用户名: 密码: 验证码:
环境振动驱动微型压电发电装置的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着集成电路技术和微/纳机电系统(MEMS/NEMS)技术的不断提高,无线传感网络节点及便携式微电子产品应用越来越广泛。目前,微器件的电源主要是化学电池,但随着节点体积减小和使用数量迅速增加,更换大量的耗尽电池非常困难,研制长寿命的微型化电源技术已经成为亟待解决的关键技术问题。本文首先综合分析了微电源技术的研究进展,从能量的产生与转换、工作原理等方面比较了传统电源与新型电源的特点,提出研究环境振动驱动的微型发电装置。主要有三种能量转换形式可以实现环境振动能到电能的转换,即:压电转换、电磁转换和静电转换。其中,压电转换具有能量密度高、工作可靠、适应性强等突出优点。针对压电转换特点,本文主要研究环境振动驱动的微型压电发电系统的理论计算、优化分析、集成化制作工艺等关键技术,最后,对微型发电装置的能量输出性能做了测试分析。
     利用环境振动驱动的微型压电发电装置研究需要考虑电源的能量输出特性与环境振动的关系。因此,本文首先建立了压电发电系统从环境振动能到电能转换的理论模型,利用数值计算分析了系统的能量输出特性。分析结果表明在共振状态下获得输出能量较大,当系统的固有频率偏离环境振动频率时,输出电压、功率等将会快速的降低。另外,利用本文的理论模型分析了压电发电装置的结构尺寸参数和外部负载与输出电量的功率关系等。
     本文利用有限元模型中的压电耦合模块对微型硅基压电发电装置作了仿真分析,确定结构设计与输出电压的关系,进而设计硅基压电悬臂梁的加工尺寸,提高能量转换效率。仿真分析结果表明悬臂梁的长度、厚度和自由端质量块的大小对输出电压的影响最大,梁的宽度对输出电压的影响并不明显;悬臂梁尺寸在2mm×0.4mm×10μm范围的微型硅基压电发电装置输出电压达到0.02V左右。这些分析结果对结构设计与试验测试研究都提供了重要参考。
     本文针对硅基压电悬臂梁结构微型发电装置的微加工制作工艺进行了研究,解决了微加工过程中压电薄膜制备、电极图形化、悬臂梁释放等关键技术问题。首先,研究了PZT压电薄膜的制备工艺与过程,主要包括溶胶前驱体的配制、退火温度控制等。经反复的试验获得了稳定的前驱体溶胶,并最终确定PZT制备过程的阶梯退火工艺,在Pt/Ti/SiO_2/Si基底上制备了具有良好压电性能的PZT薄膜结构。其次,研究利用微加工工艺实现硅基PZT压电发电装置的集成化制作,分别利用光刻胶剥离和王水湿法腐蚀实现上下电极图形化,悬臂梁的释放结合了硅湿法腐蚀和离子刻蚀机(ICP)干法刻蚀技术,另外上电极保护层采用不定型PZT薄膜。以上研究保证了工艺的兼容性,体现在所有工艺步骤之间互不影响,采用的干、湿法刻蚀技术和薄膜图形化工艺等制作工艺与IC工艺和微加工工艺等兼容。本文确定的悬臂梁的制作工艺步骤简单,制作方便。
     最后,本文对设计制作的两种类型PZT压电悬臂梁微型压电发电装置的原型样机进行了性能测试分析。以金属弹性材料制作的微型压电电源测试为主,分析了系统转换的能量输出特性,其固有振动频率在100Hz左右共振时,系统输出电压达到10V以上,对纯电阻耗能元件的输出功率可以达到100μW左右,硅微型压电悬臂梁微型发电系统在1000Hz附近的振动驱动下输出电压可以达到0.015V左右。输出电能经整流与存储有望为微型传感器节点提供电能。
In recent years, with the development of the integrated circuit and micro/nano electric-mechanical technology, the demand for wireless sensors nodes and portable electronics has been spreading speedily. The wireless devices are usually designed to run on batteries; however as the networks increase in number and the micro systems decrease in size, it is inconvenient to replace the exhausted batteries periodically. So the longtime micro power sources have been a pivotal issue in their diversified applications. To prioritize micro power options a comparison has been performed about the energy conversion theories of micro batteries. The micropower generator based on ambient vibration energy sources will be the most promising micro power sources and there are three conversion methods to achieve this type of energy, which are piezoelectric, electromagnetic and electrostatic conversion. As a micro power source the piezoelectric power generator is capable of the higher power output densities, reliable and adapts more fields. The specific scope of this thesis includes theory model and finite element analysis for micro piezoelectric power and developing a novel prototype fabrication process based on silicon films for integration. The experiment is carried out to show the batteries characters.
