用户名: 密码: 验证码:
微小卫星姿态控制系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小卫星具有成本低、功能密度高以及研发周期短等一系列优点,成为航天领域的一个重要发展方向,姿态控制系统(ACS)是其核心,一定程度上决定了卫星所能实现的在轨功能。微小卫星的ACS在质量、体积以及功耗等方面有严格限制,本文研究目的是探索并研制满足总体约束和在轨功能要求的高性能ACS。本文以南京航空航天大学“天巡者”微小卫星研制为背景,系统的研究了微小卫星ACS相关理论、方法以及关键技术,主要研究内容和创新性成果如下:
     (1)在对国内外微小卫星及其ACS研究现状归类分析基础上,通过对“天巡者”微小卫星飞行任务和总体对其ACS要求的分析,提出了具有某种优势且切实可行的ACS方案配置,给出各组成部分的技术指标。建立了完整的微小卫星ACS数学模型,包括卫星运动学、动力学、测量参考、执行结构以及环境干扰等模型,对影响卫星姿态的干扰力矩进行了仿真分析,并采用能量分析法研究了卫星的稳定性。
     (2)提出了一种新的姿态确定组合滤波方法,融合双矢量姿态确定算法和EKF、UKF等非线性滤波,将高维观测量转化为四元数,使观测方程转化为线性方程,显著的减少了计算量,并提高了滤波精度。以磁强计、太阳敏感器和陀螺组成姿态确定系统,采用直接观测方程,以及q-method和高斯-牛顿算法的预处理观测方程,设计了无陀螺EKF、有陀螺EKF以及无陀螺UKF共9种滤波器,通过详细的仿真分析,表明预处理观测方法具有更好的效果。
     (3)针对微小卫星初态控制这一关键技术,基于喷气系统设计了速率阻尼、拟PD以及限制姿态反馈等控制律,以适用于大角度姿态捕获,并根据不同的动量轮起旋方式,提出了多种初态控制方案;基于磁力矩器设计了B-dot速率阻尼、能量控制、滑模控制以及限制姿态反馈等磁控制律,提出了B-dot阻尼加动量轮常速起旋、磁控加动量轮姿态捕获的新方法,给出了Y-Thomson初态控制方案。对于所设计的喷气控制和磁控方法进行详细的理论分析和仿真验证,为其工程应用提供了必要的论证。
     (4)对于微小卫星的长期在轨运行,设计了动量轮俯仰控制和磁卸载控制律。提出了新的磁控章、进动控制律,应用MTS法给出其参数以及时间响应的近似公式,该理论研究及分析对工程设计具有很好的指导价值;设计了动量轮常速旋转的同时进行主动磁控的三轴稳定控制律,不仅避免了动量轮饱和卸载,而且使控制过程操作简捷。
     (5)研究了喷气系统加偏置动量轮的高精度联合控制方法,设计了LQG控制和Lyapunov控制三轴稳定控制律;针对偏置动量微小卫星姿态机动,设计了Lyapunov控制、滑模控制以及反馈线性化等非线性控制律,用于三轴小机动和俯仰大机动,满足高精度的同时还具有实时性;深入研究了喷气故障情况下的欠驱动控制,提出了一种新的姿态描述方法——(w , z)参数化法,通过两次垂直旋转来表示卫星姿态,设计了欠驱动卫星的稳定控制和再定位控制律,并通过仿真表明其有效性。
     (6)基于VxWorks实时操作系统进行微小卫星ACS软件设计,提出了采用微内核和软件层次结构的设计思想,完成了多任务调度管理、控制模式管理以及各模式的任务相互通信等设计,仿真实践表明其具有高可靠性、易扩展性等优点,为整个星载软件的实现打下了基础。
     总之,本文针对“天巡者”微小卫星的功能要求,研究探索一种具有高精度、高可靠性以及高性价比的ACS方案,针对其关键技术提出了解决方法,在理论上、方法上具有多处创新性研究成果,对于满足任务要求和总体约束的高性能微小卫星ACS设计具有较大借鉴意义和应用价值。
Micro-satellite is becoming an important direction of spacecraft development due to the advantages such as low cost, high density of functionality and short research developement cycle. The ACS is the most important subsystem that partly defines the function of satellite. Bacause the ACS micro-satellite is under stringent constraints on mass, volume and power, so the purpose of this paper is to design a high performance ACS that satisfied with system constraints and mission demands. Taking the“TXZ”micro-satellite that developing by NUAA an example, the relevant theories, methods and key technologies are studied systematically in this dissertation, and the main content and achievements are as follows:
     1. Based on the analysis of mission for“TXZ”micro-satellite and its requirements towards ACS, a feasible scheme of the ACS configuration as well as the performance of the sensitive and executive organs are outlined.
