用户名: 密码: 验证码:
主动混合滑动轴承—转子系统运动轨迹控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非圆异型截面零件的加工在机械制造行业中占据着一个重要的地位。本文以动静压混合滑动轴承-转子系统的主轴运动轨迹控制为出发点,研究了主动节流混合滑动轴承系统及其转子运动轨迹的控制技术,以期为非圆异型机械零件的加工提供一条新途径,并相应地进行了有关的理论模型分析、仿真和实验研究。
     综合分析了传统的非圆零件加工和数控加工方法及各种微进给伺服机构装置,首次提出了通过控制混合滑动轴承-转子系统运动轨迹的方法,来实现主轴的非圆定轨迹回转运动的新思路,以期为非圆异型机械零件加工开辟新途径。其实现思路是通过主动伺服节流控制技术,实时调节流入动静压混合轴承油腔的流体流量和压力,进而影响轴承封油面上的油膜压力分布,得到可控的油膜合力,以达到控制主轴的运动状态和轨迹的目的。
     进行了动静压混合轴承系统的基本理论研究。基于典型的4油腔动静压混合轴承-主轴系统,研究建立了主动滑动轴承系统的理论模型,建立了主轴的运动模型和动力学模型,导出了主轴倾转情形下轴承油膜压力分布的Revnolds方程和小孔节流轴承各油腔的流量平衡方程。设计建立了一种适用的液压伺服控制结构,并相应地给出了雷诺方程边界条件的修正方式。为全文的研究工作提供了基本模型。
     研究了动静压混合轴承的可控性,为轴承系统设计提供理论依据。基于轴承的局部线性化模型,提出了一种可控性系数的概念来衡量混合轴承的可控性能,并分析研究了典型的4油腔混合轴承的参数对其静动态特性和可控性的影响。研究表明,轴承油腔面积对轴承的可控性有较为明显的影响,其中油腔轴向宽度的影响尤为显著。随着油腔尺寸的增加,轴承的静压效应增强,轴承的可控性得到明显提高。轴承的同心节流比以及速度参数、节流器类型对轴承的可控性系数影响不大,但对油膜的刚度、阻尼系数有较大影响,同样会影响到轴承的可控性。
     研究了混合轴承系统基于模糊逻辑的自适应变结构滑模控制方法。基于T-S动态模糊模型的系统分析方法,采用多个局部线性模型来近似逼近系统的整体非线性模型,得以用线性化的分析方法和较小的控制增益来构建滑模变结构控制(SMC),克服一般非线性动力学分析和求解的困难,有效改善模型的不确定性。进一步又采用模糊逻辑系统方法来逼近SMC中不连续的控制信号,且在线自适应调整模糊集合的参数,以补偿系统的不确定界,改善传统SMC中因控制切换所引起的抖振。通过对主动混合轴承-转子轨迹控制的仿真计算研究,验证了方法的有效性,在系统外部扰动和参数摄动情形下,主轴的轨迹跟踪均表现出了比较满意的效果,具有较强的鲁棒性,而且没有出现抖振现象。同时,对于无等效控制项方式的滑模控制也进行了仿真研究,其应用效果并无明显下降,而且更易于实现。
     研究了混合轴承-转子系统轨迹跟踪的离散变结构滑模控制方法。基于系统的线性化模型,采用离散趋近律的滑模到达条件,以一种在线估计的方法来预测系统的不确定性,并将其引入滑模控制算法中,同时给出一种自适应策略,在线调整离散趋近律参数,从而可以抵消掉系统的慢时变不确定量,以较低的控制增益获得系统的鲁棒性,有效降低准滑动模态区带的宽度。仿真结果表明,本方法对慢时变的系统参数摄动和外部扰动具有较强的鲁棒性,主轴的轨迹跟踪具有比较满意的效果。
     设计研制了混合轴承系统实验平台,进行了轴承-转子运动轨迹控制的实验研究。设计制造了一种典型的4油腔混合轴承,研制了适用的液压伺服控制系统。采用了无等效控制项的连续滑模控制方法,并对比研究了PID控制器的效果。实验结果表明,滑模控制方法效果优于PID方法。在低速旋转情形下,主轴的振动响应得到有效降低,得到了比较满意的轴心轨迹跟踪结果,验证了本文所提非圆轨迹控制方法的可行性,并发现和分析了进一步提高控制效果必须解决的关键问题。
Noncircular fine machining plays an important role in modern mechanical manufacturing. Addressing the locus control of an active hybrid bearing, an active lubricated sliding bearing and related spindle locus control techniques have been investigated theoretically and experimentally in this dissertation in order to provide a new method for noncircular machining.
     On the synthetically analysis of conventional and NC noncircular machining approaches and various servo feed devices, a novel idea which is expected to be used for noncircular machining is proposed for the first time. The method is that, by adjusting the oil pressure and fluid flow injected into the recesses of a hybrid sliding bearing using hydraulic servo systems, the pressure distribution on the bearing lands is altered at the same time and then the controllable oil forces are obtained. Thus the expected spindle locus is achieved and it will become possible for noncircular machining.
     The elementary theoretical research for the hybrid sliding bearing-rotor system is carried out based on a four-recess hybrid sliding bearing. The dynamic model of the bearing-rotor system is theoretically investigated and constructed. The Reynolds equation of oil pressure distribution and flow continuity equations for a rigid shaft under Kardan rotations are developed. The suitable hydraulic system is designed and constructed, and the relative boundary conditions for Reynolds equation are modified. Above research work provides the essential model for further researchs.
     The controllability of the hybrid sliding bearing system is theoretically investigated in order to guide the bearing design. An idea of controllability coefficients is proposed to evaluate the controllability of the hybrid bearing by means of local linearized model, and the influences of bearing parameters on the static and dynamic performance and controllability for a typical 4-recess hybrid bearing are studied. The results show that the bearing recess size, especially the axial size, has a significant influence on the controllability. The controllability increases with the increment of the recess size, due to the decrement of damping forces and the increment of hydrostatic effects. The concentric pressure ratio, journal speed parameter and restrictors have a little influence on the controllability coefficients but significant influence on the bearing stiffness and damping coefficients, and thus on the bearing system controllability.