     The piezoelectric cantilever theory model is well known as a sensors and actuators, but which was used in a new scope of batteries to harvest ambient vibration has not been yet fully developed. In this thesis the theory analysis models were considered to calculate the output power and voltage from the micro cantilever piezoelectric batteries. And the calculation results showed that the output values appeared maximal values when the ambient vibration frequency approaches the natural frequency of micro power structures. As the forcing frequency deviated from the natural frequency the output power will decrease rapidly. The theory models also reflect the output values changing with dimensions of micro piezoelectric power.
     The relation of output voltage to micro piezoelectric cantilever based on silicon films is simulated by finite element method (FEM). The analysis models were done using ANASYS because of its capability to work with coupled-field elements. The simulation results indicated that the voltages would increase as the piezoelectric cantilever length and proof mass at the free end increasing, and the thickness decreasing. The open circuit voltage is about 0.02V with dimension about 2mm×0.4mm×10μm. The simulation results can be useful for micro power generator design.
     The micro fabrication processes are investigated for the piezoelectric cantilever power generator and this work includes the preparation of the ferroelectric lead zirconate tianate (PZT) thin films, pattern the electrode and PZT films and the free end release of microcantilever. Firstly to deposit uniform PZT thin films on Pt/Ti/SiO_2/Si substrates by Sol-Gel method the precursor sol solution is pivotal and allows to gel at low temperature. A novel stepped annealing method is presented to control the crystalline state forming. The low electric plats pattern by wet etching with aqua regia. The top electrics do by lift-off technology and which are covered with amorphous PZT film to isolate from air. The wet and dry bulk micromachining techniques are adopted to release the micro silicon cantilever. These micro micromachining processes realize the compatibility and integration of micro piezoelectric batteries.
     The output power and voltage characters of micro prototype generators are surveyed. The test results indicate that the micro piezoelectric cantilever power generators based on metals can resonate with a frequency about 100Hz at the ambient vibration and produce approximately voltages ranging from 10V to 20V. The output power is about 100μW induced on the pure resistance. The output voltage is about 15mV from the micro piezoelectric cantilevers generator based on silicon film. The test results are consistent with the theory analysis. The research results indicate that a piezoelectric generator for ambient vibration energy harvesting is a promising long lifetime electric power source to meet the needs of wireless sensors nodes with micropower consumption.
引文
[1]格雷戈里T.A.科瓦奇.微传感器与执行器.张文栋等译.北京:科学出版社,2003.3.
    [2]Fluitman J.Microsystems technology:objectives.Sensors and Actuators,1996,56:151-166.
    [3]Sheets M,Otis B,Burghardt F,et al.A(6x3)cm~2 self-contained energy scavenging wireless sensor network node.Wireless Personal Multimedia Communications(WPMC),Abano Terme,Italy.2004:450-454.
    [4]Wise K D.Integrated microsystems:merging MEMS,micropower electronics and wireless communications,in:Proceedings of 12~(th) Annual IEEE ASIC/SOC Conference,1999:ⅹⅹⅲ- ⅹⅹⅸ.
    [5]Roundy S,Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion:(dissertation).Berkeley:The University of California,2003.
    [6]Roundy S,Steingart D,Frechette L,et al.Power sources for wireless sensor networks.http://www.eureka.gme.usherb.ca/memslab/docs/ PowerReview-2.pdf.