     The integrated mathematical model about ACS for micro-satellite is established, including model of kinematics, dynamic, sensor, actuator and disturbance. The influence of disturbance torque for the attitude control is simulated and analysised, in addition the stabilization of satellite is studied using an energy consideration method.
     2. A new combined filter for attitude determination is presented which syncretize the two vectors method with EKF or UKF. It reduces high dimension vectors to quaternion, so the nonlinear observation equation is turned into linear that reduce the computational requirement and enhance precision. Using magnetic sensor, sun sensor and gyro, nine filters namely EKF incorporating gyro, EKF or UKF without gyro are developed, that based on direct observation or deal with by q-method and Gauss-Newton method in advance. The simulation result illustrates that indirect method have better effect especially by Gauss-Newton algorithm.
     3. Aim to the pivotal phase of initial attitude control, the detumbling and the large attitude acquisition controllers using assimilated PD control as well as limited attitude feedback using micro-thrustors are designed. On the other hand the B-dot, energy, sliding mode and limited attitude feedback controllers using magnetic torque are designed. A new method for B-dot detumble and attitude acquisition with the wheel circumgyrate synchronously, as wheel as the initial control scheme using Y-Thomson are proposed. For all the thruster and magnetic contol method, the detailed theoretic and simulating analysis is conducted.
     4. For normal task phase the pitch axis controller using a momentum wheel and momentum unloading using magnetic torque are developed. A new magnetic controller for nutation and precession damping is given, and its parameters are investigated by MTS method that given preferable instruction for practical application. Moreover with constant wheel the active magnetic controllers are designed for three-axis stabilization, which avoid the momentum satuation and make control process convenient.
     5. The combined control methods using thrusters plus a momentum wheel are researched. Firstly the LQG and lyapunov control law are designed for stabilization, then three nonlinear controllers of lyapunov, sliding mode and feedback linearization control are designed for large angle maneuver which not only have high precision but alse account for real-time need. The attitude control of underactuated satellite with thruster failure is studied using a new method named (w,z) parametrization. The attitude stabilization and reorientation controllers under actuator failure are designed and validated by simulation tests.
     6. Based on VxWorks operating system the ACS software designing is carried out. The design philosophy using micro kernel and hierarchical structure method for software system is given. Meanwhile the system schedule of several-tasks, the managing control mode and communication among tasks in every mode are completed for ACS. The simulations indicate that it has the high reliability and extensibility, thereby, can be supported for further develop of micro-satellite.
     In a word, the ACS for mission demands of“TXZ”satellite is studied deeply and its key technologies are resolved effectivly in this thesis. There are many innovations with great applied value in theory and method which can give reference and instruction in developing the high performance ACS for other micro-satellite.
引文
[1]余金培,杨根庆,梁旭文.现代小卫星技术与应用[M].上海:上海科学普及出版社,2004
    [2]詹亚锋,马正新,曹志刚.现代微小卫星技术发展趋势[J].电子学报,2000,28(7): 102-106
    [3]石卫平,潘坚.微小卫星的发展[J].国际太空,2001,No.9: 1-3
    [4]林来兴.小卫星将引起卫星应用和卫星技术的重大变革.现代小卫星技术第一集航天工业总公司小卫星论证组. 1995
    [5]铃木秀人,关口毅.高性能姿态控制系统的研究.控制工程. 2003,10(2): 41-46
    [6]江燕.新盛世计划的第5颗卫星ST-5—“钠卫星星座开拓者”[J].国际太空,2003,No.4: 19-23
    [7]李东.皮卫星姿态确定与控制技术研究[博士论文].中国科学院上海微系统与信息技术研究所,2005.6
    [8] Heidt H, Moored A, Nakasuka S, et al. CubeSat: AnewGeneration of Picosatellite for Education and Industry Low-Cost Space Experimentation[C]. Proceedings of the 14th Annual AIAA/L1SU Small Satellite Conference, Logan, UT, 2000
    [9] Bryan S G. Attitude Control System Design for ION, The Illinois observing Nanosatellite [Master Thesis]. Graduate College of the University of Illinois at Urbana-Champaign, 2004.
