用户名: 密码: 验证码:
超精密气浮定位工作台的动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于气浮支承和电磁直接驱动的定位工作台,是一种新型的超精密运动机构,它克服了传统的以旋转电机和滚动丝杠驱动的定位工作台传动环节多、响应滞后大、存在摩擦等缺点,在半导体光刻设备、精密测量和生物医学等领域具有十分广泛的应用前景。由于该定位工作台存在复杂的气浮非线性效应,传统的理论建模和分析方法不能解决这类超精密运动机构的系统动力学及定位控制的难题。
     利用气浮支承润滑变分方法和有限元数值分析方法,计算并获得精密气浮轴承的动静特性的变化规律、气体流场和压力场的分布,揭示了气腔形状和气浮轴承内表面形状对轴承特性的影响规律,分析并辨识了气浮支承的特征参数,从而求得了不同气膜厚度下的轴承承载力和刚度,提出了气浮轴承的最佳结构形式。
     运用理论分析和实验研究相结合的方法,探明了精密气浮定位工作台幅频响应受气浮支承参数非线性的影响特征,阐明了系统动力学性能随气浮轴承特征参数的变化规律。建立了气浮定位工作台定位运动的数学模型,提出了混合趋近律滑模控制新策略(MTSMC),进而建立了气浮定位工作台运动的混合趋近滑模控制的位置反馈控制模型,并进行了气浮参数的分析试验。结果表明气浮定位工作台在混合趋近滑模控制下,能消除气浮轴承非线性及定位平台存在未建模现象的影响,实现纳米级的定位控制精度。
     完成了超精密气浮平台的动力学特性和定位精度测试实验,结果表明:在非气浮状态下,定位平台的运动部件间存在间隙和摩擦力,严重影响了平台运动的定位精度;而在气浮状态下,平台的运动部件间充满了压缩空气,虽然运动部件间仍然存在间隙,但是气浮支承所产生的气浮刚度使运动部件间具有了可靠的柔性连接,维持了较好的运动平稳性和良好的试验重复性;同时运动部件间不存在直接接触性摩擦,由于气体粘度小,其摩擦阻力可以忽略,平台的定位精度得到了极大的改善;气浮平台在Y方向和Z方向的最大直线度误差(3σ)为9.8256 nm,最大偏转误差(3σ)为3.8238×10-8 rad,平台的定位误差不超过±10 nm,验证了本文前面所述的理论和仿真结果的正确性。
The positioning stage with air bearings, which based on the air-supported bearing and direct electromagnetic-drive technology, is the new-typical machine of the precision motion which can overcome the shortages of the traditional positioning stage (The traditional positioning stage usually contains rotary motor, ball-screw and oil-lubricated bearings), such as more driving taches, big lag of response, and existed friction between the moving parts etc, therefore it has a prosperous application in the fields of semiconductor lithography equipment, precision measurement and biomedicine etc. For the existence of nonlinear effect caused by the air-supported bearing, the traditional modeling theory and analyse method couldn’t solve the problems on the system dynamics and positioning control of this kinds of ultra-precision moving machine.
     The methods of the partial differential and the numerical analysis with limited elements are used to research the characteristic of the precision air bearing, and the changing regulation of the dynamic and static characteristic of the ultra-precision air bearing, as well as the models of the gas flow field, the pressure distribution, and characteristic parameters of the air bearing is obtained. Especially the effect rules of the recess shape and inner planar shape of the air lubricated bearings on the characteristic of the bearings are firstly opened out in the world, and the characteristic parameters of the air beanring are identified and the load capacity and the stiffness of the air bearing are obtained. Therefore, based on the researches mentioned above, the optimal structure of the air bearing is presented for the ultra-precision stage.
     Through the theoretical and experimental studies, the effects of the nonlinearity caused by the air supported-bearing on the frequency characteristic of the precision positioning stage are proved up, and the researches on the dynamic performance of the ultra-precion positioning stage varied with the characteristic parameters of the air-supported bearings are carried out. The mathematical model of the positioning stage with air supported bearing is established, and a novel control tactic which based on the mixture trending slide mode control (MTSMC) is presented and the control model based on the MTSMC position feedback controller is established accordingly. The parameter sensitive analysis of the positioning stage is carried out. The results show that the effects the nonlinearity and unmodel factors can be eliminated and the positioning accuracy of the stage with air supported bearings can reach nanometer class when the MTSMC controller is used.