    [7]Zhonglin Wang,Jinhui Song.Piezoelectric nanogenerators based on zinc oxide nanowire arrays.Science,www.sciencemag,org,2006 April 14,312:242-246.
    [8]Yong Qin,Xudong Wang,Zhong Lin Wang.Microfibre- nanowire hybrid structure for energy scavenging.Nature,14 February 2008,451:809-813.
    [9]Petei-Sen K E.Silicon as a mechanical material.Proc.Of the IEEE.May 1982,70(50):420-457.
    [10]Becker J W,Ehrfeld W,Hagmann P,et al.Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography,galvanoforming,and plastic moulding(LIGA) process.Microelectronic Engineering,May 1986,4(1):35-36.
    [11]Chang H K,Kim Y K.UV-LIGA process for high aspect ration structure using stress barrier and C-shaped etch hole.Sensors and Actrators.2000,A84:342-350.
    [12]Feynman R P.There' s plenty of room at the bottom.J.Microelectromechanical systems,1992,1.1:60-66.
    [13]徐泰然 著.MEMS和微系统--设计与制造.王晓浩,熊继军等译.北京:机械工业出版社,2004.1:1-20.
    [14]袁哲俊,谢大纲,胡忠辉.微飞行器技术的最新发展.航空精密制造技术,2005,41.1:1-5.
    [15]林来兴.现代小卫星与纳卫星技术发展(2).国际太空,2002,09:27-30.
    [16]Steven D.Glaser.Some real world application of wireless sensor nodes.SPIE Symosium on Smart Structure and Materials,San Diego,California March 14-18,2004.
    [17]Mitcheson P D,Green T C,Yeatman E M,et al.Architectures for vibration-driven micropower generators.Journal of MEMS,2004,13.3:429-440.
    [18]Grosse C U,Kruger M,D.Glasser S.Wireless acoustic emission sensor networks for structural health monitroing in civil engineering.ECNDT 2006 Tu.1.7.3:1-8.
    [19]刘菁,赵建龙.金庆辉.BioMEMS和人体植入式生物微系统.微纳电子技术,2005,8:374-379.
    [20]张思杰.基于MEMS的消化道无线内窥镜的研究:(博士论文).重庆:重庆大学,2005.
    [21]Robert X.Gao,Yong Cui.Vibration-based energy extraction for sensor powering:design,analysis,and experimental evaluation.Smart structures and materials,Proc.of SPIE 2005,5765:794-801.
    [22]Paradiso J A,Starner T.Energy scavenging for mobile and wireless electronics,IEEE pervasive computing,January 2005,v.1:18-27.
    [23]Tarner S.Human powered wearable computing.IBM Systems Journal,1996,35.3-4:618-629.
    [24]Kevin A Lohner,Kuo-Shen Chen,ArturoAAyon,et al.Microfabricated silicon carbide microengine structures.Materials Research Society Symposium Proceedings Series,1998,546:1-6.
    [25]谢克文,王晓红,姜英琪等.基于MESM技术的微型燃料电池的制作.微细加工技术,2004,3:55-58.
    [26]Hahn R,Wagner S,Schmitz A,et al.Development of a planar micro fuel cell with thin film and micro patterning technologies.Journal of Power Sources 2004,131:73-78.
    [27]Nancy D.Oakridge national laboratory.http://www.ssd.ornl.gov Programs Battery Web Cross Section.html,2001-11.
    [28]Humble P H,Harb J N,Lafolletter R M.Microscopic nickel-zinc batteries for use in autonomous Microsystems.http://www.et.byu.edu-jharb research Html,2001-11.
    [29]邹宇,黄宁康.伏特效应放射性同位素电池的原理和进展.核技术,2006.6,29.6:432-437.
    [30]Hang Guo,Amit Lal.Nanopower betavoltaic microbatteries.The 12th International Conference on Solid State Sensors,Actuators and Microsystems,Boston,June 8-12,2003:36-39.
    [31]褚金奎,朴相镐,吴红超.基于β辐射伏特效应的同位素微电池理论模型研究.核动力工程,2006,27(6):113-118.
