用户名: 密码: 验证码:
高密度硬盘磁头用超薄类金刚石薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着磁存储硬盘技术的不断发展,超薄类金刚石薄膜(DLC)的研究越来越成为材料领域的研究热点。本文分别采用Electron cyclotron resonance chemical vapor deposition (ECR-CVD电子回旋共振增强化学气相沉积)、Ion beam deposition optimization (IBO离子束辅助沉积技术)、Filtered cathodic vacuum arc (FCVA过滤阴极真空电弧技术)方法制备出Diamond-like carbon (DLC类金刚石)薄膜,主要以Vis(514nm) & UV(244nm) Raman对薄膜的结构分析为主线,从而反映薄膜的性能,具体见下。
     首先研究了不同工艺制备的不同厚度薄膜的结构的变化。研究表明,ECR-CVD、IBO制备的a-C:H薄膜的生长主要分为两个阶段,50?以前,采用岛状生长;50?以后,采用平面层状生长,结构趋于稳定。而对于FCVA所制的ta-C薄膜,主要分三个阶段,第一阶段<15?:以岛状生长模式为主;第二阶段15~50?:以外延式的平面层状生长;第三阶段>50?:总体上属于纯粹的平面式生长,在微区部分,由于薄膜趋向于形成更多的四面体结构,属于岛状生长。此外,对于薄膜的硬度和密度比较,FCVA>IBO>CVD。因此,当厚度大于15?时,ta-C薄膜就开始变得致密、连续,可以达到耐磨性的要求,成为高密度磁头保护膜的首要选择。
     在ECR-CVD方法中,采用CH4和N2混合气体制备a-C:H:N薄膜。研究表明,N的掺入,将使得薄膜的sp~3含量降低,以至硬度和密度降低。这是由于在a-C:H:N薄膜中,并没有形成大量的比金刚石结构更硬的C_3N_4 (C≡N)相,主要形成了C-N键。因此,氮掺杂并不能使a-C:H薄膜满足硬盘要求。
     在FCVA方法中,对70nm厚膜分析发现,当倾斜衬底角度增加时,ta-C薄膜中的sp~3含量降低,同时薄膜中的sp2团簇的振动更加有序,使得内应力将比硬度下降的更快。对2nm薄膜拉曼分析表明,当倾斜衬底增加时,其内应力和硬度也会下降。这是由于当衬底倾斜时,入射离子形成平行于衬底表面的动量,不仅降低薄膜的sp~3相的形成,而且促使sp2相更加有序。
     在FCVA方法中,对衬底偏压的研究表明,与70nm厚膜偏压效应相反,首次发现对2nm薄膜来说,当衬底偏压增加时,sp~3含量几乎在线性降低,对应的硬度也降低。这是因为偏压可以诱导与衬底形成更多的混合键,这些混合键都比C-C键长,故降低了薄膜的硬度;而对于厚膜来讲,界面混合层的影响可以忽略不计,高能量入射离子导致较多的sp~3键的过程占主导作用。
     对于磁头使用的多层材料,DLC薄膜在AlTiC上沉积时,sp~3含量最高,对应硬度最高;而在FeCo、FeNi上,薄膜中的sp~3含量较低;在Au上,sp~3含量最低。
     最后,为有效评估DLC在纳米级Lead区域结合力建立了超声震荡加化学腐蚀的方法。发现薄膜在AuCu上的结合力强于Au。从而对于可能由于DLC/ Lead间弱的结合力而引起的磁阻材料氧化问题,本实验结果提供了一种方法,从Wafer设计层面上,通过AuCu取代Au作为lead材料加以研究解决。
With the development of magnetic disk drive technology, ultra-thin diamond-like carbon (DLC) films have attracted considerable interest as a protective overcoat. In this thesis, firstly, DLC films are deposited using electron cyclotron resonance (ECR) chemical vapor deposition、ion beam deposition optimization (IBO) and filtered cathodic vacuum arc (FCVA) techniques, respectively. Then we consider in detail the use of a combined study of Raman spectra taken at two wavelengths (514 and 244 nm) to study the structure of films that can reflect its properties, and this is highlight part of the thesis. In addition, we propose a method for ultra-thin DLC films adherence evaluation on the nano-scale lead area of magnetic recording slider. The details are as following:
     Firstly DLC films of different thickness from 10? to 100? are prepared by ECR-CVD、IBO and FCVA techniques, respectively. Through Raman spectroscopy study, the growth model for three kinds of films was discussed. For a-C:H films by ECR-CVD and IBO, its formation process mainly includes two stages. When film thickness is less than 50?, the carbon ions will form multiple nucleation centers like island, and when thickness is over 50?, the films developed with layer model and its structure became stable. But for ta-C films by FCVA, its growth process includes three stages. At the first stage, the thickness is less than 15? and it developed with island-like model. At the second stage, the thickness is from 15? to 50?, it developed with layer-like model and it already became stable. For the third stage, the thickness is over 50?, in mass area it could be described by layer model, while in local area it is with island model to form a little more tetrahedral structure. Thus, ta-C films of thickness over 15 ? already became dense and continuous and it will be the best choice for application of films in magnetic recording slider.
