用户名: 密码: 验证码:
时间准确自由尾迹方法建模及(倾转)旋翼气动特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了一个新的“时间准确”旋翼自由尾迹模型,利用该模型针对旋翼和倾转旋翼的尾迹和气动特性进行了计算和分析,同时开展了旋翼倾转状态的气动试验研究,主要工作如下:
     作为前提和背景,本文首先阐述了论文的研究目的,以及旋翼自由尾迹方法研究、旋翼气动特性研究和倾转旋翼气动特性研究的国内外现状,指出了现有研究中存在的不足,提出了本文拟采用的研究方法和本文的研究内容。
     在第二章,本文基于Vatistas公式给出了一个不同的粘性涡核模型,分析了涡模型中涡核半径的确定方法,并考虑了涡核实际的耗散影响。然后,以平面涡环和三维涡管为算例,计算了诱导速度分布,以表明涡模型对实际诱导速度计算的影响,并通过旋翼入流的计算验证了本文涡模型的有效性。
     针对尾迹步进计算的多步差分格式,在第三章给出了一个通用推导方法,并利用该方法推导了一个新的二步二阶预测-校正差分算法——“D2PC”算法。然后,对“D2PC”差分格式的精度和稳定性进行了分析,并与典型的单步、三步差分格式作了对比。此外,还进行了自由尾迹涡线离散处理的误差分析,并对采用“D2PC”差分格式表示的涡线主控方程进行了修正,以提高尾迹求解精度。
     第四章从刚体的扩展欧拉动力学模型出发,分别推导了旋翼在定常飞行时、有角运动时及作倾转运动时的桨叶挥舞动力学方程。同时,建立了桨叶Weissinger-L升力面气动模型,并给出了适用于旋翼气动力分析的桨叶环量求解方程以及桨尖涡强度和释放位置的确定方法。
     在第五章,给出了一个适用于时间步进分析的旋翼配平模型,并结合第二、三和四章的模型,建立了一个能适合于旋翼在定常飞行、有角运动以及旋翼倾转运动时的尾迹和气动特性分析的“时间准确”自由尾迹方法。在第六章,首先通过旋翼尾迹、入流和气动力响应等多种算例计算,验证了本文建立的“时间准确”旋翼自由尾迹方法的有效性,然后,应用该方法分别对直升机旋翼的尾迹几何形状、桨盘入流、旋翼下洗流场等时均气动特性进行了计算与分析,并对旋翼在总距突增时的瞬时动态响应特性、旋翼在有角运动时的尾迹几何形状和桨盘入流特性进行了计算,得出一些新的结论。
     第七章在南京航空航天大学研制的倾转旋翼实验台上进行了倾转旋翼的气动特性试验研究,首先测量了不同旋翼半径、不同总距角条件下,旋翼不倾转时的气动特性。然后,测量了不同旋翼转速及不同倾转时间条件下,旋翼倾转时的非定常气动力,并与计算结果进行了对比。
     本文在第八章,应用建立的“时间准确”旋翼自由尾迹模型针对旋翼在不同倾转状态下的尾迹进行了计算和分析,并对旋翼倾转状态下的非定常气动力和挥舞响应特性进行了研究,在此基础上,得出了一些新的结果。
In this paper, a new time-accurate rotor free wake method has been developed, and using the method, vortical wake and aerodynamic characteristics of rotor and tilting rotor are calculated and analyzed. As the same time, the aerodynamic experiments for the tilting rotor are performed. The major contributions of the author’s research work are as follows:
     As the background of the work, the research and development in the field of the rotor free wake method, the aerodynamic characteristics of rotor and tiltrotor are described in Chapter 1. The difficulties in the current rotor free wake method research are pointed out. And the importance of simulating aerodynamic characteristics of rotor and tiltrotor by the wake method is emphasized. Moreover, the present work is briefly introduced.
     In Chapter 2, a different algebraic vortex model is developed based on the Vatistas formula, and the expression of vortex core radius is given under the consideration of vortex diffusion. As numerical examples, the induced velocity distributions of the vortex ring and vortex tube are calculated to indicate the effects of the vortex model on the calculated results of induced velocity. Then the calculated inflows for rotor are compared with the available experimental data to show the validity of the present vortex model.