    [32]Chu Jinkui,Wu Hongchao,Piao Xianggao.Study on Theoretical Model of Radioisotope Microbattery Based on β-Radio-Voltaic Effect.Proceeding of the international conference on micro energy system,Sanya,Sept 11-14,2005]
    [33]褚金奎,朴相镐,杜小振等.一种同位素电池制作方法及结构.国家发明专利,申请号:200710012230.X.
    [34]褚金奎,朴相镐,王培超.一种沟槽式同位素微电池上电极的制作方法.国家发明专利,申请号:200710012855.6.
    [35]孙磊,苑伟政,乔大勇.基于MEMS的放射性同位素电池的设计与实现.微细加工技术,2006, 3:33-35.
    [36]Amit Lal,Rajesh Duggirala,Hui Li.Pervasive power a radioisotope- powered piezoelectric generator.Pervasive Computing,IEEE,2005,4.1:53-61.
    [37]Erick O Torres,Gabriel A.Rincon-Mora.Long-lasting,self-sustaining,and energyharvesting system-in-package(SIP) wireless micro-sensor.Conf.on Energy,Environment and disasters(INCEED 2005),July 24-30,2005,Charlotte,NC,USA.
    [38]Wenmin Qu,Matthias Plotner,Wolf-Joachim Fischer.Microfabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous Microsystems.Micromech.Microeng,2001(11):146-152.
    [39]贾法龙,王为,赵秉英等.新型微温差电池的设计.电源技术.2004.28:569-570.
    [40]Lee J B,Chen Z,Allen M G,et al.A miniaturized high voltage solar cell array as an electrostatic MEMS power supply.J.Microelectromechanical Systems,1995,4.3:102-108.
    [41]Williams C B,Yates R B.Analysis of a microelectric generator for microsystems.Sensors and Actuators A,1996,52.1-3:8-11.
    [42]Scott Meninger,Mur-Miranda J O,Amirtharajah R,et al.Vibration-to-electric energy conversion.IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2001,9.1:64-76.
    [43]Sterken T,baert K,Puers R etal.A new power MEMS component with variable capacitance.In Proc.2003 Pan Pacific Symposium Conf.,Feb.2003.
    [44]Peano F,Tambosso T.Design and optimization of a MEMS electret-based capacitive energy scavenger.J.Microelectromechanical systems,2005,14.3:429-435.
    [45]Williams C B,Shearwood C,Harrradome M A,etal.Development of an electromagnetic micro-generator IEE Pro.Circuits Devices Syst.2001,337-342.
    [46]Shearwood C,Yates R B.Development of and electromangnetic microgenerator.Electron.lett.1997,13:209-216.
    [47]Beeby S P,Tudor M J,Koukharenko E,et al.Micromachined silicon generator for harvesting power from vibration Proc.Transducers,Seoul,Korea,2005:780- 783.
    [48]Roundy S,Wright P and Pister K.Micro-electrostatic vibration-to-electricity converters.Proc.IMECE 2002:1-10.
    [49]Nell N H Ching,Gordon M H Chan,Wen J Li,et al.PCB integrated micro generator for wireless systems.Proc.International Symposium on Smart Structure and Microsystems,august 2000.
    [50]温中泉.微型振动式发电机的基础理论及关键技术研究:(硕士论文).重庆:重庆大学,2003.
    [51]许煜寰等.铁电材料与压电材料.北京:科学出版社,1978:95-105.
    [52]Sodano H A,Inman D J,Park G.A review of power harvesting from vibration using piezoelectric materials.Shock and Vibration Digest,2004,36.3:197-205.
    [53]Anton S R,Sodano H A.A review of power harvesting using piezoelectric materials (2003- 2006).Smart material and structure,2007,16:R1-R21.
    [54]Chih-Ta Chen,Rashed Adnan Islam,Shashank Priya.Electric energy generator.IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2006,53.3:656-661.
    [55]George W Taylor,Joseph R Burns,Sean M Kammann,The energy harvesting Eel:a small subsurface ocean/river power generator.IEEE Journal of oceanic engineering,2001,26.4:539-547
    [56]Kymissis J,Kendall C,Paradiso J,et al.Parasitic power harvesting in shoes.Proc.of the Second IEEE International Conf.on Wearable Computing(ISWC),IEEE Computer Society Press,October 1998,132-139.