     By ECR-CVD with a mixed gas of CH4 and N_2, the structure and mechanical properties of the a-C:H:N films are studied. The results show that a-C:H:N films with higher N content will contain less sp~3 sites. Hardness test of films confirmed that more N content corresponds to lower hardness. It also indicates that hard C≡N bond with high energy state is difficult to be formed by plasma doping, and additional N can not improve mechanical properties for a-C:H.
     The tetrahedral amorphous carbon (ta-C) films by FCVA have been studied as a function of oblique angles of substrates varied from 0 to 60o, while keeping the energy of incident particles stable. The films contain less sp~3 sites and more ordered sp2 clustering as the substrate tilting for thicker films of 70 nm, and also a decrease of sp~3 content of ultra-thin films of 2 nm. Also it was found that the tilting can dramatically lower internal stress with less influence on hardness because hardness is related to sp~3 content, while internal stress is not only related to sp~3 content but also related to the order of sp2 cluster.
     Additionally, substrate bias effect on ta-C film is studied. We found that the sp~3 content of 70 nm films increases with higher bias, while sp~3 content of 2 nm ultra-thin films falls almost linearly with bias. This is because substrate bias enhances mixing between the carbon films and substrate, and these mixing bonds are longer than C-C bonds. But for thicker films, the effect of mixing layer can be negligible compared to bias with higher carbon ion energy.
     The sliders are composed of multi-layers which are mainly Fe-Co (Fe: 67%at, Co: 33%at) alloy, Fe-Ni (Fe: 18%at, Ni: 82%at) alloy, Au and Al_2O_3-TiC (Al_2O_3: 64%at, TiC: 36%at). The spectra show that the films deposited on Al_2O_3-TiC contains the highest sp~3 content, less sp~3 content on Fe-Co and Fe-Ni alloy, and the lowest of sp~3 content on Au substrate. It also indicates that the sequence of the anti-wear performance of ta-C film on different substrates is Al_2O_3-TiC > Fe-Co and Fe-Ni alloy > Au.
     Finally, we propose a method with ultra-sonic plus chemical etching test, for ultra-thin Si/DLC films adherence evaluation on the nano-scale lead area of magnetic recording slider. The adherences of films on both Au and Au-Cu (Au: 93%at, Cu: 7%at) based lead are compared, and the results show Au-Cu lead exhibits better adhesion to Si/DLC than that with Au as confirmed by nano-scratch tests from the wafer level.
