton,E. P. EerNisse. Application of finite element analysis to the design of quartz thickness-shear mode pressure sensors. Proc. IEEE Freq. Contr. Symp., 1996: 541-549.
    [8] E. P. EerNisse, R.B.Wiggins. Review of thicknessshear mode quartz resonator sensors for temperature and pressure. IEEE Sens, J., 2001,1: 79-87.
    [9] E. P. EerNisse. Quartz resonators vs their environment: Time base or sensor. J. Appl. Phys., 2001,40: 3479-3483.
    [10] B. K. Sinha and H. F. Tiersten. On the influence of a flexural biasing state on the velocity of piezoelectric surface waves. Wave Motion, 1979, 1: 37-51.
    
    [11] P. Das, C. Lanzl, and H. F. Tiersten. A pressure sensing acoustic surface wave resonator. Proc. IEEE Ultrason. Symp., 1976: 306-308.
    
    [12] J. S. Yang, X. Zhang. A high sensitivity pressure sensor. Sens. Actuators A, 2002, 101:332-337.
    [13]Q.Jiang,X.M.Yang,H.G.Zhou,and J.S.Yang.Analysis of surface acoustic wave pressure sensors.Sens.Actuators A,2005,118:1-5.
    [14]D.Hauden,S.Rousscau,G.Jailet,and R.Coquerel.Pressure and temperature measurements with SAW sensors.Proc.36th Annu.Freq.Contr.Symp.,1982:284-289.
    [15]A.Talbi,F.Sarry,L.Le Brizoual,M.Elhakiki,et al.Pressure sensitivity of Rayleigh and Sezawa wave in ZnO/Si(001) structures.Proc.IEEE Ultrason.Symp.,2003:1338-1341.
    [16]Y.N.Vlassov,A.S.Kozlov,N.S.Pashchin,and I.B.Yakovkin.Precision SAW pressure sensors.Proc.IEEE Int.Freq.Contr.Symp.,1993:665-669.
    [17]Tiersten H F.Perturbation theory for linear electroelastic equations for small fields superposed on a bias[J],J Acoust Soc Am,1978,64(3):833-837.
    [18]Tiersten H F,Zhou Y S.An analysis of transversely varying thickness modes in quartz resonators with bevelled cylindrical edges[A],Proc 1993 IEEE lnt Frequency Control Symp[C],1993,431-441.
    [19]ANSYS/LS-DYNA算法基础和使用方法,北京理工大学LS-DYNA中国技术中心,1999.
    [20]彭拾义.减振器.国防工业出版社,1979.
    [21]丁文镜.减振理论.清华大学出版社,1988.
    [22]Norton M.P.著,盛元生,顾伟豪等译.工程噪声和振动分析基础.北京:航空工业出版社,1993.
    [23]张阿舟,诸德超等.实用振动工程(1)——振动理论与分析.北京:航空工业出版社.1996.
    [24]张阿舟,诸德超等.实用振动工程(2)——振动控制与设计.北京:航空工业出版社.1996.
    [25]张阿舟,诸德超等.实用振动工程(3)——振动测量与实验.北京:航空工业出版社.1996.
    [26]Rosenberg Z,Dekel E.Computational study of the influence of projectile strength on the performance of long-rod penetrators.International Journal of Impact Engineering,1996,18(6):671-677.
    [27]Saigo M,Tani K.Usui H.Vibration control of a traveling suspended system using wave absorbing control.J.Vib.Acoust.Trans.ASME,2003,125(3):343-350.
    [28]Anderson J G,Semercigil S E,Turan O F.Improved standing-wave-type sloshing absorber.Journal of Sound and Vibration,2000,235(4):702-710.
    [29]陆振球.经典和现代数学物理方程.上海科学技术出版社,1991.
    [30]严济宽.近代振动隔离技术发展述评.噪声与振动控制,1983(2):6-14.
    [31]徐庆善.隔振技术的进展与动态.机械强度,1994,16(1):37-41.
    [32]Lo H.R.et al.The Analysis of hysteretic systems with reference to a particular model.Proc.4th IMAC,Los Angeles,USA,1986:730-735.
    [33]Yar M,Hammond J.K.Parameter estimation for hysteretic systems.J.Sound and Vibration,1987,117(1):161-172.
    [34]胡海岩,李岳锋.具有记忆特性的非线性减振器参数识别.振动工程学报,1989,2(2):17-26.
    [35]Ferri A.A.,Dowell E.H.Frequency domain solutions to multi-degree-of-freedom,dry friction damped systems.J of Sound and Vibration,1984,124(2):207-224.