     Combining the T-S dynamic fuzzy model and sliding mode control (SMC) technique, the adaptive fuzzy sliding mode control strategy for the hybrid bearing system is studied. The whole nonlinear model is approximated with multi local linear models, and the SMC can be constructed with linearizing method and lower feedback gain to overcome the problems for nonlinear dynamics and simultaneity to improve the uncertainties existed in practical system. A fuzzy logic system with online adaptive adjustment is utilized to approximate the discontinuous control signal and furthermore compensate for the system uncertainties, then the chattering phenomenon in classical SMC caused by discontinuous signal switching can be effectively alleviated. The numerical simulation for shaft locus control demonstrates the effectiveness of the proposed approach. The shaft locus tracking presents satisfied results and robustness without chattering phenomenon in despite of external disturbance and parameter variations. Meanwhile, the sliding mode control without equivalent control effort is studied and it is shown that the control effects descend little but apt to carry out.
     The discrete sliding mode control strategy for the bearing system is theoretically studied. The discrete reaching law is adopted to get the existing conditions of the quasi-sliding mode. An online estimation is used to predict the system uncertainties and compensate for the model error and slowly time-varying characteristics. Meanwhile an adaptive strategy is proposed to adjust the reaching law parameters and reduce the bound of the quasi-sliding mode. The simulation results show that the proposed method presents strong robustness to slowly time-varying external disturbance and parameter variations, and the shaft locus tracking also performs well.
     Finally, a test rig for active hybrid journal bearing is designed and manufactured for shaft locus tracking control experiments. A typical 4-recess hybrid bearing, along with suitable hydraulic servo system is designed and constructed. The sliding mode control strategy without equivalent control effort is adaopted and the comparative results of PID controller are given as well. The experimental results demonstrate the effectiveness of the sliding mode control in vibration control and shaft locus tracking. With low shaft rotating speed, the vibration response of the rotor declines effectively and a satisfied shaft locus tracking is obtained. Thus the feasibility of the proposed method is validated and meanwhile, the problems needed to be solved for improving shaft locus tracking performance are detected and analyzed.
引文
1张直明,张言羊,谢友柏,等.滑动轴承的流体动力润滑理论.北京:高等教育出版社,1986
    2赵斌.采用异形活塞销孔解决大型组合活塞裙部裂损问题的探讨.内燃机,2004,(4):14-16
    3翟鹏,张承瑞,兰红波.车用高负荷活塞异形销孔结构发展趋势及加工技术研究.汽车技术,2006,(3):39-43
    4范大鹏,尹自强,杨毅.精密异形航空燃气涡轮轴承加工关键技术研究.国防科技大学学报,1997,19(1):9-13
    5王黎钦,陈观慈.航空轴承非圆滚道的预变形加工技术.机械工程学报,2005,41(9):223-227
    6邓中亮.非圆截面工件加工方法的发展.制造技术与机床,1996,(9):48-50
    7于滨,赵万生,狄士春,等.异形孔的微细超声电火花加工技术研究.微细加工技术,2003,(1):44-50
    8K.W.Liu,P.S.Sheng.Development of Laser Finishing for Non-circular Profiles.Journal of Laser Applications,1995,7(1):21-30
    9H.D.Tran,D.B.DeBra.Design of a Fast Short-stroke Hydraulic Actuator.CIRP Annals,1994,43(1):469-472