     A general method used to deduce multi-step differencing scheme is given in Chapter 3, and based upon the method, a new 2-step 2-order accurate predictor-corrector with backward difference algorithm—named“D2PC”is deduced. Both the stability and accuracy of the“D2PC”numerical wake solution algorithm are examined. By comparisons with the critical 1-step and 3-step difference algorithms, the validity of“D2PC”algorithm is demonstrated. Numerical errors associated with the wake discretization are analyzed. In order to increase the accuracy of the solution for rotor wake, the discrete approximations of vortex governing equations using“D2PC”algorithm are modified and improved.
     In Chapter 4, based on the extended Euler dynamic equations, the rigid blade flap dynamic equations for rotor in steady flight, angular motion and tilting motion are deduced. The blade is simulated by the Weissinger-L lift-surfacing model, and the methods for determining the blade bound vorticity strength, tip vortex strength and release position are given.
     In Chapter 5, a trimming model is modified for fitting the time-stepping wake calculation. Combined the trimming model with models of Chapter 2, 3 and 4, a new time-accurate free wake method is developed for the calculation on vortical wake and aerodynamic characteristic of rotor in steady flight, angular motion and tilting motion.
     In Chapter 6, by the comparisons of calculated results with experimental results for some numerical examples on wake geometries, inflows, induced velocities, aerodynamic responses, the present time-accurate free wake method is validated. Using the method, time-average aerodynamic characteristics on the wake geometry, inflow and induced velocity of rotor are calculated and analyzed. Then the rotor aerodynamic responses with abrupt increase of collective pitch have been calculated. Additionally, the vortical wake geometry and inflow distribution with rotor angular motion have been analyzed. Some new conclusions are obtained.
     Based on the tiltrotor test rig of Nanjing University of Aeronautics and Astronautics, experimental investigations for rotor and tilting rotor have been carried out in Chapter 7. The aerodynamic characteristics of fixed rotor are tested for different rotor radius and collective pitch. Then aerodynamic characteristic tests of tilting rotor for different rotor radius, collective pitch and tilting rate have been performed. And the comparisons between experimental results and calculated results by the present method are made.
     In Chapter 8, the wake geometries of tilting rotor for different operating conditions are calculated and analyzed, and analysis on the aerodynamic forces and flapping responses for rotor during tilting motion has been performed. Some new conclusions are presented.
引文
[1] Conlisk A T, Modern Helicopter Rotor Aerodynamics, Progress in aerospace science, 2001, (37):419-475.
    [2]王适存,徐国华,直升机旋翼空气动力学的发展,南京航空航天大学学报, 2001, 33(3):203-211.
    [3] Glusman S T, Hyland R A, Marr R L, V-22 Technical Challenges, Presented at the AGARD Advances in Rotorcraft Technologies Symposium, 1996.
    [4]唐正飞,徐国华,高正,倾转旋翼飞行器的技术关键,第16届全国直升机年会论文集,上海, 2000年.
    [5] Banglore J C, Sankar L N, Forward Flight Analysis of Slatted Rotors Using Navier-Stokes Methods, AIAA Paper 96-0675, 1996.
    [6] Hubvert P, Siegfried W, Navier-Stokes Analysis of Helicopter rotor Aerodynamics in Hover and Forward Flight, Journal of Aircraft, 2002, 39(5):813-821.
    [7]杨爱明,乔志德,基于运动嵌套网格的前飞旋翼绕流N-S方程数值计算,航空学报, 2001, 22(5):434-436.
    [8] Zhao Q J, Xu G H, Zhao J G, Numerical Simulations of the Unsteady Flowfield of Helicopter Rotors on Moving Embedded Grids,Aerospace Science and Technology, 2005, 9(2):117-124.
    [9] Landgrebe A J, An Analytical Method for Predicting Rotor Wake Geometry, Presented at the AIAA/AHS VTOL Research, Design & Operations Meeting, 1969.
    [10] Sadler S G, A Method for Predicting Helicopter Wake Geometry, Wake-Induced Inflow and Wake Effects on Blade Airloads, Proceedings of the American Helicopter Society 27th Annual Forum, 1971.
    [11] Scully M P, Computation of Helicopter Rotor Wake Geometry and Its Influence on Rotor Harmonic Airloads, Massachusetts Institute of Technology, ASRL TR 178-1, 1975.