    [36]姚亚夫,董忠钫,程耀东.一种非线性干摩擦振动系统的识别方法.全国第五届模态分析与试验学术交流会论文集(上),1988:579-589.
    [37]Masri S.F,Caughey T.K.A nonparametric identification techniques for nonlinear dynamic problems.Transactions of the ASME,APM,1979,46(2):433-447.
    [38]Masri S F,et al.Nonparametric identification of Nearly Arbitrary Nonlinear Systems.Transactions of the ASME,APM,1982,49(3):619-662.
    [39]庄表中,邢宏,高瞻.关于非线性隔振系统动态特性的描述方法.振动与冲击,1986,5(3):33-37.
    [40]Pierre C.,Ferri A.A..Dowell E.H.Multi-harmonic analysis of dry friction damped system using an incremental harmonic balance method.Transactions of the ASME,APM,1985,52(4):958-964.
    [41]Yeh G C K.Forced vibrations of a two-degree-of-freedom system with combined coulomb and viscous damping.J.of the Acoust.Scoc.AM,1966,39(1):15-24.
    [42]周强.钢丝绳隔振器的非线性特性及其应用.噪声与振动控制,1994(4):8-11.
    [43]Levitan E S.Forced oscillation of a spring-mass system having combined coulomb and viscous damping.J.of the Acoust.Scot.of A M,1960,32(10):1265-1269.
    [44]白鸿柏,黄协清.干摩擦振动系统响应计算方法研究.振动工程学报,1998,11(4):12-16.
    [45]师汉民,湛刚,吴雅.机械振动系统.武汉:华中理工大学出版社.1992.
    [46]闻邦椿,李以农,韩清凯.非线性振动理论中的解析方法及工程应用.东北大学出版社.2001.
    [47]曹树谦,张文德.萧龙翔.振动结构模态分析.天津:天津大学出版社.2001.
    [48]倪振华.振动力学.西安交通大学出版社.1989.
    [49]谷口修主编,尹传家译.振动工程大全(上册).北京:机械工业出版社.1983.
    [50]清华大学工程力学系固体力学教研组振动组编.机械振动(上册).机械工业出版社.1978.
    [51]韩星,王元勋,李春植.冲击载荷下的减振分析与设计.现代机械,2003(2):25-26.
    [52]Mikhlin Yu V,Volok A M.Solitary transversal waves and vibro-impact motions in infinite chains and rods.International Journal of Solids and Structures,2000,37(25):3403-3420.
    [53]王贵一.橡胶减振器的设计原理和性能测试.特种橡胶制品.1999,19(6):42-47.
    [54]肖俊恒.减振橡胶设计方法的研究.中国铁道科学.2001,22(6):111-116.
    [55]毛炳秋.动力吸振器吸收机械振动初探.水利电力机械电子技术,1988,2(3):17-23.
    [56]刘鸿文.材料力学.北京:高等教育出版社,1992.
    [57]Nissen J C.Poppk,Schmal horst B.Optimization of a nonlinear dynamic vibration absorber,Journal of sound and vibration.1985,99:149-154.
    [58]SoomA,Lee M.Optimal design of linear and nonlinear vibration absorbers for damped systems,Journal of Vibration Acoustic Structure and Reliability in design. 1983,105:113-119.
    [59]丁文镜.多自由度振动系统动力调谐消振理论.清华大学学报,1985,25(3):38-47.
    [60]宋孔杰.考虑振源阻抗影响的动力吸振器.固体力学学报,1992,13(2):141-147.
    [61]伍良生,顾仲权.阻尼动力减振器减振问题的进一步研究.振动与冲击,1994,1(13):1-7.
    [62]Patrick E.Corcoran,Gerd-Heinz Ticks,et al.Hydraulic Engine Mount Characteristics,SAE Paper 840407,1984.
    [63]蒋友谅.非线性有限元法.北京:北京工业学院出版社,1988.
    [64]何君毅,林样都.工程结构非线性问题的数值解法.北京:国防工业出版社,1994.
    [65]Desalvo G J,Swanson J A.ANSYS engineering analysis system-theorecical manual(Version 5.3).Houston Swanson Analysis System,Inc.1994.
    [66]宋天霞等.非线性结构有限元计算.武汉:华中理工大学出版社,1996.
    [67]殷有泉.固体力学非线性有限元引论.北京:北京大学出版社,清华大学出版社,1987.
    [68]张汝清,詹先义.非线性有限元分析.重庆:重庆大学出版社,1990.
    [69]吕和祥,蒋和洋.非线性有限元.北京:化学工业出版社,1992.
