用户名: 密码: 验证码:
气动比例位置系统的控制方法及动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动系统以其结构简单、无污染、性价比高、维修方便及抗干扰能力强等优点,被广泛应用于化工、医药、纺织、微电子、生物工程等工业自动化领域中。气动比例技术的出现,使气动系统从逻辑控制领域扩展到比例/伺服控制领域。但是由于气动系统固有的非线性、刚度小、阻尼比小以及固有频率低等缺点,使得气动比例位置系统定位技术进展缓慢,其控制精度和工作性能难以达到理想的效果,从而限制了气动系统在工业领域中的推广及应用。本文主要以提高气动比例系统的控制精度为目标,通过分析其摩擦力及动态特性,对系统的摩擦非线性补偿及智能控制策略进行研究。
     本文综述了气动比例系统的特点及发展状况,分析了气动系统的缓冲定位技术,阐述了智能控制技术在该领域中的研究与应用。在深入分析气动比例系统的工作性能及特点的基础上,研究系统的摩擦机理,并且通过叠加高频低幅颤振信号补偿系统的摩擦力,结合气动比例系统的非线性特征,设计出模糊神经元网络控制器,使系统获得了良好的控制精度。
     首先,对气动比例系统进行了两种方法的数学建模研究。一种方法是机理建模,即通过分析气缸与比例方向阀的力平衡特性以及压力-流量特性,建立了系统的非线性数学模型,并对模型进行了系统辨识,得到了较为精确的数学模型,以便于为下一步的研究提供依据。另一种方法是基于图形化的物理建模,通过仿真软件AMESim,建立气动比例位置系统的数学模型,这种方法可以最大程度的考虑系统的细节问题,从而能够得到更加准确的数学模型。由于图形化建模是利用AMESim与Matlab/simulink的联合仿真平台,把两个优秀的专业仿真工具联合起来使用,既发挥AMESim突出的流体机械的仿真效能,又能借助MATLAB/Simulink强大的数值处理能力,取长补短,取得更加完美的互补效果,所以本文的所有研究都是在基于图形化物理建模的基础上进行的。
     其次,研究了补偿气动比例阀控缸系统摩擦力的理论。由系统的摩擦力带来的稳态误差和低速爬行问题,通常是通过提高运动部件的加工精度和改进系统的润滑条件来解决。在气动比例系统中,可以通过改进气缸的机械结构,或者采用高精度新型气缸等措施来减少非线性摩擦对系统运动性能的影响,但是由于这种方法会使成本显著增加,也不可能最终消除非线性摩擦,所以会影响系统的定位精度和轨迹跟踪精度。仿真及实验研究表明,通过叠加颤振信号补偿系统的摩擦力,可克服气动比例阀的中位死区,提高系统的灵敏度和动态响应特性。
     再次,针对系统的非线性特性,研究了气动比例系统的智能控制方法。文中分别对智能控制领域内的模糊控制、神经网络控制的方法进行了分析和仿真研究。模糊控制能仿效人的模糊逻辑思维方法,允许系统在工作过程中某些数值型量的不精确性存在。但是模糊规则的确定对操作人员的经验以及语言表达方式有一定的依赖性,不同人员对于问题认识的深度和综合能力直接影响到模糊控制系统的工作性能。神经元网络通过其结构的可变性,逐步适应外部环境的各种因素的作用,能够从不十分精确的输入/输出值描述中挖掘出研究对象之间的因果联系,从而达到解决问题的目的。
     为了减小控制系统对经验知识的依赖性,增强控制系统的学习能力以提高控制系统对运行过程中工况条件变化时的适应能力,针对比例阀控缸对象一类的非线性、时变不确定系统,考虑采用神经元网络技术或模糊神经元网络技术来解决。因此,提出了一种模糊神经元网络(FNN)的控制方法,即在基本模糊控制器的基础上,引入神经元网络技术,利用神经元网络的学习功能结合模糊逻辑推理,以进一步改善比例阀控缸系统性能、提高系统的适应能力。仿真结果表明,针对该系统设计的模糊神经元网络控制器,能够很好的克服外界负载扰动对比例阀控缸系统的影响,使系统的鲁棒性提高。
     最后,将模糊神经元网络的自学习功能和叠加颤振信号的补偿方法相结合,对比例阀的死区进行了补偿实验研究;在对高次曲线进行理论分析的基础上,提出了采用高次曲线作为理想曲线实现气动比例阀控缸位置控制系统轨迹跟踪的方法;通过研制两自由度气动比例系统的控制程序及控制界面,实现了气动比例系统在平面内的高精度轨迹跟踪研究;单自由度系统定位精度控制在±0.100mm以内,平面两自由度连续轨迹跟踪精度控制在±0.263mm以内,可以替代价格昂贵的伺服系统。
Pneumatic systems have been widely used in industrial automation fields, such as chemical industry, medicine, textile, micro-electrics and bioengineering, for its advantages of simplicity in structure, anti-pollution, high performance to cost, easy maintenance and anti-jamming. With the development of the pneumatic proportional technology, pneumatic system control is extended from logical control to proportional/servo control area. However, pneumatic systems have some inherent disadvantages as nonlinearity, low stiffness, low damping ratio and low natural frequency, it is difficult to obtain satisfied control performance, and thus its uses in industry area are limited. In this paper, the study on improving the control precision for the pneumatic proportional system is presented. The system friction nonlinear compensation and intelligent control method are developed based on the study of its friction and dynamic characteristics.