    [12] Nagashima T, Nakanishi K, Optimum Performance and Wake Geometry of Co-axial Rotor in Hover, Proceedings of the 7th European Rotorcraft Forum, 1981.
    [13] Crouse, Jr G L, Leishman J G, A New Method for Improved Rotor Free Wake Convergence, 31st AIAA Aerospace Sciences Meeting and Exhibit, 1993.
    [14] Berry J D, Prediction of Time-Dependent Fuselage Pressures in the Wake of a Helicopter Rotor, Proceedings of the 2nd International Conference on Basic Rotorcraft Research, 1988.
    [15] Bliss D B, Dadone L, Wachspress D A, Rotor Wake Modeling for High Speed Applications, Proceedings of the American Helicopter Society 43rd Annual Forum, 1987.
    [16] Bliss D B, Washspress D A, Quackenbush T R, A New Approach to the Free WakeProblem for Hovering Rotors, Proceedings of the American Helicopter Society 41st Annual Forum, 1985.
    [17] Berry J, Bettschart N, Rotor-Fuselage Interaction: Analysis and Validation with Experiment, Proceedings of the American Helicopter Society 53rd Annual Forum, 1997.
    [18] Egolf T A, Massar J P, Helicopter Free Wake Implementation on Advanced Computer Architecture, Proceedings of the 2nd International Conference on Rotorcraft Basis Research, 1988.
    [19] Egolf T A, Rotor Wake Modeling for High Speed Applications, Proceedings of the American Helicopter Society 44th Annual Forum, 1988.
    [20] Bhagwat M J, Leishman J G, Stability, consistency and convergence of time-marching free-vortex rotor wake algorithms. Journal of the American Helicopter Society, 2001, 46(1):59-71.
    [21] Quackenbush T R, Lam C M G, Wachspress D A, et al., Analysis of High Resolution Unsteady Airloads for Helicopter Rotor Blades, Proceedings of the American Helicopter Society 50th Annual Forum, 1994.
    [22] Soliman M M, A“Force-Free”Rotor Wake Model for Advanced Research Applications, Proceedings of 22nd European Rotorcraft Forum, 1996.
    [23] Bhagwat M J, Leishman J G, Rotor Aerodynamics During Maneuvering Flight Using a Time-Accurate Free-vortex Wake , Journal of the American Helicopter Society, 2003, 48(3):143-158.
    [24] Bagai A, Leishman J G, Rotor Free-Wake Modeling Using a Pseudo-Implicit Algorithm. Journal of Aircraft, 1995, 32(6):1276-1285.
    [25] Bhagwat M J, Leishman J G, Stability, Consistency and Convergence of Time-marching Free-vortex Rotor Wake Algorithms, Journal of the American Helicopter Society, 2001, 46(1):59-71.
    [26]楼武疆,旋翼尾迹描述新法及其计算,博士学位论文,南京航空航天大学, 1990.
    [27]徐国华,使用自由尾迹分析的新型桨尖旋翼气动特性研究,博士学位论文,南京航空航天大学, 1996.
    [28]徐国华,王适存,前飞状态直升机旋翼的自由尾迹计算,南京航空航天大学学报, 1997, 29(6):648-653.
    [29]曹义华,旋翼涡尾流与下洗流场的计算方法,北京航空航天大学学报, 2000, 26(2):174-177.
    [30]曾洪江,胡继忠,一种新的自由涡尾迹计算方法,航空学报, 2004, 25(6):546-550.
    [31] Johnson W A, Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Part I: Analytical Development, NASA TM 81182, 1980.
    [32] Johnson W, A General Free Wake Geometry Calculation For Wings and Rotors, Proceedings of the American Helicopter Society 51st Annual Forum, 1995.
    [33] Miller R H, A Simplified Approach to the Free Wake Analysis of a Hovering Rotor, Vertica, 1982, 6:89-95.
    [34] Bagai A, Leishman J G, Rotor Free-Wake Modeling Using a Relaxation Technique - Including Comparisons with Experimental Data, Journal of the American HelicopterSociety,. 1995, 40(3):29–41.
    [35]孙茂,直升机机身对旋翼的干扰,航空学报, 1988, 9(3):108-112.