    [10] Daniel R P, Jacob D G, Jesper A L, et al. Attitude Control System for AAUSAT-II[Design Report] . Institude of electronic systems department, Aalborg University, Danmark, 2004
    [11] Eli Jerpseth ?verby. Attitude control for the Norwegian student satellite nCube[Master Thesis]. Norwegian University of Science and Technology. Trondheim Norway, 2004
    [12]晓雨,欧空局的空间科学探测计划[J].中国航天,1998 ,No.1: 19-21
    [13]我国一箭双星成功发射两颗科学实验小卫星[J].中国航天,2004, No.5: 3-4
    [14]王振枫.某型微小卫星姿态控制系统设计及仿真研究[硕士论文].南京航空航天大学,2007.1
    [15] Carl Christian Liebe, Sohrab Mobasser. MEMS Based Sun sensor[C]. IEEE Proceedings Aerospace Conference, Piscataway. 2001:1565-1572
    [16] Jaroslav C, Jaroslav V, Jiri B Frantisek.A simple low cost digital sun sensor formicro-satellites[C]. The 4th IAA Symposium on Small Satellites for Earth Observation Berlin, IAA-B4-1205P . 2005: 1-4
    [17] Shoji K, Christoph M, Michael S, et al. A 2-D CMOS Microfluxgate Sensor System for Digital Detection of Weak Magnetic Fields[J],IEEE Journal of Solid-State Circuits. 1999,34(12):1843-1851
    [18] Shoji K, Ales C, Keita A, et al. A Weak Magnetic Field Measurement System Using Micro-Fluxgate Sensors and Delta–Sigma Interface[J] , IEEE Transactions on Instrumentation and Measurement. 2003, (25) 103-110
    [19] Baschirotto A, Dallago E, Malcovati P, et al. fluxgate magnetic sensor in PCB technology, andrea[C], IMTC2004 instrumentation and measurement technology conference, Como,Italy, 2004:808-812
    [20] Ju G, Kim H, Pollock T, et al. DIGISTAR: A Low Cost Micro Star Tracker[C], AlAA Space Technology Conference & Exposition, Albuquerque, New Mexico,1999, AlAA 99-4603
    [21]孙才红.轻小型星敏感器研制方法和研制技术[博士论文].中国科学院国家天文台,2002
    [22] Barbour N, Schmidt G. Inertial sensor technology trends[J]. IEEE Sensors Journal. 2001, 1(4) :332-339
    [23] Ofir D, Eran S. A novel micromachined vibrating rategyroscope with optical sensing and electrostatic actuation[J]. Sensors and Actuators A-physical, 2000, 83(3): 54-60
    [24]屠善澄,陈义庆,邹广瑞等.卫星姿态动力学与控制[M].北京:宇航出版社,2001
    [25]黄圳圭.航天器姿态动力学[M].长沙:国防科技大学出版社,2006
    [26] Mark L P. Magnetic Torquer Attitude Control via Asymptotic Periodic Linear Quadratic Regulation[C], American Institute of Aeronautics and Astronautics, 2000, AIAA-2000-4043
    [27] Ping Wang, Yuri B S. Satellite Attitude Control Using only Magnetorquers[C]. Proceedings of the American Control Conference, Philadelphia, Pennsylvania, 1998:222-226
    [28] Bang H C, Eun Y E, Lee H. Attitude Control of Bias Momentum Spacecraft by Multiple Pulse Inputs[C]. JSASS 17th International Sessions in 41st Aircraft Symposium, Nagano, Japan, 2003: 1-4
    [29] Filip R, John W H. Micro Vacuum Arc Thruster Design for a CubeSat Class Satellite[C]. The 16th Annual/USU Conference on Small Satellites. 2002, SSC02-I-2:1-7
    [30] Stephen M, Freddy Y P, Robert E Z. The Design and Test of a Compact Propulsion System for CanX Nanosatellite Formation Flying[C].Proceedings of the 19th Annual AIAA/USUConference on Small Satellites. Salt Lake City, Utah, USA. 2005,SSC05-VI-5:1-9