     In this paper, the features and development of pneumatic proportional system are summarized, the buffer positioning technology in pneumatic system is analyzed, also the research and application of intelligent control technology in this domain is expounded. Based on the study on working performance and features of the system, the friction mechanism is developed, the friction is overcome by adding high frequency and low amplitude chatter signals to the system, the fuzzy neural network controller is presented according to its nonlinear, which achieves good precision for the system.
     Two mathematical modeling methods on pneumatic proportional system are presented. One method is called mechanism modeling, which contains the establishment of nonlinear mathematical model of the system through analyzing the balance of power and pressure - flow characteristics of the cylinder and the proportional direction valve, a more accurate mathematical model is attained according to the system identification in order to provide the basis for further research. The other method is based on the graphical modeling of physical model. Pneumatic proportional system model is established by using the modeling and simulation software AMESim, in this way, the details of the system can be considered at utmost, and more accurate system model can be gained. The graphical modeling is based on the joint simulation platform of AMESim and Matlab / Simulink. The outstanding performance of AMESim is its simulation on fluid mechanism, but MATLAB / Simulink has powerful numerical processing power. The two outstanding professional simulation tools are used together in this study and a perfect complementary effect will be gained. Therefore, all studies in this paper are based on the graphical modeling of physical model.
     Theoretical analysis on friction compensation based on valve-controlled cylinder system is presented. To overcome the system steady-state error and scrawl under low velocity caused by friction, we usually improve the machining accuracy and lubricating of the moving parts to reduce the system friction. However, in pneumatic proportional system, the nonlinear friction influence on the motion performance can be reduced by improving the mechanical structure of the cylinder, or using new high precision cylinders, but these methods will lead to high cost, the nonlinear friction can not eliminated thoroughly, and the system positioning precision and low-velocity tracking precision can not be improved finally. So that, it is necessary to use adding chatter signal method with friction compensation to overcome the dead area of the pneumatic proportional valve, which improves the sensitivity of the system and reflects the dynamic response characteristics.
     Based on the non-linearization of the system, intelligent control method on non-linearization of pneumatic system is presented. Fuzzy control and neural network control methods are analyzed and simulated separately. Fuzzy control can follow the fuzzy logic methods of human being and allows the existence of the non-precious numerical type. But the determinations of the fuzzy rules depend on the experience and the expression of operators, therefore, the depth of the understanding of the problem and comprehensive capacity of the operators will directly affect the system performance . Neural network can adapt to the external environment and other factors gradually by the aid of variability of its structures. Besides, it can gain the causal relation between the research objects from less accurate input / output description, then solve the problems.
     To reduce the dependence on prior knowledge of the control system, and improve the learning ability of the control system to enhance the adaptability to the change of working conditions, the nonlinear of valve-controlled cylinder, time-varying uncertainty, neural network technology or FNN technology can be used to solve these problems. Therefore, FNN control method is presented. By introducing neural network technology on the basis of fuzzy controller, using the learning function of neural network and fuzzy logic, the proportional valve-controlled cylinder system performance and adaptability are improved. The simulation results show that, the fuzzy-neural network controller designed for the system can overcome the outside load disturbance on the system well, and greatly enhance the robustness of the system.