    [57]Platt S R,Farritor S,Haider H,et al.On low-frequency electric power generation with PZT ceramics.IEEE Transactions on Mechatronics,April 2005,10.2:240-252.
    [58]褚金奎,魏双会,杜小振.一种发电鞋.国家发明专利,申请号:200710158678.2.
    [59]Roundy S,Wright P K,Rabaey J M.Energy scavenging for wireless sensor networks with special focus on vibrations.Kluwer Academic Publishers,2004.
    [60]Leland E S,Lai EM,Wright P K.A self-powered wireless sensor for indoor environmental monitoring.WNCG Conference,Austin,TX,2004.
    [61]Arms S W,Townsend C P,et al.Power management for energy harvesting wireless.Smart Structures and Materials 2005:Smart Electronics,MEMS,BioMEMS,and Nanotechnology,Proc of SPIE 2005,5763:267-275.
    [62]Ammar Y,Buhrig A,Marzencki M,et al.Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator.Joint SOC-EUSAI Conference Grenoble,October 2005,287-292.
    [63]闫世伟,杨志刚,阚君武.压电陶瓷能量转换系统.吉林大学学报(工学版),2008,38(2):344-348.
    [64]阚君武,唐可洪,王淑云.压电悬臂梁发电装置的建模与仿真分析.光学精密工程,2008,16(1):71-75.
    [65]Roundy S,Wright P K,Rabaey J.A study of low level vibrations as a power source for wireless sensor nodes.Computer Communications,2003,26:1130-1144.
    [66]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社,2005:103-137.
    [67]Van Dyke K S.The electric network equivalent of a piezoelectric resonator.Phs.Rev.,June 1925,25.6:895.
    [68]Roundy S,Wright P K.A piezoelectric vibration based generator for wireless electronics.Smart Mater.Struct.2004,13:1131-1142
    [69]Flynn A M,Sanders S R.Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers.IEEE Transactions on Power electronics.Jan.2002,17.1:8-14.
    [70]Roundy S.On the effectiveness of vibration-base energy harvesting.J.Intell.Mater.Syst.Struct.2005,16:809-823.
    [71]Ajitsaria J,Choe S Y,Shen D et al.Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation.Smart Mater.Struct.,2007,16:447-454.
    [72]Johnson T J,Charnegie D,William W.Clark.Energy harvesting from mechanical vibrations using piezoelectric cantilever beams.Proc.of SPIE 2006,6169:D1-12.
    [73]Ayers J P,Greve D W,Oppenheim I J.Energy scavenging for sensor applications using structural strains.Proceedings of SPIE.2003,5057:364-375.
    [74]Kim S.Low power energy harvesting with piezoelectric generator:(dissertation).Pittsburgh:University of Pittsburgh,2002.
    [75]Lu F,Lee H P,Lim S P.Modeling and analysis of micro piezoelectric power generators for micro-electro-mechanical-systems applications.Smart Materials and Structures,2004,13.1:57-63.
    [76]Shih-Nung Chen,Gou-Jen Wang,Ming-Chun Chien.Analytical modeling of piezoelectric vibration-induced micro power generator.Mechatronics,2006,16:379-387.
    [77]张福学.现代压电学(上册).北京:科学出版社,2001:1-46.
    [78]许煜寰.铁电与压电材料.北京:科学出版社.1978.7:1-80.
    [79]刘冬梅,许毓春.压电铁电材料与器件.北京:科学出版版社1990:1-41.
    [80]孙宝元等.现代执行器技术.长春:吉林大学出版社,2003.3:77.
    [81]许煜寰.铁电与压电材料.北京:科学出版社.1978.7:95-105.
    [82]王永龄.功能陶瓷性能与应用.北京:科学传版社,2003:60-63.
    [83]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社,2005:49-72.
    [84]彭承林.生物医学传感器原理及应用.北京:高等教育出版社,2000:90-92.