    [31] Juergen Schlutz.Attitude and Orbit Control of Small Satellites using Thruster System[Mater Thesis]. Australian Centre for Field Robotics,The University of Sydney, Australia.2005
    [32] Stian S?ndersr?d Ose. Attitude determination for the Norwegian student satellite nCube [Mater Thesis]. Norwegian University of Science and Technology. Trondheim Norway,2004
    [33] Kristian Svartveit. Attitude determination of the NCUBE satellite[Mater Thesis].Norwegian University of Science and Technology. Trondheim Norway. 2003
    [34] Herbert Eric W. NPSAT1 Magnetic Attitude Control System Algorithm Verification, Validation, and Air-Bearing Tests[Master Thesis]. Naval Postgraduate School, Monterey, California. 2004
    [35] Barry S. Leonard. NPSAT1 Magnetic Attitude Control System[C]. 16th annual AIAA SmallSat Conference, Logan Utah, 2001: 105-108
    [36] Zirkle T A. Analysis of Magnetic Three-axis stabillzation Attitude Control System for The NPSAT1 Spacecraft[Master Thesis]. Naval Postgraduate School, Monterey, California. 2001
    [37] Prater Gary L. NPSAT1 Missile System Prelaunch Safety Package (MSPSP)[Master Thesis]. Naval Postgraduate School, Monterey, California. 2004
    [38]Stras L N, Kekez D D, Wells G J, et al. The design and operation of the Canadian advanced nanospace eXperiment (CanX-1)[C], Proceedings of the AMSAT-NA 21st Space Symposium Toronto, Canada, 2003: 150-160
    [39] Daniel R. The CanX-2 Nonosatellite: Expranding the science abilities of nanosatellites[C]. The 55th International Astronautical Congress, Vancouver,Canada,2004:1-9
    [40] Carroll K A. Arc-Minute Nanosatellite Attitude Control: Enabling Technology for the BRITE Stellar Photometry Mission[C]. The 18th Annual AIAA/USU Conference on Small Satellites, Logan, Utah, 2004:1-20
    [41] Eric P, Caillibot C. Cordell Grant, and Daniel D. Kekez. Formation Flying Demonstration Missions Enabled by CanX Nanosatellite Technology[C]. 19th Annual AIAA/USU Conference on Small Satellites,2005:1-9
    [42] Kim S J, Lee B H, Choi J W, et al. Attitude Determination and Control Subsystem[Design Report]. HAUSAT-2 Preliminary Design Review. South Korea . 2005
    [43] Chang Y K, Lee B H, Kim H J, et al. HAUSAT-2 Nanosatellite ADCS Performance Analysis and Commissioning[C]. Proceedings of 2nd International Conference on Recent Advances inSpace Technologies, Goyang-City, South Korea. 2005:180-184
    [44] Chang Y K, Lee B H, Kim S J. Momentum wheel start-up method for HAUSAT-2 ultra-small satellite[J]. Aerospace Science and Technology, 2006, No.10:168–174
    [45] Richard W L. The SSETI Express Handbook. SSETI Express and Amsat-UK documentation, Published by AMSAT-UK, 2005
    [46] ?yvind Hegren?s, Jan T G, Petter T. Attitude Control by means of Explicit Model Predictive Control, via Multi-parametric Quadratic Programming[C]. Proceedings of the American Control Conference, IEEE Press, 2005:901-906
    [47]陈刚,刘昆.多敏感器信息融合技术在卫星姿态确定中的应用[J].航天控制, 2005, 2(3): 35-39
    [48]穆华,吴美平,胡小平.卫星惯性/星光组合自主定姿方法研究[J].中国惯性技术, 2004, 12(3): 41-44
    [49] Crassidis J L, Markeley F L. Predictive Filtering for Attitude Estimation Without Rate Sensors[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(3): 522-523