     Finally, the self-learning function of the fuzzy-neural networks and compensation methods of adding chatter signal to the system are applied to the pneumatic system. The dead area compensation experimental of the proportional valve is presented. On the basis of theoretical analysis for high-order curve, the method which can achieve the tracking trajectory of pneumatic proportional valve-controlled cylinder position control system by using the high-order curve as the ideal curve is put forward. The tracking trajectory control of the pneumatic proportional system is realized according to setting up the control procedures and control interface of a two freedom pneumatic proportional system. the positioning precision of one freedom system is within±0.100mm,and the continuous tracking trajectory control precision of two freedom system is within±0.263mm,it is suitable for replacing some expensive servo system.
引文
1 胡海清,陈爱民.气压与液压传动控制技术.北京:北京理工大学出版社,2006
    2 吴根茂等编著.新编实用电液比例技术.杭州:浙江大学出版社,2006
    3 许益民编著.电液比例控制系统分析与设计.机械工业出版社,2005
    4 彭光正,陈萍,赵彤.带制动装置气缸的PWM位置控制系统.北京理工大学学报,1999,19(3):334-337
    5 陈萍,彭光正,赵彤.带锁定装置气缸PWM位置伺服控制系统的研究.液压与气动.1998(6):10-12
    6 章宏甲,王积伟.液压与气压传动.机械工业出版社,2000
    7 葛宜远.流体传动及控制技术的新成就.液压与气动,1998,(2):1-3
    8 路甬祥.气动技术的发展方向.液压与气动,1991,(2):2-3
    9 J.C.Renn,C.M.Liao.A Study on the Speed Control Performance of a Servo-pneumatic Motor and the Application to Pneumatic Tools,2004,23(7-8):572-576
    10 陶国良,王宣银,路甬祥.3自由度气动比例/伺服机械手连续轨迹控制研究.机械工程学报,2001,37(3):65-69
    11 J.H.Lin,T.Kanya.Intelligent Control for Pneumatic Servo System.International Journal of Mechanical Systems,Machine Elements and Manufacturing,2003,46(2):699-704
    12 J.C.Renn,C.M.Liao.A Study on the Speed Control Performance ofa Servo-pneumatic Motor and the Application to Pneumatic Tools,2004,23(7-8):572-576
    13 FESTO,Achilles the Six-legged Surveyor,Pneumatic tips 88,1988
    14 FESTO,Lufi zum leben,Pneumatic 88,1995
    15 S.C.Jacobsen,J.E.Knutti,K.B.Biggers.The Utah/mit Dextrous Hand:Work in Progress,Int.J.Robot,1984,3(4):21-50
    16 赵彤.从SMC看世界气动技术发展(下).液压与气动,1993,(3):5-10
    17 B.Pascal.Pressure Control of Pneumatic System with a Non-negligible Connection Port Restriction.Control and Intelligent Systems,2005,33(2):111-118
    18 H.K.Lee,G.S.Choi,G.H.Choi.A Study on Tracking Position Control of Pneumatic Actuators.Mechatronics,2002,12(6):813-931
    19 X.Lin,ESpettel.Modeling and Test of an Electro-pneumatic Servo-valve Controlled Long Rodless Actuator.Journal of Dynamic Systems,Measurement and Control,1996,118:457-462
    20 周洪.电-气比例/伺服系统及其控制策略研究.浙江大学博士学位论文,1988
    21 许宏光.电-气伺服控制系统的研究.哈尔滨工业大学博士学位论文,1992
    22 B.W.McDonell.Adaptive Tracking Control of an Air Powered Robot Actuator.Journal of Dynamic Systems,Measurement and Control,1993,115:427-433