    [85]Chok Keawboonchuay,Thomas G.Engel.Scaling relationships and maximum peak power generation in a piezoelectric pulse generator.IEEE Transactions on Plasma Science,2004,32.5:1879-1885.
    [86]Allameh S M,Akogwu O,Collinson M,et al.Piezoelectric generators for biomedical and dental applications:Effects of cyclic loading.J.Mater Sci:Mater Med,2007,18:39-45.
    [87]李映平.引信压电发电原理及实验研究:(博士论文).南京:南京理工大学,2006.
    [88]师汉民.机械振动系统--分析测试建模对策(上册).武汉:华中科技大学传版社,2004.3
    [89]刘延柱,陈文良,陈立群.振动力学.北京:高等教育出版社,1998,9-10.
    [90]Mateu L,Moll F.Optimum piezoelectric bending beam sructures for energy harvesting using shoe inserts.Journal of Intelligent Material Systems and Structures,2005,16:835-845.
    [91]Baker J,Roundy S,Wright P.Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks.Proc.3rd Int.Energy Conversion Engineering Conf,San Francisco,CA,2005,959-970.
    [92]Mossi K,Green C,Ounaies Z,et al.Harvesting energy using a thin unimorph prestressed bender:geometrical effects,J.Intell.Mater.Syst.Struct.,2005,16:249-261.
    [93]Danak A D,Yoon H S,Washington G N.Optimization of electrical output in response to mechanical input in piezoceramic laminated shells,Proc.ASME Int.Mechanical Engineering Congr,Washington,DC,2003:309-315.
    [94]Ericka M,Vasic D,Costa F,et al.Energy harvesting from vibration using a piezoelectric membrane.J.Physique.Coll.,2005,IV128:187-93.
    [95]Kim H W,Batra A,Priya S,et al.Energy harvesting using a piezoelectric 'cymbal'transducer in dynamic environment.Japan.J.Appl.Phys.,2004,43:6178-6183.
    [96]Sawyer C B.The use of rochelle salt crystals for electrical reproducers and microphones.Proceeding of Instrument Radio Engineering,1931,19.11:2020- 2029.
    [97]Wang QM,L Eric Cross.Constitutive equation of symmetrical triple layer piezoelectric benders.IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency control,Nov.1999,46.6:1343-1351.
    [98].栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京:北京大学出版社,2005:84-100.
    [99]Jyh-Cheng Yu,Chin-Bing Lan.System modeling of microaccelerometer using piezoelectric thin films.Sensors and Actuators,2001,88:178-186.
    [100]Woo-seo Hwang,Hyun Chul Park.Finite element modeling of piezoelectric.Sensors and Actuators.AIAA Journal,1993,131.5:930-937.
    [101]Sohn J W,Choi S B,Lee D Y.An investigation on piezoelectric energy harvesting for MEMS power sources.Proc.ImechE Part C:J.Mechanical Engineering Science,2005,219:429-436.
    [102]Xu C G,Fiez T S,Mayaram K.Nonlinear finite element analysis of a thin piezoelectric laminate for micro power generation.J.Microelectromechanical Systems,2003,12.5:649-655.
    [103]吕胜利,吕国志.压电结构的有限元分析方法.机械科学与技术,1996,15.5:755-758.
    [104]Tzou H S,Tseng C I,Bahram I H.Piezoelectric finite element formation applied to design of smart continua.ADPA/A IAA/ASME/SPIE Conf.1991.
    [105]娄利飞,杨银堂,李跃进等.压电薄膜微传感器的动态特性分析.机械设计与研究.2005,21.3:65-67.
    [106]娄利飞,杨银堂,李跃进等.PZT压电薄膜微传感器的优化设计.机械设计与研究.2005,21.1:35-37.
    [107]方华斌,徐峥谊,刘景全等.PZT厚膜压电悬臂梁结构的有限元分析.中国机械工程.2005,16:257-259.
    [108]Coupled-Field Analysis Guide,Release 8.1.Ansys Inc.,September,1998.
    [109]刘涛,杨凤鹏.精通ANSYS.北京:清华大学出版社,2002:97-101.