    [50]张云,王培垣.基于星敏感器角速度估计的陀螺故障诊断[J].航天控制,2004,22(3): 93-96
    [51]林玉荣,邓正隆.基于Gibbs矢量估计卫星轨道姿态的滤波算法研究[J].中国惯性技术,2004,12(3): 1-6
    [52]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998,第一版
    [53]张友民,戴冠中,张洪才.卡尔曼滤波计算方法研究进展[J].控制理论与应用, 1995,12 (5): 529–538
    [54]张海涛,詹艳梅,秦永元.自适应卡尔曼滤波方法及其在容错组合导航系统的系统级故障检测中的应用[J].中国惯性技术,2001,9(4): 16-20
    [55] Richard R H. An adaptive Kalman filter using a simple residual tuning method[C]. Proceedings of the Flight Mechanics Symposium. Greenbelt, Maryland,1999: 572-582
    [56] Julier S,Uhlmann J K. A new approach for filtering nonlinear systems[C]. The Proceedings of the American Control Conference. IEEE Press,1995: 1628-1632
    [57] Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE.2004, 92(3): 401-422
    [58] Wan E A , Van der Merwe R. The unscented kalman filter for nonlinear estimation[C]. IEEEProc of the Symposium 2000 on Adaptive System for Signal Processing, Communication and Control(AS-SPCC), Lake Louise, Alberta, Canada, October 2000
    [59] Das A. The On-Orbit Attitude Determination and Control System for The Landsat-D Spacecraft[C]. Astrodynamics Specialists Conference AIAA,Orbndo,1982: 495-499
    [60] Glenn Creamer. Attitude Determination and Control of Clementine During Lunar Mapping[J]. Journal of Guidance Control and Dynamics. 1996, 19(3): 505-511
    [61] Morten P T, Jan T G. Nonlinear attitude control of the micro satellite ESEO[C]. The 55th International Astronautical Congress. Canada, Vancouver. 2004: 1-11
    [62] James H M, Yuri B S. a sliding mode controller and observer for satellite attitude control[C], Proceedings of AIAA Guidance, Navigation, and Control Conference, New Orleans, 1997: 1613-1619
    [63] Hyochoong B, Young H L. sliding Mode Control for Spacecraft Containing Rotating Wheels[C], AIAA Guidance, Navigation, and Control Conference and Exhibit 2001, Montreal, Canada. 2001-4213
    [64] Chen Y J. Sliding mode control for attitude tracking of thruster-controlled spacecraft[J]. Transaction on Control, Automation, and Systems Engineering, 2001, 3(4): 257-261
    [65] Yuri B S, Christian H T. Flight Control Reconfiguration on Sliding Modes[C]. AIAA Guidance, Navigation and Control Conference, Paper AIAA-97-3632, 1997
    [66] Fang B, Kelka A G. On feedback linearization of underactuated nonlinear spacecraft dynamics[C]. Proceeding of 40th IEEE Conference on Decision and Control, Orlando, Florida USA. 2001:3400-3405
    [67] Lin Y Y. Parameter space design of nonlinear feedback control for spacecraft reorientation[C], AIAA Guidance, Navigation and Control Conference and Exhibit, Montreal, Canada, 2001-4157
    [68] Jensen H B, Wisniewski R. Quaternion Feedback Control for Rigid-Body Spacecraft[C], AIAA Guidance, Navigation and Control Conference and Exhibit, Montreal, Canada, 2001-4338
    [69] Bang H, Myung H S, Tahk M J. Nonlinear momentum transfer control of spacecraft by feedback linearization[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Monterey, Califonia, 2002-4571
    [70] Kim B J, Jahn H, Choi S D. Three-axis reaction wheel attitude control system for KITSAT-3mirco-satellite[J], Space Technology, 1996 ,16(5):291-296