    10T.C.Tsao,M.Tomizuka.Robust Adaptive and Repetitive Digital Tracking Control and Application to a Hydraulic Servo for Noncircular Machining.J Dyn Syst Meas Control Trans ASME,1994,116(1):24-32
    11D.H.Kim,T.C.Tsao.Robust Performance Control of Electrohydraulic Actuators for Electronic Cam Motion Generation.IEEE Transactions on Control Systems,2000,8(2):220-227
    12T.Higuchi,T.Yamaguchi.Development of a New High Speed Positioning Servomechanism by Electromagnetic Attractive Force.Journal of the Japan Society for Precision Engineering,1993,59(10):1619-1624
    13T.Higuchi,T.Yamaguchi,M.Tanaka.Development of a High Speed Non-circular Machining NC-lathe for Cutting a Piston-head of a Reciprocating Engine by Use of a New Servomechanism Actuated by Electromagnetic Attractive Force.Journal of the Japan Society for Precision Engineering,1996,62(3):453-457
    14R.G.Reddy,R.E.DeVor,S.G.Kapoor,et al.A Mechanistic Model-based Force-feedback Scheme for Voice-coil Actuated Radial Contour Turning.Int J Mach Tools Manuf,2001,41(8):1131-1147
    15K.Krishnamoorthy,C.Y.Lin,T.C.Tsao.Design and Control of a Dual Stage Fast Tool Servo for Precision Machining.Proc IEEE Int Conf Control Appl,2004,1:742-747
    16K.Sugita,Y.Yamakawa,N.Hori,et al.Development of a High Speed Non-circular Turning Machine Using Hybrid System with VCM and PZT.Flexible Automation 1992,1992:957-962
    17Y.Nakao.Study on Noncircular Machining with Two Milling Cutters.Transactions of the Japan Society of Mechanical Engineers,Part C,2002,68(9):2805-2810
    18王先逵,钱磊.高频响大行程微位移机构的研究.中国机械工程,1999,(10)9:1005-1007
    19吴丹,王先逵,易旺民,等.重复控制及其在变速非圆车削中的应用.中国机械工程,2004,15(5):446-449
    20易旺民,吴丹,高杨,等.用于非圆车削的离散重复控制改进算法.清华大学学报(自然科学版),2004,44(8):1064-1066,1070
    21刘廷章,叶冰,卢秉恒,等.发动机异形活塞加工系统及其动态性能研究.农业机械学报,1998,29(2):121-125
    22周利民,赵万华,惠延波,等.一种经济型的活塞曲面加工方法及实验研究.西安交通大学学报,1998,32(3):85-88
    23王大庆,刘山,丁崇生,等.高响应电磁式刀架非圆截面车削加工的伺服控制研究,中国机械工程,2001,12(S1):47-50
    24张凯,胡德金,马浩全.新型活塞异形销孔加工方法.上海交通大学学报,2003,37(Sup):29-32
    25张凯.胡德金.一种基于电磁驱动的非圆异形孔加工方法.上海交通大学学报,2005,39(6):845-848
    26邬义杰,项占琴.基于超磁致伸缩材料的活塞异形销孔加工原理研究. 浙江大学学报(工学版),2004,38(9):1185-1189
    27翟鹏,张承瑞,刘世英,等.一种镗削用高频响精密伺服刀杆的动态设计.制造技术与机床,2006,(8):103-106
    28翟鹏,张承瑞,王海涛,等.基于GMM的活塞异形销孔加工原理研究.压电与声光,2007,29(1):125-128
    29M.S.Kim,T.Higuchi,T.Mizuno,et al.Application of a Magnetic Bearing Spindle to Non-circular Fine Boring.Proceedings of the Sixth International Symposium on Magnetic Bearings,1998:22-31
    30Z.Gosiewski,J.T.Sawicki,K.R.Bischof.Control of Magnetic Bearing Spindles During N-waved Machining.Proc ASME Des Eng Tech Conf,2001:3111-3118
    31Z.Cai,M.S.de Queiroz,M.M.Khonsari.On the Active Stabilization of Tilting-pad Journal Bearings.Journal of Sound and Vibration,2004,273:421-428
    32孙恭寿,冯明.液体动静压混合轴承设计.北京:世界图书出版公司,1993
    33H.C.Garg,H.B.Sharda,V.Kumar.On the Design and Development of Hybrid Journal Bearings:a Review.Tribotest,2006,(12):1-19
    34陈伯贤,裘祖干,张慧生.流体润滑理论及其应用.北京:机械工业出版社,1991
    35L.S.Andrés.Approximate Analysis of Turbulent Hybrid Bearings-Static and Dynamic Performance for Centered Operation.J Tribol Trans ASME,1990,112(4):692-698
    36L.S.Andrés.Turbulent Hybrid Bearings with Fluid Inertia Effects.J Tribol Trans ASME,1990,112(4):699-707
    37L.S.Andrés,D.Childs,Zhou Yang.Turbulent-flow Hydrostatic Bearings:Analysis and Experimental Results.Int J Sci,1995,37(8):815-829
    38L.S.Andrés,D.Childs.Angled Injection-Hydrostatic Bearings Analysis and Comparison to Test Results.Transactions of the ASME,1997,119:179-187
    39M.Helene,M.Arghir,J.Frene.Numerical Study of the Pressure Pattern in a Two-dimensional Hybrid Journal Bearing Recess,Laminar,and Turbulent Flow Results. Journal of Tribology, 2003, 125(2): 283-290
    