引文
[1]. J. Robertson, Ultra-thin carbon coatings for magnetic storage technology, Thin Solid Films 383 (2001) 81-88
    [2]. J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering R 37 (2002) 129-281
    [3].蔡长波,王祥,于军,硬盘技术现状及发展趋势,信息记录材料2000 V1(1) 60-64
    [4].马国佳,邓新绿,类金刚石薄膜的应用及制备,真空5 (2002) 27-31
    [5]. A.K. Menon, Critical requirements for 100Gb/in2 head/media interface, Aric K. Author Affiliation: Read-Rite Corp Source: American Society of Mechanical Engineers, Tribology Division, TRIB 9 Oct10-Oct13 1999 1999 Sponsored by: ASME 1-9
    [6]. B. Bhuhan, Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5nm, recent developments, Diamond & Related Materials 8 (1999) 1985-2015
    [7]. B. Tomcik, T. Osipowicz, J.Y. Lee, Diamond-like films as a corrosion protective layer on the hard disk, Thin Solid Films 360 (2000) 173-180
    [8]. J. Robertson, Diamond-like carbon structure and properties, Diamond & Related Materials 4 (1995) 297-303
    [9]. M. Yoshikawa, Raman spectra of diamond-like amorphous carbon films, Materials Science Form Vols.52&53 (1989) 365-386
    [10]. H. Han, F. Ryan, M. McClure, Ultra-thin tetrahedral amorphous carbon film as slider overcoat for high area density magnetic recording, Surface & coating Technology 120-121 (1999) 579-584
    [11]. E. Grochowski, R.E.J. Fontana, Magnetic recording technology-advances through the year 2000 and beyond, Biennial IEEE International Nonvolatile Memory Technology Conference Jun.22-Jun.24 1998 Sponsored by : IEEE, 8-12
    [12]. A. Erdemir, O.L. Eryilmaz, I.B. Nilufer, Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas, Surface & Coatings Technology 133-134 (2000) 448-454
    [13]. A. Heiman, I. Gouzman, S.H. Christiansen, H.P. Strunk, A. Hoffman, Nano-diamond films deposited by direct current glow discharge assisted chemical vapor deposition, Diamond & Related Materials 9 (3-6) (2000) 866-871
    [14]. A. Hoffman, A. Heiman, I. Gouzman, H.P. Strunk, S.H. Christiansen, Microstructure and phase composition evolution of nano-crystalline carbon films: dependence on deposition temperature, J. Appl. Phys. 91 (5) (2002) 3336-3344
    [15]. M.G. Beghi, A.C.Ferrari, K.B.K. Teo, J. Robertson et al. Bonding and mechanical properties of ultra-thin diamond-like carbon films, Applied Physics Letter 81(20) (2002) 3804-3806
    [16]. R.G. Lacerda, F.C. Marques, Hard hydrogenated carbon films with low stress, Applied Physics Letter 73 (5) (1998) 617-619
    [17]. Y.T. Kim, S.M. Cho, W.S. Choi, B. Hong, D.H. Yoon, Dependence of the bonding structure of DLC thin films on the deposition conditions of PECVD method, Surface & Coatings Technology 169-170 (2003) 291-294
    [18]. T. Heitz, B. Drevillon, C. Godet, J.E. Bouree, Quantitative study of C-H bonding in polymerlike amorphous carbon films using in-situ infrared ellipsometry, Phys. Rev. B 58 (1998) 13957-13973
    [19]. K. Nakazawa, S. Veda, M. Kumeda, A. Morimoto, T. Shimizu, NMR and IR studies on hydrogenated amorphous carbon films, Jpn. J. Appl. Phys. 2 (21) (1982) 176-178