    [70]弗雷克利P K,佩恩A R.橡胶在工程中的应用与实践.北京:化学工业出版社,1985.
    [71]ANSYS/LS-DYNA3D Theoretical Manual.May 1998,Livermore Software Technology Corpration.John O.Hallquist.
    [72]LS-DYNA User's Manual.Version940 Junel.1997,Livermore Software Technology Corpration.
    [73]ANSYS/LS-DYNA3D User's Guide,for release5.5,001098,Sepember 1998,Ansys.Inc.
    [74]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [75]ANSYS建模与分网分析指南.ANSYS.INC 2000.
    [76]Guide to ANSYS user Programmable Feature.ANSYS.INC 2000.
    [77]APDL Programmer's guide.ANSYS.INC 2000.
    [78]UIDL Programmer's guide.ANSYS.INC 2000.
    [79]Rivilin R.S.Rheology,Theory and applications[A].F.R.Eirich.Rivilin Rheology Theory and Applications[C].NewYork:Academic Press,1956.196-201.
    [80]李方泽,刘馥清,王正.工程振动测试与分析.北京:高等教育出版社,1992.
    [81]蒋轩.负重轮橡胶轮缘有限元分析、寿命预估及试验研究:博士学位论文,北京:北京理工大学车辆与交通工程学院,2000.
    [82]方开泰.均匀设计与均匀设计表.北京:科学出版社,1994.
    [83]Baumhauer J C,Tiersten H F.Nonlinear electroelastic equations for small fields superposed on a bias[J].J Acoust Soc Am,1973,54(4):1017-1034.
    [84]Tiersten H F.On the accurate description of piezoelectric resonators subject to biasing deformations[J].Int J Engng Sci,1995,33(15):2239-2259.
    [85]Tiersten H F.Nonlinear electroelastic equations cubic in the small field variables [J].J Acoust Soc Am,1975,57(3):660-666.
    [86]Besson R J,Boy J J,Glotin B,Jinzaki Y,Sinha B.A dual-mode thickness-shear quartz pressure sensor[J].IEEE Trans.on Ultrasonics,Ferroelectrics,and Frequency Control,1993,40(5):585-591.
    [87]EerNisse E P,Wiggins R B.Review of thickness-shear mode quartz resonator sensors for temperature and pressure[J].IEEE Sensors Journal,2001,1(1):79-87.
    [88]EerNisse E P.Quartz resonators vs their environment:time base or sensor?[J].J Appl Phys,2001,40(5):3479-3483.
    [89]Yang Jiashi,Hu Yuantai.Mechanics ofelectroelastic bodies under biasing fields[J].Applied Mechanics Reviews,2004,57(3):173-189.
    [90]Tiersten H F,Zhou Y S.An analysis of transversely varying thickness modes in quartz resonators with bevelled cylindrical edges[A],Proc 1993 IEEE Int Frequency Control Symp[C],1993:431-441.
    [91]Yang Jia-shi.An Introduction to the Theory of Piezoelectricity[M].Springer,New York, 2005:287-297.
    [92] J. M. Gere and S. P. Timoshenko, Mechanics of Materials. 4~(th)ed. Boston: PWS, 1997.
    [93] R. Stoneley, The propagation of surface elastic waves in a cubic crystal, Proc. R. Soc. of London, Series A, 1955:447-458.
    [94] K.H.Hellwege, A. M. Hellwege, Landolt-Bornstein. Numerical Data and Functional Relationships in Science and Technology. New York: Springer-Verlag, 1979.
    [95] D. F. Nelson, Electric, Optic and Acoustic Interactions in Crystals. New York: Wiley, 1979:481-513.
    [96] Meitzler, A. H., Tiersten, H. F., Warner, A. W. et.al. IEEE Standard on Piezoelectricity. New York: IEEE. 1988: 38.
    [97] Hu Yuantai, Yang Jiashi, Jiang Qing. A model for electroelastic plates under biasing fields with applications in buckling analysis [J]. Int J Sol Struct, 2002, 39 (9): 2629-2642.
    [98] Hu Yuantai, Yang Jiashi, Jiang Qing. Surface waves in electroelastic materials under biasing fields [J], ZAMP, 2004, 55(4): 678-700.
    [99] Hu Yuantai, Yang Jiashi, Jiang Qing. On modeling of extension and flexure response of electroelastic shells under biasing fields [J], Acta Mechanica, 2002, 156 (3-4): 163-178.
    [100] Yang Jiashi, Hu Yuantai. Mechanics of electroelastic bodies under biasing fields [J]. Applied Mechanics Reviews, 2004, 57 (3): 173-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700