    40 M. Helene, M. Arghir, J. Frene. Combined Navier-Stokes and Bulk-flow Analysis of Hybrid Bearings: Radial and Angled Injection. Journal of Tribology, 2005, 127(3): 557-567
    
    41 H. So, T. S. Chang. Characteristics of a Hybrid Journal Bearing with One Recess Part 2: Thermal Analysis. Tribology International, 1986, 19(1):11-18
    
    42 Zhou Yang, L. S. Andres, D. W. Childs. Thermal Effects in Liquid Oxygen Hydrostatic Journal Bearings. Tribology Transactions, 1996, 39(3):654-662
    
    43 S. C. Sharma, V. Kumar, S. C. Jain, et al. Thermohydrostatic Analysis of Slot-entry Hybrid Journal Bearing. Tribology International, 2002, 35:561-577
    
    44 S. C. Sharma, V. Kumar, S. C. Jain, et al. Study of Hole-entry Hybrid Journal Bearing System Considering Combined Influence of Thermal and Elastic Effects. Tribology International, 2003, 36(12): 903-920
    
    45 V. Kumar, S. C. Sharma, S. C. Jain. Stability Margin of Hybrid Journal Bearing: Influence of Thermal and Elastic Effects. Journal of Tribology,2004, 126(3): 630-634
    
    46 J. R. Lin. Surface Roughness Effect on the Dynamic Stiffness and Damping Characteristics of Compensated Hydrostatic Thrust Bearings. International Journal of Machine Tools & Manufacture, 2000, 40: 1671-1689
    