    [20]. C.D. Martino, E. Demichelis, A. Tagliaterro, Determination of sp3/sp2 ratio in a-C:H films by infrared spectroscopy analysis, Diamond & Related materials 4 (1995) 1210-1215
    [21]. O. Durand-Drouhin, A. Zeinert, M. Benlahsen, K. Zellama, G. Turban et al. On the micro-structural, optical and mechanical properties of hydrogenated amorphous carbon films deposited in electron cyclotron resonance plasma, Diamond & Related Materials 9 (2000) 752-755
    [22]. M. Chhowalla, Thick, well-adhered, highly stressed tetrahedral amorphous carbon, Diamond & Related Materials 10 (2001) 1011-1016
    [23]. S. Sattel, J. Robertson, H. Ehrhardt, Effects of deposition temperature on properties of hydrogenated tetrahedral amorphous carbon, J. Appl. Phys. 82 (1997) 4566-4576
    [24]. T.A. Friedmann, K.F. McCarty, J.C. Barhour, M.P. Siegal, D.C. Dibble, Thermal stability of amorphous carbon films grown by pulsed laser deposition, J. Appl. Phys. 68 (1996) 1643-1645
    [25]. A.Y. Liu, M.L. Cohen, Science, 245(1989), 841
    [26]. A.Y. Liu, M.L. Cohen, Phys. Rev. B41, (1990), 109727
    [27]. E.C. Cutiongco, D. Li, Y.W. Chung, Tribological behavior of amorphous carbon nitride overcoats for magnetic thin-film rigid disks, Trans. ASME J. Tribol, 118 (1996) 543-548
    [28]. W. Zhang, K. Wazumi, A. Tanska, and Y. Koga. Tribological properties of nitrogen-containingamorphous carbon film produced by dc plasma chemical vapor deposition, Journal of Vacuum Science Technology A21 (1) (2003) 6-13
    [29]. M. Neuhaeuser, H. Hilgers, P. Joeris, R. White, and J. Windeln. Raman spectroscopy measurements of DC-magnetron sputtered carbon nitride (a-C:N) thin films for magnetic hard disk coatings, Diamond & Related Materials 9 (2000) 1500-1505
    [30]. Y.H. Cheng, B.K. Tay, S.P. Lau, X. Shi, X.L. Qiao et al. Raman spectroscopy of carbon nitride films deposited using the FCVA technique combined with a radio-frequency nitrogen-ion beam, Applied Physics A (2001)73 341-345
    [31]. S.K. Field, M. Jarratt, and D.G. Teer, Tribological properties of graphite-like and diamond-like carbon coating, Tribology International 37(2004) 949-956
    [32]. T. Sharda, T. Soga, T. Jimbo, M. Umeno, Biased enhanced growth of nanocrystalline diamond films by microwave plasma chemical vapor deposition, Diamond & Related Materials 9 (2000) 1331-1335
    [33]. S. Waidmann, M. Knupfer, M. Finktschold, F. Richter, Investigation on the change in structure of tetrahedral amorphous carbon by a large amount of nitrogen incorporation, Diamond & Related Materials 9 (2000) 544-547
    [34]. M.C. Polo, J.L. Andujar, J. Robertson, W.I. Milne, Preparation of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition, Diamond & Related Materials 9 (2000) 663-667
    [35]. B.K. Tay, X. Shi, H.S. Yang, Z. Sun. Raman studies of tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc, Surface & Coating Technology 105 (1998) 155-158
    [36]. E.G. Gerstner, P.B. Lukins, D.R. McKenzie, and D.G. McCulloch. Substrate bias effects on the structural and electronic properties of tetrahedral amorphous carbon, Physics Review B 54 (1996) 14504-14510.