    [36]赵景根,高正,徐国华,直升机旋翼/机身气动干扰的计算方法,南京航空航天大学学报, 2000, 32(4):369-374.
    [37]赵景根,徐国华,王适存,前飞状态直升机旋翼/机身非定常气动干扰的分析,流体力学实验与测量, 2000, 14(3):18-24.
    [38] Landgrebe A J, The Wake Geometry of a Hovering Rotor and its Influence on Rotor Performance, Journal of the American Helicopter Society, 1972, 17(4):2-15.
    [39]陈铭,胡继忠,曹义华,共轴双旋翼前飞气动特性固定尾迹分析, 2004, 30(1):74-78.
    [40] Kocurek J D, Tangler J L, A Prescribed Wake Lifting Surface Hover Performance Analysis, Journal of the American Helicopter Society, 1977, 22(1):24–35.
    [41]王平,王适存,郭才根,共轴式双旋翼气动特性的固定尾迹分析,南京航空航天大学学报, 1997,29(6):708-711.
    [42] Leishman J G, Bhagwat M J, Ananthan S, Free-vortex Wake Predictions of the Vortex Ring State for Single-rotor and Multi-rotor Configuration. Proceedings of the American Helicopter Society 58th Annual Forum, 2002.
    [43]李春华,徐国华,悬停和前飞状态下旋翼在导弹发射线上的诱导影响计,空气动力学学报, 23(4) , 2005:449-454.
    [44] Miller W O, A Fast Adaptive Resolution Method for Efficient Free Wake Calculations, American Helicopter Society 49th Annual National Forum, 1993.
    [45] Rosen A, Isser A, A New Model of Rotor Dynamics During Pitch and Roll of a Hovering Helicopter, Journal of the American Helicopter Society, 1995, 40 (3): 19-27.
    [46] Keller J D, An Investigation of Helicopter Dynamic Coupling Using an Analytical Model, Journal of the American Helicopter Society, 1996, 41 (4):325-329.
    [47]辛宏,高正,孙传伟等,悬停状态总距突增时旋翼气动响应的理论和试验研究,第11届全国直升机年会论文集. 1995.
    [48]王海,徐国华,直升机旋翼瞬态气动响应分析的一个高效方法,应用力学学报, 2006, 23(1):154-159.
    [49] Bhagwat M J, Leishman J G, Time-accurate free vortex wake model for dynamic rotor response, Presented at the American Helicopter Society Specialist Meeting, 2000.
    [50] Johnson W, Calculation of the Aerodynamic Behavior of the Tilt Rotor Aeroacoustic Model (TRAM) in the DNW, Proceedings of the American Helicopter Society 57th Annual Forum, 2001.
    [51] Potsdam M A, Strawn R C. CFD Simulations of Tiltrotor Configurations in Hover, Proceedings of the American Helicopter Society 58th Annual Forum, 2002.
    [52]李春华,徐国华,悬停和前飞状态倾转旋翼自由尾迹分析,空气动力学学报, 2005, 23(2):152-156.
    [53]王福新,倾转旋翼飞行器的风洞试验技术综述,实验流体力学, 2005, 19(4):85-89.
    [54] Felker F, Results from a test of a 2/3-scale V-22 Rotor and Wing in the 40-by 80- foot Wind Tunnel, Proceedings of the American Helicopter society 47th Anuual Forum, 1991.
    [55] Swanson A, Light J S, Shadowgraph Flow Visualization of Isolated Tiltrotor And Rotor/Wing Wakes, Proceedings of the American Helicopter Society 48th Annual Forum, 1992.
    [56] Leishman J G, Bagai A, Challenges in Understanding the Vortex Dynamics of Helicopter Rotor Wakes, AIAA Journal, 1998, 36(7):1130–1140.
    [57] Rankine W J M, Manual of Applied Mechanics, C. Griffen Co., London, 1858.
    [58]Bhagwat M J, Leishman J G, Correlation of Helicopter Tip Vortex Measurements, AIAA Journal, 2000, 38(2):301–308.
    [59] Scully M P, Sullivan J P, Helicopter Rotor Wake Geometry and Airloads and Development of Laser Doppler Velocimeter for Use in Helicopter Rotor Wakes, Massachusetts Institute of Technology Aerophysics Laboratory Technical Report 183, MIT DSR No. 73032, 1972.