    47 S. C. Sharma, S. C. Jain, T. Nagaraju. Combined Influence of Journal Misalignment and Surface Roughness on the Performance of an Orifice Compensated Non-recessed Hybrid Journal Bearing. Tribology Transactions, 2002, 45(4): 457-463
    
    48 S. C. Sharma, S. C. Jain, P. L. Sah. Effect of Non-Newtonian Behaviour of Lubricant and Bearing Flexibility on the Performance of Slot-entry Journal Bearing. Tribology International, 2000, 33(7): 507-517
    
    49 S. C. Sharma, S. C. Jain, R. Sinhasan, et al. Static and Dynamic Performance Characteristics of Orifice Compensated Hydrostatic Flexible Journal Bearings with Non-Newtonian Lubricants. Tribology Transactions,2001,44(2): 242-248
    50W.B.Rowe,D.Koshal,K.J.Stout.Slot-entry Bearings for Hybrid Hydrodynamic and Hydrostatic Operation.J Mech Eng Sci,1976,18(2):73-78
    51W.B.Rowe,D.Koshal.Investigation of Recessed Hydrostatic and Slot-entry Journal Bearings for Hybrid Hydrodynamic and Hydrostatic Operation.Wear,1977,43:55-69
    52W.B.Rowe,S.X.Xu,F.S.Chong,et al.Hybrid Journal Bearings.Tribology International,1982,15(6):339-348
    53S.C.Sharma,V.Kumar,S.C.Jain,et al.A Study of Slot-entry Hydrostatic/Hybrid Journal Bearing Using the Finite Element Method.Tribology International,1999,32:185-196
    54Yatao Zhang.Dynamic Properties of Flexible Journal Bearings of Infinite Width Considering Oil Supply Position and Pressure.Wear,1989,130(1):53-68
    55S.C.Sharma,S.C.Jain,R.Sinhasan,et al.Comparative Study of the Performance of Six-pocket and Four-pocket Hydrostatic/Hybrid Flexible Journal Bearings.Tribology International,1995,20(8):531-539
    56S.C.Sharma,R.Sinhasan,S.C.Jain,et al.Performance of Hydrostatic/Hybrid Journal Bearings with Unconventional Recess Geometries.Tribology Transactions,1998,41(3):375-381
    57S.C.Sharma,S.C.Jain,D.K.Bharuka.Influence of Recess Shape on the Performance of a Capillary Compensated Circular Thrust Pad Hydrostatic Bearing.Tribology International,2002,35:347-356
    58N.Singh,S.C.Sharma,S.C.Jain,et al.Performance of Membrane Compensated Multirecess Hydrostatic/Hybrid Flexible Journal Bearing System Considering Various Recess Shapes.Tribology International,2004,37:11-24
    59A.Harnoy,M.M.Khonsari.Hydro-Roll:a Novel Bearing Design with Superior Thermal Characteristics.Tribology Transactions,1996,39(2):455-461
    60苏红,毛军,蔡琳.一种复合式滑动轴承的实验研究.北方交通大学学报,2003,27(4):11-13
    61Lu Changhou,Chen Shujiang,Zhang jianchuan.Theoretical Investigation on a Novel Hydrodynamic Journal Bearing.Journal of Shanghai University,2004,8(Supp 1):1-6
    62陈淑江.螺旋油楔滑动轴承润滑机理的理论与实验研究.山东大学博士学位论文,2007
    63S.Yoshimoto,W.B.Rowe,D.Ives.Theoretical Investigation of the Effect of Inlet Pocket Size on the Performance of Hole Entry Hybrid Journal Bearings Employing Capillary Restrictors.Wear,1988,127(3):307-318
    64C.H.Chen,Y.Kang,Y.N.Huang,et al.The restrictive Effects of Orifice Compensation on the Stability of the Jeffcott Rotor-hybrid Bearing System.Ind Lubr Tribol,2002,54(6):255-261
    65C.H.Chen,Y.Kang,Y.N.Huang,et al.The Restrictive Effects of Capillary Compensation on the Stability of the Jeffcott Rotor-hybrid Bearing System.Tribology International,2002,35(12):849-855
    66C.H.Chen,Y.Kang,C.C.Huang.The Influences of Orifice Restriction and Journal Eccentricity on the Stability of the Rigid Rotor-hybrid Bearing System.Tribology International,2004,37(3):227-234
    67C.H.Chen,Y.Kang,Y.P.Chang,et al.Influences of Recess Depth on the Stability of the Jeffcott Rotor Supported by Hybrid Bearings with Orifice Restrictors.Ind Lubr Tribol,2005,57(1):41-51
    68S.C.Sharma,S.C.Jain,N.M.M.Reddy.A Study of Non-recessed Hybrid Flexible Journal Bearing with Different Restrictors.Tribology Transactions,2001,44(2):310-317
    69V.Kumar,S.C.Sharma,S.C.Jain.On the Restrictor Design Parameter of Hybrid Journal Bearing for Optimum Rotordynamic Coefficients.Tribology International,2006,39:356-368