    [37]. Paul K. Chu, Liuhe Li. Characterization of amorphous and nano-crystalline carbon films, Materials Chemistry and Physics 96 (2006) 253-277
    [38]. R.H. Jarman, G.J. Ray, R.W. Standley, G.W. Zajac, Determination of bonding in amorphous carbon films: a quantitative comparison of core-electron energy-loss spectroscopy and 13C nuclear magnetic resonance spectroscopy, Applied Physics Letter 49 (1986) 1065-1067
    [39]. K.M. McNamara, K.K. Gleason, Selectively 13C-enriched diamond films studied by nuclear magnetic resonance spectroscopy, J. Appl. Phys. 71 (1992) 2884-2889
    [40]. C. Jager, J. Gottwald, H.W. Spiess, R.J. Newport, structural properties of amorphous hydrogenated carbon. III. NMR investigations, Phys. Rev. B 50 (1994) 846-852
    [41]. M.M. Golzan, P.B. Lukins, D.R. McKenzie, A.M. Vassallo, J.V. Hanna, NMR evidence for strained carbon bonding in tetrahedral amorphous carbon, Chem. Phys. 193 (1995) 167-172
    [42]. H. Lock, R.A. Wind, G.E. Maciel, C.E. Johnson, A study of 13C-enriched chemical vapor deposited diamond film by means of 13C nuclear magnetic resonance, electron paramagnetic resonance, and dynamic nuclear polarization, J. Chem. Phys. 99 (1993) 3363-3373
    [43]. J. Yuan, L.M. Brown, Investigation of atomic structures of diamond-like amorphous carbon by electron energy loss spectroscopy, Micron 31 (2000) 515-525
    [44]. E.C. Samano, G. Soto, A. Olivas, L. Cota, DLC thin films characterized by AES, XPS and EELS, Applied Surface Science 202 (2002) 1-7
    [45]. P. Kovarik, E.B.D. Bourdon, R.H. Price, Electron-energy-loss characterization of laser-deposited a-C, and diamond films, Phys, Rev. B 48 (1993) 12123-12129
    [46]. J. Kulik, Y. Lifshitz, G.D. Lempert, J.W. Rabalais, D. Marton, Electron energy loss spectroscopy of mass selected ion beam deposited diamond-like carbon, J. Appl. Phys. 76 (9) (1994) 5063-5069
    [47]. K.W.R Gilkes, S. Prawer, K. W. Nugent, J. Robertson, H. S. Sands et al. Direct quantitative detection of the sp3 bonding in DLC films using ultraviolet and visible Raman spectroscopy. J. Appl. Phys. 87(2000) 7283-7289
    [48]. C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambole, J. Robertson, Bonding in hydrogenated diamond-like carbon by Raman spectroscopy, Diamond & Related Materials 14(2005) 1098-1102
    [49]. S.M. Huang, Z. Sun, Y.F. Liu, and M.H. Hong, Ultraviolet and visible Raman spectroscopy characterization of chemical vapor deposition diamond films, Surface & Coating Technology 151-152 (2002) 263-267
    [50]. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physics Review B 61(20) (2000) 14095-14107
    [51]. A.C. Ferrari, J. Robertson. Resonant Raman spectroscopy of disordered amorphous and diamond-like carbon, Physics Review B 64(7) (2001), 0754141-1-13
    [52]. A. C. Ferrari, Determination of bonding in diamond-like carbon by Raman spectroscopy, Diamond & Related Materials 11 (2002)1053-1061
    [53]. M.V. Gradowski, A.C. Ferrari, R. Ohr, B. Jacoby, H. Hilgers, H. Adrian et al, Resonant Ramancharacterization of ultra-thin nano-protective carbon layers for magnetic storage devices, Surface & Coating Technology 174-175 (2003) 246-252
    [54]. J. Robertson, Detection of carbon nitride by resonant Raman spectroscopy, Diamond & Related Materials 13 (2004) 1558-1560
    [55].宋鹏,陆建生,瑚琦,薄膜沉积机理的计算机摸拟应用和发展,材料导报17 (2003) 154~157