     The dynamical experiment and positioning experiment of the stage are carried out too. The results show as follows: In the positioning stage without air supported bearings, the existence of the gap and the friction between the moving parts decrease the position accuracy of the stage seriously. Whereas, in the positioning stage with air supported bearings, though the gap between the moving parts exists yet, but there is pressured air in the gap, the stiffness of the air bearings play the role of the flexable connection between the moving parts, which makes the stage possess excellent repeatable positioning accuracy and smooth motion. Furthermore, the air-supported bearings eliminate friction between the moving parts, the positioning accuracy of stage is improved extremely, the maximum error of linearity(3σ) can reach 9.8256 nm in Y direction or Z direction, and the maximum error of pitch(3σ) can reach 3.8238×10-8 rad and the maximum error of positioning can reach not more than±10 nm , which means that the theoretical and simulating results above are correct.
引文
[1] Mekid Samir. High precision linear slide Part I: design and construction[J]. International Journal of Machine Tools & Manufacture,2000, 40(3): 1039-1050
    [2] Akihisa Amada, Michio Tsunoda. high straightness positioning stage implementing real-time position compensation[J]. Motion & control, 2003, 12(5): 29-32
    [3] Mao Junhong, Tachikawa Hiroyuki, Shimokohbe Akira. Precision positioning of a DC-motor-driven aerostatic slide system[J]. Precision Engineering, 2003, 27(1): 32–41
    [4] Chen C.L., Jang M.J., Lin K.C. Modeling and high-precision control of a ball-screw-driven stage[J]. Precision Engineering, 2004, 28(8): 483–495
    [5] Stout K.J., Barrans S.M.. The design of aerostatic bearings for application to nanometer resolution manufacturing machine systems[J]. Tribology International, 2000, 33(10): 803~809
    [6]冯伯儒,张锦,侯得胜等.微光刻技术的发展[J].微细加工技术,2000, 36(l):1-9
    [7]陈开盛.亚微米光刻与光掩模新技术现状与研发前景[J].半导体技术,2000,25 ( 5A ): 18-21
    [8]苏雪莲.新世纪光刻技术及光刻设备的发展趋势[J].微电子技术,2001,29(2): 8-17
    [9]王波,董申,赵万生.超精密定位中的几项相关关键技术[J].航空精密制造技术, 1998, 34(3):13-16
    [10]董吉洪,田兴志,李志来,王明哲. 100nm步进扫描投影光刻机工件台、掩模台的发展[J].微纳科学与技术,2004,11(5):20-24
    [11]王继红,唐小平.0.35微米分步重复投影光刻气浮工件台研究[J].微细加工技术,1998,13(3):20-24.