    [71]章仁为.卫星轨道姿态动力学与控制[M].北京:北京航空航天大学出版社,1998
    [72]中华人民共和国国家军用标准,卫星坐标系,GIB 1028-90
    [73] Creamer G. Spacecraft attitude determination using gyros and quarternion measurements[J]. The Journal of the Astronautical Sciences, 1996 , 44(3) : 357-371
    [74]张延顺,王海,陈家斌等.卫星三轴姿态确定系统的光纤陀螺/星敏感器组合技术研究[J].中国惯性技术学报. 2003,11(2): 1-4
    [75] Song G, Agrawal B N. Vibration suppression during attitude control[J], Aera Astronautic, 2001, 49(2): 73-83
    [76]庄洪春.宇航空间环境手册[M].北京:中国科学技术出版社. 2000.10,第一版
    [77] James R W, Wiley J L编.王长龙,张照炎,陈义庆等译.航天任务的分析与设计[M],北京:航空工业出版社,1992
    [78]黄本城.空间环境工程学[M].北京:宇航出版社, 1993,第一版
    [79] Frank R B. Attitude Control of a micro satellite Three-axis attitude control of the ESEO using reaction thrusters[Master thesis]. Narvik College University, Norwegian, 2004
    [80] Wahaba G. A Least Squares Estimate of Satellite Attitude[J]. SIMM Review, 1966, 8(3): 384-386
    [81] Shuster M D. A Simple Kalman Filter and Smoother for Spacecraft Attitude[J], Journal of the Astronautical Sciences, 1989, 37(1): 89–106
    [82] Markley F L, Mortari D. Quaternion Attitude Estimation Using Vector Observations[J]. The Journal of the Astronautical Sciences, Special Issue, 2000, 48(2): 359-379
    [83] Markley F L. Fast quaternion attitude estimation from two vector measurements[J]. Journal of Guidance, Control and Dynamics. 2002, 25(2): 411-414
    [84] Kristian K, Schreder E. Attitude Determination for AAU CubeSat[Design Report]. The electronic systems department of control engineering, Aalborg University, Danmark, 2002
    [85] Bak T. Spacecraft attitude determination amagnotometer approach[PhD Thesis]. Aalborg University, Danmark, 1999
    [86] Hagan M T, Demuth H B, Beale M. Neural Network Design[M], Boston, UAS: PWS Publishing Company, 1996
    [87] Bachmann E R, Duman I, Usta U Y, et al. Orientation Tracking for Humans and Robots Using Inertial Sensors[C]. Proc. of Symposium on Computational Intelligence in Robotics&Automation, Monterey. 1999: 187-194
    [88] Marins J L, Yun X P, Bachmann E R, et al. An Extended Kalman Filter for Quaternion-Based Orientation Estimation Using MARG Sensors[C]. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hawaii, USA, 2001: 2003-2011
    [89] Lefferts E J, Markley F L, Shuster M D. Kalman Filtering for Spacecraft Attitude Estimation[J], Journal of Guidance, Control, and Dynamics, 1982, 5(5): 417-429
    [90] Bar-Itzhack I Y, Oshman Y. Attitude Determination from Vector Observations: Quaternion Estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, 21(1): 128-136
    [91] Bar-Itzhack I Y, Deutschmann J, Markley F L. Quaternion Normalization in Additive EKF for Spacecraft Attitude Determination[C]. AIAA Guidance, Navigation, and Control Conference, New Orleans, 1991, AIAA Paper 91-2706
    [92] Matthew J H, Vergez P, Maarten J. Meerman Kalman Filtering and the Attitude Determination and Control Task[C]. AIAA Space Conference and Exhibit. San Diego, California, 2004, AIAA paper 2004-6018
    [93] John L C, Markley F L. Unsented Filtering for Spacecraft Attitude Estimation[J], Journal of Guidance, control, and Dynamics, 2003, 26(4): 536-542