    70岑少起,郭红,张少林,等.多种节流形式的动静压轴承有限元.优化分析.机械科学与技术,2002,21(2):237-239
    71H.Mizumoto,M.Kubo,Y.Makimoto,et al.Hydrostatically-controlled Restrictor for an Infinite Stiffness Hydrostatic Journal Bearing.Bull Jpn Soc Precis Eng,1987,21(1):49-54
    72T.Hongo,M.Harada,R.Miyaji.Static Characteristics of Externally Pressured Gas Thrust Bearings with an Electrically Controlled Restrictor.J Jpn Soc Lubr Eng,1987,32(12):894-899
    73Y.Sato,K.Maruta,M.Harada.Dynamic Characteristics of Hydrostatic Thrust Air Bearing with Actively Controlled Restrictor.J Tribol Trans ASME,1988,110(1):156-161
    74T.Ohsumi,H.Mori,K.Ikeuchi,et al.Frequency Response of Automatically Controlled Externally Pressurized Bearing.J JSLE Int Ed,1988,(9):75-80
    75H.Mizumoto,Y.Kami,S.Arii.Active Inherent Restrictor for Air-bearing Spindles.Precision Engineering,1996,19:141-147
    76S.Yoshimoto,Y.Anno,M.Fujimura.Static Characteristics of a Rectangular Hydrostatic Thrust Bearing with a Self-controlled Restrictor Employing a Floating Disk.J Tribol Trans ASME,1993,115(2):307-311
    77S.Yoshimoto,K.Kikuchi.Step Response Characteristics of Hydrostatic Journal Bearings with Self-controlled Restrictors Employing a Floating Disk.J Tribol Trans ASME,1999,121(2):315-320
    78A.M.Van der Wielen,P.H.J Schellekens,F.T.M Jaartsveld.Accurate Tool Height Control by Bearing Gap Adjustment.CIRP Ann Manuf Technol,2002,51(1):351-354
    79王元勋,陈尔昌,师汉民,等.主动控制节流气体润滑轴承静动态特性研究.机械工程学报,1999,35(3):12-15
    80王元勋,杨清好,陈尔昌,等.主动控制节流气体润滑轴承动态特性研究.振动工程学报,1999,12(3):304-308
    81I.F.Santos.On the Adjusting of the Dynamic Coefficients of Tilting-pad Journal Bearings.Tribology Transactions,1995,38(3):700-706
    82D.C.Deckler,R.J.Veillette,F.K.Choy,et al.Modeling of a Controllable Tilting Pad Bearing.Proceedings of the American Control Conference,1997:3416-3420
    83D.C.Deckler,R.J.Veillette,M.J.Braun,et al.Modeling and Control Design for a Controllable Bearing System.Proceedings of the 39th IEEE Conference on Decision and Control,2000:4066-4071
    84J.M.Krodkiewski,G.J.Davies.Modeling a New Three-pad Active Bearing.Proc ASME Turbo Expo,2004:799-808
    85Z.Cai,M.S.de Queirozt,M.M.Khonsari.Adaptive Control of Active Tilting-Pad Bearings.Proceedings of the American Control Conference,2003:2907-2912
    86L.Sun,J.M.Krodkiewski,N.Zhang.Modeling and Analysis of the Dynamic Behavior of an Active Journal Bearing.Am Soc Mech Eng Pap,1994:1-6
    87L.Sun,J.M.Krodkiewski,Y.Cen.Selt-Tuning Adaptive Control of Forced Vibration in Rotor Systems Using an Active Journal Bearing.Journal of Sound and Vibration,1998,213(1):1-14
    88L.Sun,J.M.Krodkiewski.Experimental Investigation of Dynamic Properties of an Active Journal Bearing.Journal of Sound and Vibration,2000,230(5):1103-1117
    89C.Hearn,W.Maddox,Y.Kim,et al.Smart Mechanical Bearings Using MEMS Technology.ASME Pet Div Publ PD,1995,72:1-10
    90祝长生,汪希萱.结构参数可控的挤压油膜阻尼器对柔性转子振动的控制.浙江大学学报(自然科学版),1994,28(6):613-620
    91赵杰,晏砺堂,朱梓根,等.新型可动外环挤压油膜阻尼器减振特性研究.航空动力学报,1998,13(4):353-356
    92骆志明,冯庚斌,任兴民,等.可控挤压油膜阻尼器-转子系统主动控制试验.振动、测试与诊断,1999,19(4):343-346
    93P.G.Nikolakopoulos,C.A.Papadopoulos.Controllable Misaligned Journal Bearings,Lubricated with Smart Fluids.J Intell Mater Syst Struct,1997,8(2):125-137
    94P.G.Nikolakopoulos,C.A.Papadopoulos.Controllable High Speed Journal Bearings,Lubricated with Electro-rheological Fluids,an Analytical and Experimental Approach.Tribology International,1998,31(5):225-234
    95S.Morishita,Y.Matsumura,T.Shiraishi.Control of Oil Film Thickness of a Sliding Bearing Using Liquid Crystal as a Lubricant.Japanese Journal of Tribology,2002,47(6):469-477
    96J.Hesselbach,C.Abel-Keilhack.Active Hydrostatic Bearing with Magnetorheological Fluid. Journal of Applied Physics, 2003, 93(10):8441-8443
    