    [12]朱煜,尹文生,段广洪.光刻机超精密工件台研究.电子工业专用设备[J],2004,109(2):25-27
    [13]嵇钧生. X射线光刻机中应用的精密定位工作台[J].航空精密制造技术,1998,34(3):10-12
    [14]王延风,卢志山,宋文荣等.磁悬浮纳米级步进扫描工作台CAD/CAE设计研究[J].机械设计与研究,2004,20(1):77-79
    [15]葛嫏,林永水,石宗宝等.大面积液晶面板光刻机新型工作台设计[J].中国机械工程,1995,6(1):11-12
    [16]严乐,卢秉恒,丁玉成等.冷压印光刻工艺精密定位工作台的研制[J].中国机械工程,2004,15(1):75~78
    [17] Bert Vleeming, Barbra Heskamp, Hans Bakker et al.. ArF step&scan with 0.75NA for the 0 .10μm node[J]. Proc. SPIE, 2001, 4346(4): 634-652
    [18] Sluijk, Boudewijn, Castenmiller, Tom. Performance results of a new generation of 300 mm lithography systems[J]. Proc. SPIE, 2001, 4346(3):544-557
    [19] Stefan Risse,Thomas Peschel,Christoph Damn.A new metrology stage for ion projection lithography made of glass ceramics[J]. Proc. SPIE,1999, 3786(4):330-338
    [20] Shane Y .Hong. On material selection for ultrahigh accuracy and high-speed machine table for applications such as e-beam lithography[J]. Precision Engineering, 1993, 15(2):115-120
    [21]卢维美.高精度激光干涉仪定位系统[J].电子工业专用设备, 1999, 28 (1):27-33
    [22]田陆屏.0.5μm分步光刻机关键参数测量与分析[J].电子工业专用设备,2000,29(2):10-14
    [23]田陆屏. 0.50μm步进光刻机关键技术设计[J].电子工业专用设备,1999, 28(2): 5-9
    [24] K. C. FAN, M. J. CHEN, W. M. HUANG. A six-degree-of-freedom measurement system for the motion accuracy of linear stages[J]. Int. J. Mach. Tools Manufact., 1998, 38(3):155–164
    [25] Samir Mekid, Olivier Olejniczak. High precision linear slide. Part II: control and measurement[J]. International Journal of Machine Tools & Manufacture, 2000, 40(9):1051–1064
    [26] J.Thiel, T.Pfeifer, M.Hartmann. Interferometric measurement of absolute distances of up to 40 m[J]. Measurement, 1995, 16(1): 1-6
    [27] Niahn-Chung Shieh, Chin-Tzung Chang, Chun-Liang Lin, Horn-Yong Jan. Robust position control of a transportation carriage directly driven by linear motor using wavelet neural[J]. Engineering Applications of Artificial Intelligence, 2002, 15(4): 479–489
    [28] Kuang-Chao Fan, Mu-Jung Chen. A 6-degree-of-freedom measurement system for the accuracy of X-Y stages[J]. Precision Engineering, 2000, 24(1): 15–23
    [29] Junhong Mao, Hiroyuki Tachikawa, Akira Shimokohbe. Double-integrator control for precision positioning in the presence of friction[J]. Precision Engineering, 2003, 27(2):419–428
    [30] Slocum Alexander, Basaran Murat, Cortesi Roger, John Hart Anastasios. Linear motion carriage with aerostatic bearings preloaded by inclined iron core linear electric motor[J]. Precision Engineering, 2003, 27(3):382~394
    [31] Takaharu Miura, Tatsuo Sato, Masaya Miyazaki, Kazunari Hada, Yu Sato, Masateru Tokunaga, Yukio Kakizaki. Nikon electron beam projection lithography tool development summary[J]. J. Microlith., Microfab., Microsyst., 2002, 1 (3):313-319
    [32] Shuichi Dejima, Wei Gao, Kei Katakura, Satoshi Kiyono, Yoshiyuki Tomita, Dynamic modeling, controller design and experimental validation of a planar motion stage for precision positioning[J]. Precision Engineering , 2005, 29(2) : 263~271