    [110]Polla D L,Francis L F.Ferroelectric thin films in microelectromechanical systems applications.MRS Bulletion,1996,59-65.
    [lll]Kim J H,Wang L,Zurn S M,et al.Fabrication process of PZT piezoelectric cantilever unimorphs using surface micromaching.Integrated Ferroelectrics,1997,15:325-332.
    [112]Zurn S,Hsieh M,Smith G,et al.Fabrication and structural characterization of aresonant frequency PZT microcantilever.Smart Materials and Structures,2001,10.2:252-263.
    [113]Korbinian Kunz,Peter Enoksson,C(o|")ran Stemme.Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors.Sensors and Actuators A,2001,92:156-160.
    [114]Zhang Q Q,Gross S J,Tadigadapa S,et al.Lead zirconate titanate films for d_(33) mode cantilever actuators.Sensors and Actrators A,2003,105:91-97.
    [115]Kueppers H,Leuerer T,Schnakenberg U,et al.PZT thin films for piezoelectric microactuator applications.Sensors and Actuators A,2002,97-98:680-684.
    [116]Luginbuhl P H,Racine G A,Lerch P H,et al.Piezoelectric cantilever beams actuated by PZT sol-gel thin film.Sensors and Actuators A,1996,54:530-535.
    [117]刘梦伟.基于双压电PZT薄膜单元的悬臂梁式微力传感器研究:(博士论文).大连:大连理工大学,2006.
    [118]王敏锐.ZnO薄膜压电微力传感器/执行器研究:(博士论文).大连:大连理工大学,2006.
    [119]Jeon Y B,Sood R,Jeong J H,et al.MEMS power generator with transverse mode thin film PZT.Sensors and Actuators 2005,A(122):16-22.
    [120]Wenli Zhou,Wei-Hsin Liao,Wen J.Li.Analysis and design of a self-powered piezoelectric microaecelerometer.Proceedings of SPIE SPIE,Bellingham,WA,2005,5763:233-240.
    [121]Reilly E K,Carleton E,Wright K.Thin film piezoelectric energy scavenging systems for long term medical monitoring,http://bmi.berkeley.edu/ ourlab/publieations/mitpaperv22.pdf.
    [122]http://www.vibes.ecs.soton.ac.uk.
    [123]Fang H B,Liu J Q,Xu Z Y etal.A MEMS-based piezoelectric power generator for low frequency vibration energy harvesting.China Phys.Lett.,2007,23.3:732-734.
    [124]Zhonglin Wang,Jinhui Song.Piezoelectric nanogenerators based on zinc oxide nanowire arrays.Science 14 April 2006,312(5771):242-246.
    [125]许煜寰等.铁电与压电材料.北京:科学出版社,1978:84-135.
    [126]叶勤,TAWEE Tunkasiri.陶瓷粉末靶与陶瓷块状靶溅射制备PZT薄膜的性能比较.真空科学与技术学报,2001,21.6:481-484.
    [127]邱成军,孟丽娜,刘红梅.溅射PZT薄膜微驱动器的工艺研究.传感器技术,2004, 23.9:26-28.
    [128]鲁健.PZT铁电薄膜的溶胶-电雾化制备研究:(博士学位论文).合肥:中国科学技术大学,2004.
    [129]杨莺.锆钛酸铅铁电薄膜的制各及性能测试:(硕士学位论文).西安:西安理工大学.2003.
    [130]Dennis L.Polla.Processing and characterization of piezoelectric materials and integration into microelectromechanical systems,Annu.Rev Mater.Sci.1998,28:563-597.
    [131]Fukushima K J,Kodaira T Matsushita.Preparation of ferroelectric PZT films by thermal decomposion of organometallic compounds.Journal of Material Science 1984,19:595-598.
    [132]夏冬林,刘梅冬,赵修建等.PZT铁电薄膜Sol-Gel技术制备和电性能研究.无机材料学报,2004.19.2:354-360.
    [133]梁龙,吴斌,杨德军.厚度效应对Pb(Zr_((0.53))Ti_((0.47))O_3薄膜微结构、铁电、介电性能的影响.光学精密工程,2002,5:523-527.