    [56].郑小平,张佩峰,范多旺,薄膜生长的计算机模拟,材料研究学报19 (2005) 170~178
    [57]. Stephan Neuville, The Enhancement of Interconnected sp3 Sites by Chemical Effects During ta-C Film Growth, Diamond & Related Materials 11 (2002) 1721-1730
    [58]. L.H. Li, X.B. Tian, P.K. Chu, Growth and Nucleation of Diamond-like Carbon (DLC) Film on Aluminum, Nuclear Instruments and Methods in Physics Research B 206 (2003) 691-695
    [59].戴剑锋,何彦林,王青,超硬纳米类金刚石膜的结构特点及其形成机制的探讨,甘肃工业大学学报28 (2002) 129-131
    [60]. P.J. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, Properties of filtered-ion-beam deposited diamond-like carbon as a function of ion energy, Phys. Rev. B 48 (1993) 4777-4782
    [61]. A. Tanaka, T. Nishibori, M. Suzuki, et al, Tribological Properties of DLC Films Deposited Using Various Precursors Under Different Humidity Conditions, Diamond & Related Materials 12 (2003) 2066-2071
    [62]. K.B.K. Teo, A.C. Ferrari, G. Fanchini, Highest Optical Gap Tetrahedral Amorphous Carbon, Diamond & Related Materials 11 (2002) 1086-1090
    [63]. D. Franta, I. Ohlidal, Optical Properties of Diamond-like Carbon Films Containing SiOx. Diamond & Related Materials 12 (2003) 1532-1538
    [64]. A. Canillas, M.C. Polo, J. Sancho, Spectroscopic Ellipsometric Study of Tetrahedral Amorphous Carbon Films: Optical Properties and Modeling, Diamond & Related Materials 10 (2001) 1132-1136
    [65]. S.E. Rodil, S. Muhl, S. Maca, Optical Gap in Carbon Nitride Films, Thin Solid Films 433 (2003) 119-125
    [66]. J.Y. Sze, B.K. Tay, D. Sheeja, Optical and Electrical Properties of Amorphous Carbon Films Deposited Using Filtered Cathodic Vacuum Arc with Pulse Biasing, Thin Solid Films 448 (2004) 148-152
    [67]. A. Grill, Electrical and Optical Properties of Diamond-like Carbon, Thin Solid Films 355 (1999) 189-193
    [68]. S. Gupta, M. Pal, Field Emission Characteristics of Diamond-like Carbon Films Synthesized by Electrodeposition Technique, Applied Surface Science 236 (2004) 426-434
    [69]. N.Koenigsfeld, H.Hofsass, D.Schwen, Field Emission Enhancement by Graphitic Nano-scale Channels Trough ta-C layers, Diamond & Related Materials 12 (2003) 469-473
    [70]. E. Straryga, G.W.Bak, M.Dluzniewski, Some Electrical Properties of Diamond-like Carbon Thin Films, Vacuum 74 (2004) 325-330
    [71]. M. Ikeyama, S. Nakao, Y. Miyagawa, S. Miyagawa, Effects of Si content in DLC films on their friction and wear properties, Surface & Coating Technology 191 (2005) 38-42
    [72].冯涛,茅东升,李炜,类金刚石薄膜作为阴极陈列的场发射显示器研制,功能材料与器件学报2002, 8(30):293-296
    [73].刘艳红,李建,马腾才, C基薄膜电子场发射的一般特性及发射模型,真空2004, 41(1):16-21
    [74].马洪涛,马峰,蔡珣,类金刚石梯度膜的微观力学性能研究,理化检验~物理分册2002, 38(40):139-141
    [75].李刘合,武咏琴,崔旭明,真空阴极弧离子镀类金刚石碳膜Raman研究,金属学报2004, 40(2):220-224
    [76].梅显秀,徐军,马腾才,利用强流脉冲离子束技术在室温下沉积类金刚石薄膜研究,物理学报2002, 51(8):1875-1880
    [77].邹友生,汪伟,郑静地等.偏压对电弧离子镀沉积类金刚石膜的影响.金属学报2004, 50(5):537-540
    [78].黄卫东,詹如娟,表面波等离子体沉积类金刚石膜结构的Raman光谱和XPS分析,光谱学与光谱分析2003, 23(3):512-514
    [79].丁万昱,高鹏,邓新绿等,类金刚石磁盘保护膜的性能、应用与制备,真空科学与技术学报2005, 25(1):41-47
    [80].李敬财,何玉定,胡社军,类金刚石薄膜的应用,新材料产业2004, (3):39-42
    [81]. N. Akita, Y. Konishi, S. Ogura, M. Imamura, Y.H. Hu, and X. Shi, Comparison of deposition methods for ultra thin DLC overcoat film for MR head, Diamond & Related Materials 10 (2001) 1017-1023