    97 I. F. Santos, R. Nicoletti. Influence of Orifice Distribution on the Thermal and Static Properties of Hybridly Lubricated Bearings. International Journal of Solids and Structures, 2001, 38: 2069-2081
    
    98 R. Nicoletti, I. F. Santos. Vibration Control of Rotating Machinery Using Active Tilting-pad Bearings. IEEE ASME Int Conf Adv Intellig Mechatron AIM, 2001, 1: 589-594
    
    99 I. F. Santos, F. Y. Watanabe. Feasibility of Influencing the Dynamic Fluid Film Coefficients of a Multirecess Journal Bearing by Means of Active Hybrid Lubrication. J Braz Soc Mech Sci Eng, 2003, 25(2): 154-163
    
    100 R. Nicolettil, I. F. Santos. Linear and Non-linear Control Techniques Applied to Actively Lubricated Journal Bearings. Journal of Sound and Vibration, 2003, 260: 927-947
    
    101 R. Nicoletti, I. F. Santos. Frequency Response Analysis of an Actively Lubricated Rotor-Tilting-pad Bearing System. Proc ASME Turbo Expo,2004, 6:735-744
    
    102 I. F. Santos, F. Y. Watanabe. Compensation of Cross-coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings Using Active Hybrid Lubrication: Part I-Theory. Journal of Tribology, 2004, 126(1):146-155
    
    103 I. F. Santos. Active Lubrication for Eliminating Instability Problems in Rotating Machines. Proc World Tribol Cong, 2005: 103-104
    
    104 I. F. Santos, A. Scalabrin. Control System Design for Active Lubrication with Theoretical and Experimental Examples. J Eng Gas Turbines Power,2003, 125(1): 75-80
    
    105 C. L. Chen, H. T. Yau, Y. Li. Subharmonic and Chaotic Motions of a Hybrid Squeeze-film Damper-mounted Rigid Rotor with Active Control. J Vib Acoust Trans ASME, 2002, 124(2): 198-208
    