    [134]赵素玲,官建国,张联盟等.Pb用量对锆钛酸铅薄膜微观结构和铁电性的影响.硅酸盐学报,2006,34.6:703-707.
    [135]王西成,曹伟.田杰.高取向度PZT铁电薄膜的研制.材料工程,1999,2:16-18.
    [136]张林涛,任天令,张武全等.Sol-Gel法硅基PZT铁电薄膜研究.功能材料,2001,32.3:252-253.
    [137]张兴国,PZT铁电薄膜的制备与研究:(硕士论文).镇江:江苏大学,2005.
    [138]Jacob K S,Panicker N,Selvam I P,et al.Sol-Gel synthesis of nanocrystalline PZT using a novel system.J.of Sol-Gel Scinece and Technology,2003,28:289-295.
    [139]翟继卫,吴小清,徐卓等.溶胶-凝胶法制备PZT铁电薄膜的结构特征研究.功能材料,1999,30.5:526-528.
    [140]佟建华.压电双晶梁在微电机及微力传感器上的应用研究:(博士学位论文).大连:大连理工大学,2005.
    [141]Cui T,Markus D,Zurn S,et al.Piezoelectric thin films formed by MOD on cantilever beams for micro sensors and actuators.Microsystem Technologies,2004,10:137-141.
    [142]程晋荣,罗来青,梦中岩.快速热处理对PZT薄膜的微结构电性能的影响.功能材料,2000,31.5:531-533.
    [143]Wu Qingren,Wen Ziyun.An investigation into the thermo physical properties and phase transitions of new ferroelectric ceramic material PZT.华南理工大学学报(自然科学版),2000,28.12:548-558.
    [144]Material properties library of coventor ware.Coventor Co.1th.2003.
    [145]张林涛,任天令,张武全.硅基PZT铁电薄膜的制备与性能研究.半导体技术,2001,26.1:49-52.
    [146]许煜寰等.铁电与压电材料.北京:科学出版社,1978:35-48.
    [147]徐泰然.MEMS和微系统--设计与制造.北京:机械工业出版社,2004:258-260.
    [148]张兴,黄如,刘晓彦.微电子学概论.北京:北京大学出版社,2005.
    [149]李德胜,王东红.MEMS技术及其应用.哈尔滨:哈尔滨工业大学,2002.
    [150]Menz W,Mohr J,Paul O.微系统技术.王春海,于杰等译,北京:化学工业出版社,2007.7:197-229.
    [151]樊中朝,余金中,陈少武.ICP刻蚀技术及其在光电子器件制作中的应用.微细加工技术.2003,2:22-28.
    [152]Michael Quirk,Julian Serda,半导体制造技术.韩郑生等译.北京:电子工业出版社,2004.
    [153]Julian W Gardner,Vijay K Varadan.Microsensors,MEMS,and Smart Devices.北京:清华大学出版社,2004:21-23.
    [154]赵宏锦,刘建设,任天令等.硅基PZT薄膜的制备与刻蚀工艺研究.压电与声光,2001,23.4:290-292.
    [155]刘秦,林殷殷,吴小清等.PZT薄膜微图形的制作精度研究.压电与声光,1998,20.6:411-413.
    [156]郑可炉,褚家如,鲁健等.PZT铁电薄膜湿法刻蚀技术研究.压电与声光,2005,27.2:209-212.
    [157]Poor M R,Fleddermann C B.Measurements of etch rate and film stoichiomertry variations during plasma etching of lead-Lanthanum-Zironium-titanate thin films.J.Applphys,1991,70.6:3385-3387.
    [158]Lee Y J,Han H R,A study of lead zirconate titanate etching characteristics using magnetized inductively coupled plasmas.Surface and Coatings Technology,2000,131.1-3:257-26.
    [159]郑可炉.MEMS中PZT铁电薄膜的湿法刻蚀技术研究:(硕士学位论文).合肥:中国科学技术大学,2004.
    [160]王晓东,王涛,李楠等.一种MEMS微结构谐振频率的测试技术.传感技术学报,2006,19.5:1538-1541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700