    [82]. J. Suzuki, S. Okadal, Deposition of Diamondlike Carbon Films Using Electron Cyclotron Resonance Plasma Chemical Vapor Deposition from ethylene gas, Jpn. J. Appl. Phys. Vol.34 (1995) L1218-L1220
    [83]. O.L. Warren, S.A. Downs, T.J. Wyrobek, Challenges and interesting observations associated with feedback-controlled nanoindentation, International Journal of Materials Research and Advanced Techniques, 95 (2004) 287-296
    [84]. D.M. Cao, Amorphous hydrocarbon based thin films for high-aspect-ratio MEMS applications, Thin Solid Films 398-399 (2001) 553-559
    [85]. D.F. Bahr, Mechanical deformation of PZT thin films for MEMS applications, Material Science and Engineering A 259 (1999) 126-131
    [86]. L.Y. Huang, J.W. Zhao, K.W. Xu, J Lu, A new method for evaluating the scratch resistance of diamond-like carbon films by the nano-scratch technique, Diamond & Related Materials 11 (2002) 1454-1459
    [87]. X.L. Peng, Z.H. Barber, T.W. Clyne, Surface roughness of diamond-like carbon films prepared using various techniques, Surface & Coating Technology, 138 (2001) 23-32
    [88]. M.C. Salvadori, D.R. Martins, M. Cattani, DLC coating roughness as a function of film thickness, Surface & Coating Technology, 200 (2006) 5119-5122
    [89]. C. Casiraghi, A.C. Ferrari, R. Ohr, D. Chu, J. Robertson, Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology, Diamond & Related Materials 13 (2004) 1416-1421
    [90]. M. Veres, S. Toth, M. Fule, M. Koos, Thickness dependence of the structure of a-C:H thin films prepared by RF-CVD evidenced by Raman spectroscopy, Journal of Non-Crystalline Solids 352 (2006) 1348-1351
    [91]. T.W. Scharf, I.L. Singer, Thickness of diamond-like carbon coatings quantified with Raman spectroscopy, Thin Solid Films 440 (2003) 138-144
    [92]. G. Adamopoulos, K.W.R. Gilkes, J. Robertson, N.M.J. Conway, B.Y. Kleinsorge, A. Buckley, D.N. Batchelder, Ultraviolet Raman characterization of diamond-like carbon films, Diamond & Related Materials 8 (1999) 541-544
    [93]. K.W.R. Gilkes, H.S. Sand, D.N. Batchelder, W.I. Milne, J. Robertson, Direct observation of sp3 bonding in tetrahedral amorphous carbon using UV Raman spectroscopy, Applied Physics Letter70 (1997) 1980-1982
    [94]. V.I. Merkulov, J.S. Lannin, C.H. Munro, S.A. Asher, V.S. Veerasamy, W.I. Milne, UV studies of tetrahedral bonding in diamond-like amorphous carbon, Physics Review Letters 78 (1997) 4869-4872
    [95]. A.C. Ferrari, S.E. Rodil, J. Robertson, Resonant Raman spectra of amorphous carbon nitrides: the G peak dispersion, Diamond & Related Materials 12 (2003) 905-910
    [96]. A.X. Wei, D.H. Chen, N. Ke, S.Q. Peng, S.P. Wong, Characteristics of carbon nitride films prepared by magnetic filtered plasma stream, Thin Solid Films 323 (1998) 217-221
    [97]. N. Mutsukura, K. Akita, Deposition of hydrogenated amorphous CNx film in CH4/N2 RF discharge, Diamond & Related Materials 8 (1999) 1720-1723
    [98]. Y. Sakamoto, M. Takaya, Growth of carbon nitride using microwave plasma CVD, Thin Solid films 475 (2005) 198-201
    [99]. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583
    [100]. T.H. Zhang, Y. Huan, Nanoindentation and Nanoscratch behaviors of DLC coatings on different steel substrates, Composites Science & Technology 65 (2005) 1409-1413
    [101].谢存毅,纳米力学测试系统,先进制造和材料应用技术, 1 (2004) 20-25
    [102]. H.L. Leo, S.R. Chapman, and R.M. Crone, Slider/disk interaction during the landing process, ASME Journal of Tribology, 1995 117:119-23