    [33]叶云岳.直线电机原理与应用北京[M].北京:机械工业出版社,2000:1-50
    [34]孙麟治,李鸣鸣,程维明.精密定位技术研究[J].光学精密工程, 2005,13(增刊):69~75
    [35] Gross W A etc. Fluid Film Lubrication[M]. New York: John Wiley&Sons, 1980:1-200
    [36]刘暾等著.静压气体润滑[M].哈尔滨:哈尔滨工业大学出版社,1990:1-200
    [37] Constantinescu V N. Gas Lubrication[M]. New York: ASME United Engineering Center, 1969:1-300
    [38]王云飞著.气体润滑理论与气体轴承设计[M].北京:机械工业出版社,1999:1-200
    [39] Mohamed Fourka, Marc Bonis. Comparison between externally pressurized gas thrust bearings with different orifice and porous feeding systems[J]. Wear, 1997, 210(2):311-317
    [40] Sadek Z. Kassab, Elsayed M. Noureldeen, Medhat A. Shawky. Effects of operating conditions and supply hole diameter on the performance of a rectangular aerostatic bearing[J]. Tribology International, 1997, 30(7):533-545
    [41] Sadek Z. Kassab. Empirical correlations for the pressure depression in externally pressurized gas bearings[J]. Tribology International, 1997, 30(1):59-67
    [42] S. Yoshimoto, J. Tamura, T. Nakamura. Dynamic tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors[J]. Tribology International, 1999, 32(5): 731–738
    [43] C.W. Wu, G. J. Ma. Abnormal behavior of a hydrodynamic lubrication journal bearing caused by wall slip[J]. Tribology International, 2005, 38(3): 492–499
    [44] Jong-Soo Kim, Kyung-Woong Kim. Effects of Distance Between Pads on the Inlet Pressure Build-Up on Pad Bearings[J]. ASME Journal of Tribology, 2002, 124(7): 506-514
    [45] Yim-Bun Patrick Kwan, Justus B. Post. A tolerancing procedure for inherently compensated, rectangular aerostatic thrust bearings[J]. Tribology International, 2000, 33(3): 581–585
    [46] Mansour Karkoub, Ali Elkamel. Modelling pressure distribution in a rectangular gas bearing using neural networks[J]. Tribology International, 1997, 30(2): 139-150
    [47]李杰,鲁和安,赵旗.边界元法在平面空气轴承压力场计算中的应用[J].汽车技术,1995,6(1):7-10
    [48]王月明.薄气垫装置的承载特性分析[J].润滑与密封,2001,11(1):7-9
    [49]李志来.超高刚度自主式空气静压支承发展现状[J].光机电信息,1998,15(1):9-11
    [50]杨福兴,董申.超精密空气静压主轴静态性能的数值分析[J].机械设计与研究,2004,20(2):54-57
    [51]王祖温,郭良斌,包钢,李军.单节流孔静压球面气体轴承动态特性的有限元分析[J].摩擦学学报,2003,23(5):416-420
    [52]景岗,杨清好,王元勋,陈尔昌,陈日曜.多槽式表面节流气体润滑轴承及其特性的研究[J].机械研究与应用,1994,22(1):4-7
    [53]董卫华.几何加工精度对气体动压径向轴承性能的影响[J].南京航空航天大学学报,1994,26(5):635-641
    [54]里见忠笃,章亚男.节流孔特性对抑制气浮工作台自激振动的效果研究[J].光学精密工程,1998,6(5):33-38
    [55]边新孝,李谋渭.静压空气轴承的动刚度和阻尼分析[J].轴承,2004,12(1):1-3
    [56]薛贵侠.静压空气轴承的气膜刚度[J],计量技术,2003, 36(6):24-25
    [57]景岗,杨清好,王元勋,陈尔昌,陈日曜.锯齿形多槽式动静压气体润滑轴承稳定性研究[J].华中理工大学学报,1994,22(2):74-77
    [58]景岗,杨清好,陈尔昌,陈日曜.锯齿形多槽式动静压气体润滑轴承稳态和动态特性的研究[J].华中理工大学学报,1994,22(2):69-73
    [59]孙西芝,陈时锦,程凯.空气静压导轨静态性能的解析计算及分析[J].机械设计与制造,2005,55(1):40-42
    [60]李兴华.空气静压轴承的静特性计算及其实际应用[J].同济大学学报,1999,27(1):69-73
    [61]陈海斌,钟先信,程雪梅.空气静压轴承的优化设计[J].重庆大学学报,1997,20(1):21-26
    [62]杜金名,卢泽生,孙雅洲.空气静压轴承各种节流形式的比较[J].航空精密制造技术,2003,39(6):4-8
    [63]殷晨波,柯婉贞.挠性气体动压径向轴承的理论分析[J].南京航空航天大学学报,1988,12(1):37-43
    [64]杨梦辰,张瑞乾,孔凌嘉,李翔,毛谦德.平面螺旋槽气体止推轴承的研究[J].机械设计,1998,12(2):9-13