    [60] Kaufmann W, Uber die Ausbreitung kreiszlindrischer Wirbel in zahen Flussigkeiten, Ing. Arch., 1962, 31(1):1.
    [61] Vatistas G H, New Model for Intense Self-Similar Vortices, Journal of Propulsion and Power, 1998, 14(4): 462–469.
    [62] Vatistas G H, Kozel V, Mih W C, A Simpler Model for Concentrated Vortices, Experiments in Fluids, 1991, 11:73-76.
    [63] Johnson W, Helicopter Theory, Princeton University Press, 1980.
    [64] Lamb H, Hydrodynamics, Cambridge University Press, Cambridge, UK, 1932.
    [65] Bagai A, Contributions to the Mathematical Modeling of Rotor Flow-Fields using a Pseudo-Implicit Free-Wake Analysis, PhD thesis, University of Maryland,1995.
    [66] Leishman J G, Bagai A, Free-Wake Analysis of Twin-Rotor Systems, Proceedings of the 20th European Rotorcraft Forum, 1994.
    [67] Bhagwat M J, Transient Dynamics of Helicopter Rotor Wakes Using a Time-accurate Free-vortex Method, PhD thesis, University of Maryland, 2001.
    [68] Chigier N A, Corsiglia V R, Tip Vortices-Velocity distributions, 27th Annual National V/STOL Forum of the American Helicopter Society, 1971.
    [69] Sullivan J P, An Experimental Investigation of Vortex Rings and Helicopter Rotor Wakes using a Laser Doppler Velocimeter, Massachusetts Institute of Technology, MIT DSR No. 80038, 1973.
    [70] Squire H B, The Growth of a Vortex in Turbulent Flow, Aeronautical Quarterly, 1965, 16:302-306.
    [71]《数学手册》编写组,数学手册,高等教育出版社, 2005.
    [72] Keller J D, The Effect of Rotor Motion on the Induced Velocity in Predicting the Response of Rotorcraft, Doctor Dissertation, Princeton University, 1998.
    [73] Arnold U, Keller J D, Curtiss H C, et al., The Effect of Inflow Models on thePredicted Response of Helicopters, Journal of the American Helicopter Society, 1998, 43(1):25-36.
    [74] Elliot J W, Althoff S L, Sailey R H, Inflow Measurement Made With a Laser Velocimeter on a Helicopter Model in Forward Flight - Volume II: Rectangular Planform Blades at an Advance Ratio of 0.23, NASA TM 100542, 1988.
    [75] Tangler J L, Wohlfeld R M, Miley S J, An Experimental Investigation of Vortex Stability, Tip Shapes, Compressibility, and Noise for Hovering Model Rotors, NASA CR-2305, 1973.
    [76] Clark D R, Leiper A C, The Free Wake Analysis– A Method for Prediction of Helicopter Rotor Hovering Performance, Journal of the American Helicopter Society, 1970, 15(1):3-11.
    [77] Baron A, Boffadosi M, Unsteady Free Wake Analysis of Closely Interfering Helicopter Rotors, Proceedings of the 19th European Rotorcraft Forum, 1993.
    [78]胡健伟,汤怀民,微分方程数值方法,科学出版社,2003.
    [79]关治,陆金甫,数值分析基础,高等教育出版社, 2005.
    [80] Jain R, Conlisk A T, Interaction of Tip-Vortices in the Wake of a Two-Bladed Rotor in Axial Flight, Journal of the American Helicopter Society, 2000, 45(3):157–164.
    [81] ZHAO J G, XU G H, WANG S C,Calculation of Helicopter Rotor Flapping Angles and Comparison With Measured Data, Chinese Journal of Aeronautics, 2000, 13(2):75-79.
    [82] Curtiss H C, Jr, The Influence of the Rotor Wake on Rotorcraft Stability and Control, Proceedings of the 15th European Rotorcraft Forum, 1989.
    [83]黄水林,李春华,徐国华,基于自由尾迹和升力面分析的双旋翼气动特性计算方法,第21届全国直升机年会论文集, 2005.
    [84] Beddoes T S, Representation of Airfoil Behavior, Vertica, 1983, 7(2):183–197.