    [94]姜雪原,马广富,胡庆雷.改进型UKF滤波算法的卫星姿态估计[J].哈尔滨工程大学学报, 2005, 26(4): 544-549
    [95]耿云海,崔祜涛,孙兆伟,杨涤.小卫星主动磁控制地球捕获姿态控制系统设计[J].航空学报,2000,21(2): 142-145
    [96]田春华.卫星姿态控制系统的分析、设计和仿真研究[硕士论文].哈尔滨工业大学, 2000
    [97]侯建文. FY-1C卫星姿态控制系统[J].上海航天, 2001, No2: 33-43
    [98] Alfriend K T. Magnetic Attitude Control System for Dual-Spin Satellites[J]. AIAA Journal, 1975, 13(6): 817-822
    [99] Stickler A C, Alfriend K T. Elementary Magnetic Attitude Control System[J]. Journal of Spacecraft and Rockets, 1976, 13(5):282-287
    [100] Tiauw H G, Ramnath R V. Geomagnetic Attitude Control of Satellites Using Generalized Multiple Scales[J]. Journal of Guidance, and Dynamics. 1997, 20(4): 690-698
    [101] J?ran Antonsen. Attitude control of a micro satellite with the use of reaction control thrusters[Master Thesis]. H?gskolen i Narvik Institutt for data, elektro og romteknologi.Veileder. 2004
    [102] Arduini C, Baiocco P. Active Magnetic Damping Attitude Control for Gravity Gradient Stabilized Spacecraft[J]. Joural of Guidance, Control, and Dynamics, 1997, 20(1):117-122
    [103] Wang P, Shtessel Y B. Satellite Attitude Control Using only Magnetorquers[J]. IEEE Proceedings. 1998: 500-504
    [104] Wisniewski R. Linear time varying approach to satellite attitude control using only magnetic actuation[C]. AIAA Guidance, Navigation, and Control Conference, 1997, New Orleans. AIAA-97-3479
    [105] Mehrdad J, Nasser S. LTV Approach to Satellite Attitude Control Using Only Magnetic Actuation[C]. AIAA Guidance, Navigation, and Control Conference, Washington, 2002, AIAA 2002-4763
    [106] Wisniewski R. Satellite Attitude Control Using Only Electromagnetic Actuation[PhD Thesis]. Aalborg University, 1996
    [107] Wisniewski R, Blanke M. Fully magnetic attitude control for spacecraft subject to gradient[J]. Automatic, 35(7), 1999: 1201-1214
    [108] Jan T G. Magnetic attitude control for satellites[C]. The 43th IEEE Conference on Decision and Control, 2004: 261-268
    [109] Matthew R B. Angular Momentum Precession, Acquisition Maneuver and Attitude Estimation Design for SILA[PhD Thesis]. Department of Mechanical and Aerospace Engineering Carleton University Ottawa, Ontario, 1996
    [110] William T Thomson. Spin Stabilization of Attitude against Gravity Torque[J]. The Journal of Astronautical Science. 1962, 9(1): 31-33
    [111] Sticker A C. A Magnetic Control System for Attitude Acquisition. Ithaca Report. 90345, 1972
    [112] Steyn W H, Hashida Y, Lappas V. An Attitude Control System and Commissioning Results of the SNAP-1 Nanosatellite[C]. The 14th AIAA/USU Conference on Small Satellites. SSC00-VIII-8
    [113] Mohammed A M, Benyettou M, Sweeting M N, et al. Initial Attitude Acquisition Result of the Alsat-1 First Algerian Microsatellite in Orbit[C]. IEEE Proceeding of Network, Sensing and Control, 2005: 566-571
    [114] Andrew D A, Jerry I S, Yoshi H. Attitude Determination and Control System Simulation andAnalysis for Low-Cost Micro-satellites[J]. IEEE Aerospace Conference Proceedings. 2004: 2935-2949
    [115] Shuster M D. A survey of attitude representations[J]. Journal of the Astronautical Sciences, 1993, 41(4): 437-517