    [65]刘燕霞,朱宇姝,汪先明,皮亚南.气膜润滑及其应用[J].江西科学,2002,20(3):174-178
    [66]卢泽生,杜金名,孙雅洲.影响空气静压多孔质止推轴承静态性能的因素[J].哈尔滨工业大学学报, 2001, 33(6):729-732
    [67]王元勋,陈尔昌,师汉民,陈日曜.气体润滑轴承的研究与发展[J].湖北工学院学报,1994,9(3):155-159
    [68]张树森,张鹏顺,曲全得.气体轴承技术的应用及发展趋势[J].润滑与密封,1999,11(2):9-10
    [69]刘暾,彭春野,葛卫平,齐乃明,费源明.小孔节流气体静压润滑的离散化和计算收敛[J].摩擦学学报,2001,21(2):139-142
    [70]王元勋,景岗,陈尔昌,新型表面节流气体轴承的有限元分析[J].机床与液压,1995,13(1):16-20
    [71]景岗,杨清好,王元勋,陈日曜.一种新型的高刚度气浮润滑轴承.制造技术与机床,1994,12(5):22-26
    [72]杜金名,卢泽生,气体静压多孔质止推轴承静态特性的理论发展[J].润滑与密封,2001,12(4):69-71
    [73]王元勋,杨清好,陈尔昌,师汉民,陈日曜.主动控制节流气体润滑轴承动态特性研究[J].振动工程学报, 1999,12(3):304-308
    [74] T.S. Luong, W. Potze, J.B. Post , R.A.J. van Ostayen , A. van Beek, Numerical and experimental analysis of aerostatic thrust bearings with porous restrictors[J]. Tribology International, 2004,37(7):825–832
    [75] Y.B.P Kwan, J.Corbett. A simplified method for the correction of velocity slip and inertia effects in porous aerostatic thrust bearings[J]. Tribology International, 1998, 31(12): 779–786
    [76] Y.B.P. Kwan1, J. Corbett, Porous aerostatic bearings–an updated review[J]. Wear, 1998, 222(1): 69–73
    [77] Yong Tian. Static study of the porous bearings by the simplified finite element analysis[J]. Wear,1998, 218(2):203-209
    [78] M. Weck, P. Kru¨ger, C. Brecher. Limits for controller settings with electric linear direct drives[J]. International Journal of Machine Tools & Manufacture, 2001, 41(1): 65–88
    [79]朱益民,龚建伟,沙小红.磁悬浮实验系统的设计与分析[J].南通大学学报(自然科学版),2005,4(4):18-18
    [80]张钢,白华,王春兰,周罡.磁悬浮支承技术在机床中的应用[J].机械工程师,2005,8(1):15-20
    [81]李敏花,刘淑琴.磁悬浮轴承的模糊PID控制[J].控制工程,2004,11(5):409-412
    [82]于国飞,宋文荣,陈阳.磁悬浮轴承结构移动平台的设计与控制仿真[J].机械设计与研究,2004,20(5):47-51
    [83] Sung-Q Lee, Dae-Gab Gweon. A new 3-DOF Z-tilts micropositioning system using electromagnetic actuators and air bearings[J]. Precision Engineering, 2000, 24(1): 24–31
    [84] K.-S. Chen, D.L. Trumper, S.T. Smith. Design and control for an electromagnetically driven X–Y–θstage[J]. Journal of the International Societies for Precision Engineering and Nanotechnology, 2002, 26(2): 355–369
    [85]居冰峰,陈子辰,邱忠宇.空气静压轴承主动控制技术的研究[J].机电工程机电一体化论文集,1997,1(1):144-145
    [86] Chao C.L., Neou J. Model reference adaptive control of air-lubricated capstan drive for precision positioning[J]. Precision Engineering, 2000, 24(2): 285-290
    [87] Lee Chang-Woo, Kim Seung-Woo. An ultraprecision stage for alignment of wafers in advanced microlithography[J]. Precision Engineering, 1997, 21(2): 113-122
    [88] Naren Vira. Application of microcomputer in submicron level measurements and control of a positioning device[J], Journal of Microcomputer Applications, 1995, 18(2): 149-164
    [89] Wei Gao, Shuichi Dejima, Hiroaki Yanai, Kei Katakura, Satoshi Kiyono, Yoshiyuki Tomita. A surface motor-driven planar motion stage integrated with an XYθZ surface encoder for precision positioning[J]. Precision Engineering, 2004, 28(2): 329–337