    23 J.H.Ryu,J.Song,D.S.Kwon.A Nonlinear Friction Compensation Method Using Adaptive Control and Its Practical Application to an In-parallel Actuated 6-DOF Manipulator.Control Engineering Practice,2001,9(2):159-167
    24 S.M.Xue,M.Tsutsumi,T.Tao et al.Study on the Compensation of Error by Stick-slip for High-precision Table.International Journal of Machine Tools and Manufacture,2004,44(5):503-510
    25 王祖温,杨庆俊.气压位置控制系统研究现状及展望.机械工程学报,2003,39(12):10-16
    26 J.Wang,J.Pu,EMoore et al.Modeling Study and Serco-control of Air Motor Systems.International Journal of Control,1998,71(3):459-476
    27 K.Kawashima,T.Fujia,T.Kagawa.The Effect of Nonlinear on Pneumatic Servo System.Pro.4th JHPS International Symposium,Tokyo,1999:137-142
    28 许宏光.电.气伺服控制系统的研究.哈尔滨工业大学博士学位论文,1992
    29 周洪.气动比例控制技术及其应用.液压与气压传动.1999(3):1-3
    30 周洪.电.气比例/伺服系统及其控制策略研究.浙江大学博士学位论文,1988
    31 斯方华.我国气动工业的现状和气动技术的发展趋势.机电产品市场.1999,11:3-4
    32 裘华徕,FESTO公司与气动技术的发展,液压气动与密封,1999,(10)
    33 李东明等.气动执行器技术现状与展望.化工自动化及仪表.2003,30(2):73-75
    34 李小宁.气动技术发展的趋势.机械制造与自动化.2003,02:2-3
    35 梁锦棠.气动技术的应用.机械开发,1998,23(4),1-3
    36 Y.Liu,Y.Luo,Z.Qu.Cushioning and Positioning of Proportional Valve-Cylinder System by a Microcomputer.Proceedings of 1999 International Conference on Advanced Manufacturing Technology.June 16-18,1999,Xi'an,China:524-528
    37 刘延俊,路长厚,何祖诚.微机控制比例阀—缸液压系统的缓冲与定位.机床与液压.1997(6):21-22,45
    38 张晓明.气动机构设计中气缸缓冲的实现.中国轻工教育.2005,01:54-55
    39 王海涛等.高速气缸缓冲的研究.液压与气动.2002,7:12
    40 朱力.计算机控制智能高速气缸缓冲系统的研究.浙江大学学位论文.2002,2:7-16
    41 赵彤,藤谷秀次,伊藤胜治郎.具有速度调节机构的特殊气缸.液压与气动,1993,(4)
    42 章一明.液压缓冲器设计参数研究.华东冶金学院学报,1994,(3)
    43 路甬祥.液压气动技术手册.机械工业出版社,2002,1:994,130
    44 韩建海.气动比例/伺服控制技术及应用.机床与液压.2002,1:3
    45 袁胜发,陈显勇.电.气比例伺服技术在冶金设备中的应用.冶金设备.1999,12(6):24-26
    46 孙增圻等编著.智能控制理论与技术.清华大学出版社.1997:1
    47 C.L.Chen,P.C.Chen,C.K.Chen.A Pneumatic Model-following Control System Using a Fuzzy Adaptive Controller.Automaica,1993,4:1101-1105
    48 M.E.Ishimoto,T..M..Matsiui.Learning Position Control on a Pneumatic Cylinder Using Fuzzy Reasoning.Journal of Fluid Control,1995,20(3):7-29
    49 K.Araki,A.Yamamoto.Model Reference Adaptive Control of Pneumatic Servo with a Constant Trace.Algorithm Journal of Fluid Control,1999,20(4):30-48
    50 J.Tang,G.Walker.Variable Structure Control of a Pneumatic Actuator.Transaction of the ASME.Journal of Dynamic Systems,Measurement and Control,1995,117(3):88-92
    51 张铭钧.智能控制技术.哈尔滨工程大学出版社.2005:17,137-138
    52 方崇智,萧德云.过程辨识.清华大学出版社,1988:132-136
    53 朱春波等.基于比例阀的气动伺服系统神经网络控制方法的研究.中国机械工程.2001,12:1412
    54 陈金兵等.神经网络控制在气缸位置伺服控制中的应用.液压与气动,2004(5):52
    55 王崎.气动机器人电.气位置伺服系统的研究.哈尔滨工业大学博士论文,1998
    56 T.Matsukurma,A.Fujiwara,M.Namba,et al.Nonlinear PID Controller Using Neural Networks.Neural Networks.1997,(2):811-814
    57 吕强.神经网络学习控制的研究及其在气动伺服系统中的应用.哈尔滨工业大学博士论文,1994