    [103]. H. Kohira, V. Prabhakaran, F.E. Talke, Effect of air bearing design on wear of diamond-like carbon coated proximity recording sliders, Tribology International, 33 (2000) 315-321
    [104]. B. K. Yen, R. L. White, Q. Dai, M. F. Toney, and B.R. York, Microstructure and properties of ultra thin amorphous silicon nitride protective coating, Journal of Vacuum Science Technology A (2003) 21 (6) 1895-1904
    [105]. D. P. Liu, G. Benstetter, and E. Lodermeier, Influence of the incident angle of energetic carbon ions on the properties of tetrahedral amorphous carbon (ta-C) films, Journal of Vacuum Science Technology A 21 (5) (2003) 1665-1670
    [106]. L.F. Xia, M.R. Sun, and J.X. Liao, The effect of negative bias pulse on the bonding configurations and properties of DLC films prepared by PBII with acetylene, Diamond & Related Materials 14 (2005) 42-47
    [107]. Won Jae Yang, Tohru Sekino, Kwang Bo Shim, Koichi Niihara, and Keun Ho Auh. Microstructure and tribological properties of SiOx/DLC films grown by PECVD, Surface & Coating Technology 194 (2005) 128-135
    [108]. C.K. Park, S.M. Chang, H.S. Uhm, S.H. Seo, J.S. Park. XPS and XRR studies on microstructures and interfaces of DLC films, Thin Solid Films 420-421 (2002) 235-240
    [109]. M. Akovirta, V.M. Tiainen, P. Pekko, Techniques for filtering graphite macro-particles in the cathodic vacuum arc deposition of tetrahedral amorphous carbon films, Diamond & Related Materials 8 (1999) 1183-1192
    [110]. X. Shi, B.K. Tay, H.S. Tan, Properties of carbon deposited tetrahedral amorphous carbon films as a function of ion energy, J. Appl. Phys. 79 (9) 1996 7234-7240
    [111]. J.R. Shi, X. Shi, Z. Sun, E. Liu, B.K. Tay, S.P. Lau, Ultraviolet Raman and Visible Raman studies of nitrogenated tetrahedral amorphous carbon films, Thin Solid Films 360 (2000) 169-174
    [112]. Y. Lifshits, S.R. Kasi, and J.W. Rabalais, Sub-plantation model for film growth from hyperthernal species: application to diamond, Phys. Rev. Lett. 62 (1989) 1290-1293
    [113]. Y. Lifshits, G.D. Lempert, and E. Grossman, Substantiation of Sub-plantation model for diamond-like film growth by atomic force microscopy, Phys. Rev. Lett. 72 (1994) 2753-2756
    [114]. R.G. Lacerda, F.C. Marques, J.R. Freire, The sub-implantation model for diamond-like carbon films deposited by methane gas decomposition, Diamond & Related Materials 8 (1999) 495-499
    [115]. Y. Lifshitz, Diamond-like carbon– present status, Diamond Relat. Mater. 9 (1999) 1659-1676.
    [116]. V. Sharma, F.E. Talke, Q. Ng, Tribological investigation of tri-pad sliders, IEEE Transactions on Magnetics, 1996 32:3651-3
    [117]. H. Zaidi, A. Djamai, K.J. Chin, T. Machia, Characterization of DLC coating adherence by scratch testing, Tribology International 39 (2006) 124-128
    [118]. T. Staedler, K.I. Schiffmann, Micromechanical and Microtribological Properties of Thin CNx and DLC coatings, Advanced Engineering Materials, 5 (2001) 333-336
    [119]. L.Y. Huang, J.W. Zhao, K.W. Xu, J Lu, Analysis of nano-scratch behavior of diamond-like carbon films, Surface Coating Technology 154 (2002) 232-236
    [120]. B Bhushan, X Li, Nanomechanical characterization of solid surfaces and thin films, Int Mater Rev 2003 48(3) 125-164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700