    [116] Schaub H, Junkins J L. Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters[J].The Journal of the Astronautical Sciences. 1996, 44(1): 1-19
    [117] Tsiotras P, Longuski J M. A new parameterization of the attitude kinematics[J]. Journal of the Astronautical Sciences, 1995, 43(3): 243–262
    [118] Tsiotras P, Corless M, Longuski M. A novel approach for the attitude control of an axisymmetric spacecraft subject to two control torques[J].Automatica,1995, 31(8):1099-1112
    [119] Tsiotras P, Jihao L. Control of underactuated spacecraft with bounded inputs[J]. Automatica, 2000, 36(1): 1153-1169
    [120] Tsiotras P, Schleicher A. Detumbling and Partial Attitude Stabilization of a Rigid Spacecraft Under Actuator Failure[C]. AIAA Guidance, Navigation, and Control Conference, San Diego, 2000, AIAA-2000-4044
    [121] Tsiotras P, Doumtchenko V. Control of spacecraft subject to actuator failures: state-of-art and open problems[J]. Journal of the Astronautical science, 2000, 48(2): 337-358
    [122] Ramin E, Paul K C. A Lyapunov-based Fail-safe Controller for an underactuated Rigid-Body Spacecraft[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001, Montreal, Canada, AIAA-2001-4212
    [123] Andriano V. Global feedback stabilization of the angular velocity of a symmetric rigid body[J]. Systems and Control Letters, 1993, 20(5): 361–364
    [124]张兵,吴宏鑫.二维完整配置下刚性航天器姿态角速度的渐近镇定[J].自动化学报, 2000, 26(4): 547-551
    [125]戈新生,陈立群,刘延柱.欠驱动刚体航天器姿态运动规划的遗传算法[J].动力学与控制学报, 2004, 2 (2) : 53 - 57
    [126]郑敏捷,徐世杰.欠驱动航天器姿态控制系统的退步设计方法[J].宇航学报, 2006, 27(5): 947-951
    [127] Sontag E D. The ISS Philosophy as a Unifying Framework far Stability-Like Behavior. Nonlinear Control in the Year 2000[C], Springer-Verlag, Berlin, 2000: 443-468
    [128] Tsiotras P, Luo J H. Stabilization and tracking of underactuated axisymmetric spacecraft with bounded control[C]. In Proc. 4th IFAC Nonlinear Control Systems Design Symposium, Twente, Netherlands 1998: 800–806
    [129] Tsiotras P. Feasible trajectory generation for underactuated spacecraft using differential flatness[C]. In AAS Astrodynamics Specialists Conference, Girdwood, Alaska, 1999. AAS Paper 99-323
    [130] Behal A, Dawson D, Zergeroglu E, et al. Nonlinear Tracking Control of an Underactuated Spacecraft [J]. Journal of Guidance, Control and Dynamics, 2002, 25(5): 979-985
    [131] Fliess M, Levine J, Martin P, et al. Flatness and defect of nonlinear systems: Introductory theory and examples[J]. International Journal of Control, 1995, 61(9): 1327–1361
    [132]李涛.实时容错嵌入式小卫星操作系统设计的研究[博士论文].中国科学院上海冶金研究所, 2000.6
    [133]高买花.卫星姿轨控系统软件体系结构设计的方案研究[硕士论文].中国科学院空间科学与应用研究中心, 2003.1
    [134] Jean J.Labrosse.嵌入式实时操作系统μC/OS-Ⅱ[M].北京:北京航空航天大学出版社, 2003.5
    [135]侯业勤.张菁编译分布式嵌入式实时操作系统QNX[M].北京:宇航出版社, 1999.1
    [136]陈智育,温彦军,陈琪编. VxWorks程序开发实践[M].北京:人民邮电出版社2004.5
    [137]陆寅.基于VxWorks的1553B总线通讯系统的设计与实现[硕士论文].西北工业大学, 2004.3
    [138]周勇.坦克火控数字稳定技术应用研究[硕士论文].北京理工大学, 2003.7
    [139]谢李李. VxWorks环境下的猎雷声纳基阵姿态稳定控制系统实现[硕士论文].哈尔滨工业大学, 2005.2
    [140]王欢. VxWorks操作系统研究及其在鱼雷制导系统中的应用[硕士论文].西北工业大学, 2006.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700