    [90] Kwang Suk Jung, Yoon Su Baek. Characteristics comparison of planar stages using repulsive and attractive type of surface actuator principle[J]. Sensors and Actuators A, 2005, 117(2): 173–182
    [91] Christoph Damm, Thomas Peschel, Stephan Risse, Ulf C. Kirschstein. Wafer stageassembly for ion projection lithography[J]. Microelectronic Engineering, 2001, 57(2): 181–185
    [92] Erik Beckert, Andrew Hoffmann, Eugen Saffert. Development of a vertical wafer stage for high-vacuum applications[J]. Microelectronic Engineering, 2001, 57(2): 207–212
    [93]唐小萍.亚微米i线投影曝光机三维精密定位工件台控制系统研究[J].光电工程,1998, 25(3): 12-17
    [94]胡旭晓,台宪青,杨克己.步进扫描光刻机同步控制及硅片变形误差补偿技术研究[J].中国机械工程, 2004,15(3): 192-195
    [95]李圣怡.超精密加工与控制技术[J].机械与电子,1999,12(2):56-61
    [96]王顺晃,舒迪前.智能控制系统与其应用[M].北京:机械工业出版社,1995:1-5
    [97]张文修,梁广锡.模糊控制与系统[M].西安:西安交通大学出版社,1998:1-4
    [98]章卫国,杨向忠.模糊控制理论与应用[M].西安:西安工业大学出版社,1999:1-6
    [99]李人厚.智能控制理论和方法[M].西安:西安电子科技大学出版社,1999:1-10
    [100]王俊普.智能控制[M].北京:中国科学技术大学出版社, 1996:3-4,101-120
    [101]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003:1-14
    [102] Richard C. Dorf, Robert H. Bishop.现代控制系统[M].北京:高等教育出版社,2001:1-201
    [103] Katsuhiko Ogata. Modern control engineering[J].4th Edition, Prentice Hall, 2002,1(1):1-33
    [104]郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制技术[M].北京:机械工业出版社,2000:12-16
    [105]胡寿松.自动控制原理(第三版)[M].北京:国防工业出版社,1994:259-264
    [106]张强,胡松,姚汉民,刘业异. ASML公司光学光刻技术最新进展[J].微细加工技术, 2002, 11(3):8-11
    [107]刘俊标.微纳加工中的精密工件台技术.北京:中国科学院博士后学位论文,2004:1-22
    [108] Won-jong Kim, David L. Trumper. High-precision magnetic levitation stage for photolithography[J]. Precision Engineering, 1998, 22(1):66–77
    [109]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:1-55
    [110] Chensong Dong,Chuck Zhang,Ben Wang, Guoxiong Zhang. Reducing the Dynamic Errors of Coordinate Measuring Machines[J]. Journal of Mechanical Design ASME, 2003, 125(7): 831-839
    [111]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算[M].北京:北京理工大学出版社,2004:1-46
    [112] Shuichi Dejima, Wei Gao, Kei Katakura, Satoshi Kiyono, Yoshiyuki Tomita, Precision positioning of a five degree-of-freedom planar motion stage[J].Mechatronics, 2005,15(7):969-987
    [113] Jyh-Chyang Renn, Chih-Hung Hsiao. Experimental and CFD study on the mass flow-rate characteristic of gas through orifice-type restrictor in aerostatic bearings[J]. Tribology International, 2004,37(2):309-315
    [114] Weidong Huang, David B. Bogy, Alejandro L. Garcia. Three-dimensional direct simulation Monte Carlo method for slider[J]. Phys. Fluids, 1997, 9 (6): 1764-1769
    [115] T. P. Witelski. Dynamics of air bearing sliders[J]. PHYSICS OF FLUIDS, 1998, 10(3): 698-709
    [116]刘丹,程兆谷,高海军等.步进扫描投影工件台和掩膜台的进展[J].激光与光电子学进展,2003,40(5):14-20
    [117]刘金琨著.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005:3-89
    [118]宋立忠,温洪,姚琼.离散变结构控制系统的变速趋近律[J].海军工程大学学报,1999,33(3):16-21
    [119]翟长连,吴智铭.一种离散时间系统的变结构控制方法[J].上海交通大学学报,2000,34(5):719-722

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700