    58 G.J.Yang,T.Zhao.hnprovement of Dynamic and Steady Characteristics of Pneumatic Position Servo with Fuzzy-PI Control.Journal of Beijing Insitute of Thechnology.1995,4(1):53-57
    59 王振雷,顾树生.基于实值遗传算法的模糊神经网络辨识器.东北大学学报,2000,21(4):354-356
    60 顾伟军,彭亦功.智能控制技术及其应用.自动化仪表,2006,27:101-104(增刊)
    61 姚炎熠,魏明英.采用滑模控制器提高稳定控制系统快速响应的研究.现代防御技术.2007(3):58-60
    62 陶国良,毛文杰,王宣银.气动伺服系统机理建模的实验研究[J].液压气动与密封.1999(10)
    63 王宣银.PCM气动伺服系统的建模研究[J].机床与液压,1997(4)
    64 郑洪生.气压传动与控制[M].北京:机械工业出版社,1988
    65 陈汉超,盛永才.气压传动与控制[M].北京:北京工业学院出版社,1987
    66[英]C.R.柏劳斯.液压气动伺服机构[M].北京:国防工业出版社
    67 Shearer J L.Study of Pneumatic Processes in the Continuous Control of Motion With Compress air[J].Trans ASME.1956(2),233-242
    68 Sanville F E.A new Method of Specifying the Flow Capacity of Pneumatic Fluid Power Valves.Second Fluid Power Symposium,BHRA,England,Paper 93,1971:37-47
    69 D.麦克洛伊.流体动力控制分析与设计[M].北京:机械工业出版社,1986
    70 李洪人.液压控制系统[M].北京:国防工业出版社,1981
    71 B.Elizabeth,E.Matthew,Reinhard Stolle.Reasoning about Nonlinear System Identification.Artificial Intelligence.2001,133(2):139-188
    72 汤笑笑,李介谷.基于小波神经网络的系统辨识方法.信息与控制,1998,27(4):277-288
    73 王宣银,陶国良.开关阀控气动伺服系统的辨识建模.液压气动与密封,1997,(3):9-11
    74 付永领,祁晓野./EVlESim系统建模和仿真——从入门到精通[M].北京:北京航空航天大学出版社,2006
    75 叶伟.自动变速器液压系统分析及研究.同济大学硕士学位论文,2004.
    76 陈宏亮,李华聪.AMESim与Matlab/Simulink联合仿真接口技术应用研究[J].流体传动与控制2006.01
    77 IMAGINE S,A.AMESim4.0 User Manual[M].2002
    78 马长林,黄先祥,郝琳 基于AMESim的电液伺服系统仿真与优化研究[J].液压气动与封.2006年(1)
    79 李颖,朱伯立,张威.Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2004
    80 李谨,邓卫.华AMESim与MATLAB/Simulink联合仿真技术及应用[J].情报指挥控制系统与仿真技术.2004(10)
    81 邢科礼,冯玉,金侠杰,李庆.基于AMESim/Matlab的电液伺服控制系统的仿真研究[J].机床与液压.2004(1)
    82 易继锴,侯嫒彬.智能控制技术[M].北京:北京工业大学出版社,1999
    83 Sugeno M,Yasukawa T.A fuzzy logic based approach to qualitative mo-deling.IEEE Trans on fuzzy systems.1993,1(1)7-31
    84 Ha Q P,Rye D C,Durrant Whyte H F.Fuzzy moving sliding mode control with application to robotic manipulators.Automatica.1999.35(9):607-616
    85 魏巍.MATLAB控制工具箱技术手册[M].北京:国防工业出版社,2004
    86 Guerra T M,Vermeriren L.Control law for takagi-sugeno fuzzy mod- els.Fuzzy Sets and System.2001,12(1):95-108
    87 诸静.模糊控制原理与应用[M].北京:机械工业出版社.1999
    88 D.Caputo.Control the Flow and You Control the Speed[J].Hydraulics & Pneumatics.2000.6
    89 闻新,周露,李东江,贝超.MATLAB模糊逻辑工具箱的分析与应用[M].北京:科学技术出版社.2001
    90 谢庆生,尹建,罗延科.机械工程中的神经网络方法[M].北京:机械工业出版社,2003
    91 杨行峻,郑里君.人工神经网络[M].北京:高等教育出版社,1992
    92 王永骥,涂健.神经网络控制[M].北京:机械工业出版社,1998
    93 蔡自兴.智能控制[M].北京:电子工业出版社,2004
    94 T.Matsukurma,A.Fujiwara,M.Namba,et al.Nonlinear PID Controller Using Neural Networks[J].Neural Networks.1997,(2):811-814
    95 吕强.神经网络学习控制的研究及其在气动伺服系统中的应用.哈尔滨工业大学博士论文,1994
    96 王崎.气动机器人电.气位置伺服系统的研究.哈尔滨工业大学博士论文,1998
    97 G.J.Yang,T.Zhao.Improvement of Dynamic and Steady Characteristics of Pneumatic Position Servo with Fuzzy-PI Control[J].Journal of Beijing Insitute of Thechnology.1995,4(1):53-57