    106 H. T. Yau, C. L. Chen. Electric-hydraulic Actuator Design for a Hybrid Squeeze-film Damper-mounted Rigid Rotor System with Active control. J Vib Acoust Trans ASME, 2006, 128(2): 176-183
    107李运华,王占林,陈介力,等.电液主动控制挤压油膜阻尼器的理论分析.北京航空航天大学学报,1999,25(4):422-425
    108高小冲,李运华.基于电液可控挤压油膜阻尼器的转子系统振动的主动控制研究.机床与液压,2002,(5):11-13
    109B.H.Rho,K.W.Kim.The Effect of Active Control on Stability Characteristics of Hydrodynamic Journal Bearings with an Axial Groove.Proc Inst Mech Eng Part C J Mech Eng Sci,2002,216(9):939-946
    110B.H.Rho,K.W.Kim.A Study on Stability Characteristics of Actively Controlled Hydrodynamic Journal Bearings.JSME Int J Ser C,2002,45(1):239-245
    111张韬,孟光,张子旭.电磁轴承.挤压油膜阻尼器支承转子系统的主动控制.西安石油学院学报(自然科学版),2002,17(6):80-83
    112Zhu Huangqiu,Sun Yukun.Application and Study of Optimal Control Theory in Control System of Active Magnetic Bearings.Control Theory and Applications,2002,19(3):479-483
    113S.Marx,C.Nataraj.An Optimal Control Algorithm for Suppression of Harmonic Base Excitation in Nonlinear Magnetic Bearings.Proc Int Des Eng Tech Conf Comput Inf Eng Conf,2005,1B:1239-1248
    114韩邦成,李也凡,贾宏光,等.电磁轴承控制系统研究综述.机床与液压,2004,(4):1-3
    115邢涛,张庆春,梁迎春.以电磁轴承支撑挠性转子的鲁棒控制器设计.哈尔滨工业大学学报,2003,35(12):1455-1457
    116吕慎刚,蒋书运.电磁轴承μ鲁棒控制.机械工程学报,2007,43(1):133-138
    117吴刚,张育林,刘昆.两轴型混合磁悬浮轴承变结构控制与仿真研究.系统仿真学报,2006,18(1):251-253
    118M.J.Jang,C.L.Chen,Y.M.Tsao.Sliding Mode Control for Active Magnetic Bearing System with Flexible Rotor.Journal of the Franklin Institute,2005,342(4):401-419
    119 N.C.Tsai,C.W.Chiang,C.H.Kuo.Robust Sliding Mode Control for Axial AMB Systems.2004 5th Asian Control Conference,2004,1:64-69
    120Y.N.Al-Nassar,M.Siddiqui,A.Z.Al-Garni.Artificial Neural Networks in Vibration Control of Rotor-bearing Systems.Simulation Practice and Theory,2000,7(8):729-740
    121H.Choi,G.Buckner,N.Gibson.Neural Robust Control of a High-speed Flexible Rotor Supported on Active Magnetic Bearings.Proc Am Control Conf,2006:3679-3684
    122邢涛,张庆春,梁迎春.电磁轴承的H_(∞)鲁棒-模糊控制器设计.哈尔滨工业大学学报,2006,38(1):11-14
    123毕学涛.高等动力学.天津:天津大学出版社,1994
    124温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2002
    125张平格,赵喜敬,张伟杰,等.液压传动与控制.北京:冶金工业出版社,2004
    126高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996
    127吴忠强.非线性系统的鲁棒控制及应用.北京:机械工业出版社,2005
    128王立新。模糊系统与模糊控制教程.王迎军.北京:清华大学出版社,2003
    129R.J.Wai.Fuzzy Sliding-mode Control Using Adaptive Tuning Technique.IEEE Transactions on Industrial Electronics,2007,54(1):586-594
    130薛定宇.控制系统计算机辅助设计.北京:清华大学出版社,2006
    131王新入.高速高精度数控进给伺服系统的研究.西安交通大学硕士学位论文,2002:13-17
    132袭著燕.基于信号特征的数控交流伺服进给系统摩擦建模与补偿研究.山东大学博士学位论文,2006:33-35
    133于双和,傅佩琛,强文义.不确定离散时间系统的变结构控制.控制理论与应用,2000,17(1):85-88
    134刘金锟.先进PID控制Matlab仿真.北京:电子工业出版社,2003:86-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700