    [85] Bramwell A R S., Done G., Balmford D., Bramwell’s Helicopter Dynamics, Butterworth-Heinemann, 2001.
    [86] Padfield G D, Helicopter Flight Dynamics, Blackwell Science Ltd, 1996.
    [87] Miller R H, A Simplied Approach to the Free Wake Analysis of a Hovering Rotor, Vertica, 1982, 6:89-95.
    [88] Weissinger J, The Lift Distribution of Swept-Back Wings, NACA TM1120, 1947.
    [89] Thwaites B, Incompressible Aerodynamics, Oxford Univ. Press, Oxford, UK, 1960.
    [90] Beddoes T S, A Wake Model for High Resolution Airloads, Proceedings of the 2nd International Conference on Basic Rotorcraft Research, 1985.
    [91] Wouter H,Tonio S,Gijs V K,Gerard V B. Stall in Yawed Flow Conditions: A Correlation of Blade Element Momentum Predictions With Experiments,Journal of Solar Energy Engineering, 2006, 128(4):472-480.
    [92] Zhao J G, Prasad J V R, Peters D A, Rotor Dynamic Wake Distortion Model for Helicopter Maneuvering Flight, Proceedings of the American Helicopter Society 58th Annual Forum, 2002.
    [93] Leishman J G, Bagai A, Fundamental Studies of Rotor Wakes in Low Speed Forward Flight Using Wide-field Shadowgraphy. Proceedings of AIAA 9th Applied Aerodynamics Meeting, 1991.
    [94] Elliot J W, Althoff S L, Sailey R H, Inflow Measurement Made With a Laser Velocimeter on a Helicopter Model in Forward Flight - Volume I: Rectangular Planform Blades at an Advance Ratio of 0.15, NASA TM 100541, 1988.
    [95] Elliot J W, Althoff S L, Sailey R H, Inflow Measurements Made with a Laser Velocimeter on a Helicopter Model in Forward Flight, Volume III: Rectangular Planform at an Advance Ratio of 0.30, NASA TM 100545, 1988.
    [96] Anton J L, John C B, Investigation of the Airflow of a Hovering Model Helicopter at Rocket Trajectory and Wind Sensor Locations. AD A075378, 1977.
    [97] Tayloer R B, Investigation of the Airflow at Rocket Trajectory and Wind Sensor Locations of a Model Helicopter Simulating Low Speed Flight, AD A075378, 1979.
    [98] Carpenter P J, Fridovich B, Effect of A Rapid Blade-Pitch Increase on the Thrust and Induced-Velocity Response of a Full-Scale Helicopter Rotor, NACA TN 3044, 1953.
    [99] McVeigh M A, The V-22 Tilit-Rotor Large-Scale Rotor Performance/Wing Download Test and Comparison with Theory, Vertica, 1986, 10(3):281-297.
    [100] Felker F F, Light J S, Aerodynamic Interactions Between a Rotor and Wing in Hover, Journal of the American Helicopter Society, 1988, 33(2):53-61.
    [101] Liu J, McVeigh M A, Mayer R J, et al., Model and Full-scale Tiltrotor Hover Download Tests, Proceedings of the American Helicopter Society 55th Annual Forum, 1999.
    [102] Felker F, Light J S, Rotor/Wing Aerodynamic Interactions in Hover, Proceedings of the 42nd AHS Annual Forum,1986.
    [103] Desopper A, Study of the Low Speed Characteristics of a Tiltrotor, Proceedings of the 28th European Rotorcraft Forum, 2002.
    [104]李春华,黄水林,徐国华.倾转旋翼机机翼向下载荷的计算方法及参数影响分析,实验流体力学, 2007, 37(1):13-18.
    [105] Felker F F, A review of Tilt Rotor Download Research, Proceedings of the 14th European Rotorcraft Forum, 1988.
    [106] McVeigh M A, Rotor/Airframe Interactions on Tiltrotor Aircraft, Journal of the American Helicopter Society, 1990, 35(3):43-52.
    [107]王适存,直升机空气动力学,航空专业教材编审组, 1985.
    [108]高正,陈仁良,直升机飞行动力学,科学出版社, 2003.
    [109]高正,直升机空气动力学的新成果,航空工业出版社, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700