    98 Cheng G S,Manoff M,Lu Y Z.A Novel Industrial Controllers with ANN.Proceedings of 5th MICONEX'92,1992:84-90
    99 谭永红.基于BP神经网络的自适应控制.控制理论与应用.1994(2)
    100 周继成.人工神经网络—第六代计算机的实现.科学普及出版社,1993
    101 廖明,吴宁.MATLAB在人工神经网络计算机仿真中的应用.计算技术与自动化.1991(1)
    102 王耀南.智能控制系统——模糊逻辑·专家系统·神经网络控制.湖南:湖南大学出版社,1996
    103 Astrom.K.J,Hagglund.T.Automatic Tuning of Digital Con- trollers with Applications to HVAC Plants[J].Automatica.1993.29(5):1333-1343
    104 R.M.Davies,J.Watton.Intelligent Control of an electrohydraulic motor drive system.Mechanoics.1995.5(5)527-540
    105 王继成.一种新的神经网络学习算法.计算机工程与科学.2000,22(3):6-19
    106 WangYaonan.An Adaptive Control Using Fuzzy Logic Neural Network and Its Application[J].Control Theory and Applications.1995.12(4):437-442
    107 Nishiumi T,Watton J.Model reference adaptive control of an electro- hydraulic motor drive using an artificial neural network compensator.Proc Instn Mech Engrs.1997.211(12):111-122
    108 Jang J.S.R.Adaptive-network-based fuzzy inference system.IEEE Trans on SMC.1993.23(3):7-18
    109 邱浩,王道波,张焕春.一种改进的反向传播神经网络算法[J].应用科学学报.2004,22(3):384-387
    110 杨伟,倪黔东,吴军基.BP神经网络权值初始值与收敛性的研究[J].电力系统及其自动化学报,2002,(2):20-22.
    111 Plummer A R.Feedback linearization for acceleration control of electrohydraulic actuators.Proc Instn Mech Engrs.1997.211(16):395-406
    112 Niksefat N,Sepehri N.Design and experimental evaluation of a robust force controller for an electrohydraulic control actuator via quanti- tative feedback theory.Control Engineering Practice.2000,8(12):1335-1345
    113 陈桦,程云艳.BP神经网络算法的改进及在MATLAB中的实现[J].陕西科技大学学报.2004,22(2):45-47
    114 Jiao Z X,Gao J X,Hua Q.The Velocity Synchronizing Control on the Electro-Hydraulic Load Simulator[J].Chinese Journal of hero- nautics.2004,17(1):39-46
    115 罗成汉.基于MATLAB神经网络工具箱的BP网络实现[J].计算机仿真.2004,21(5):109-115
    116 姚文俊.BP算法的改进在Matlab的实现研究[J].现代电子技术2003(21):95-98
    117 许东,吴铮.基于MATLAB6.X的系统分析与设计[M].第二版.西安:西安电子科技大学出版社,2002
    118 刘冲.基于模糊神经网络的磨机负荷控制系统研究.南华大学硕士学位论文.2004
    119 Kong S G,B Kosko.Adaptive fuzzy systems for backing up a truck-and-trailer.IEEE Trans on Nns.1992.3(2):211-223
    120 周光泉,刘效敏.粘弹性理论.合肥:中国科学技术大学出版社,1996
    121 李德葆,张元润.振动测量与实验分析.北京:机械工业出版社,1992
    122 雷振山.LabVIEW实用技术教程.北京:中国铁道出版社,2004
    123 S.Moorthy.Measuring of Rotor Angle Using Position Encoder and LabVIEW Software,Royal Melbourne Institute of Technology University,October 6,2000.
    124 P.Basart.Radio Telescope,Department of Electrical and Computer Engineering,Iowa State University,December,1998
    125 熊秀,石秀华,许晖等.用LabVIEW实现神经网络控制.测控技术,2004,24(4):51-54
    126 胡海生,李升亮.Visual C++6.0编程.北京:清华大学出版社,2003
    127 赵常友.微机控制液压多点定位系统.山东工业大学硕士论文.1993
    128 朱华兴.双作用叶片泵定子最佳过渡曲线的研究.中国科学技术文库.1997
    129 朱华兴.最佳缓冲特性及其实施方法的研究.机床与液压.1988(5)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700