用户名: 密码: 验证码:
立式捏合机混合釜内固体推进剂药浆混合的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体推进剂药浆混合是固体推进剂生产的关键工序之一,药浆的混合性能直接影响推进剂的加工性能、力学性能和燃烧特性。混合是流体流动的特殊形式,在数学上表示为映射,由拉格朗日法或欧拉法描述。
     根据立式捏合机混合釜内流体动力学系统混合域几何结构的轴对称性,提出了混合釜内流场遍历率、混合率和混合时间等概念,分析了立式捏合机几何参数和运动参数对系统遍历性和混合性能的影响。通过引入穿越影响因子,定量地研究了穿越对系统混合性能的影响,揭示了系统遍历和系统混合是两个不同的过程,遍历过程中流场轨线速度方向的不断变化加速了混合进程。
     提出了根据Smale马蹄映射模型原理来构建流体混合动力学系统的方法,分析了立式捏合机几何参数和运动参数对系统混合率和混合时间的影响,结果表明,在一定几何参数和运动参数的条件下,存在螺旋桨自转公转转速比的最佳取值范围,使流体动力学系统表现出较强的混沌特征。在准静态流体动力学系统假设条件下,分析了单螺旋桨和双螺旋桨二维流体动力学系统流函数的分布特征,结果表明,双螺旋桨的异速转动使混合釜内流线形状发生一定变化,剪切速率为0的区域减小,能抑制规则岛的产生。
     采用动网格法通过用户自定义函数功能编写源程序并经编译和调用,实现了混合釜内网格随着螺旋桨的行星运动而自动更新。提出了将按固体推进剂药浆混合工艺操作达到一定混匀标准的固体推进剂药浆作为“连续相”的假设,通过离散相模型数值仿真分析了立式捏合机几何参数和运动参数对固体推进剂药浆固相组分运动历程的影响,揭示了固体推进剂药浆固相组分的运动规律。通过欧拉模型数值仿真分析了混合釜内固体推进剂药浆流体动力学系统的混沌特征,揭示了固体推进剂药浆在复杂混合域内的混合规律。
     提出了体积加强平均分离强度的概念,用于计算和分析固体推进剂药浆密度测量值与其均值的偏离程度,获得了固体推进剂药浆混合均匀性的评价。通过对固体推进剂药浆混合均匀性实验结果的极差分析和方差分析,得到了固体推进剂药浆混合工艺参数对药浆混合性能影响的显著性程度。
Mixing process is one of the key processes for the production of solid propellants. The mixing performance of the solid propellant slurry directly affects machining properties, mechanical properties and combustion characteristics of the propellants. Mixing, expressed as mapping in mathematics, is a special form of fluid flowing, and it can be described by Lagrangian Method or Eulerian Method.
     According to the axial symmetry of geometry of the mixing domain of the fluid dynamics system in the mixing tank of a vertical kneader, definitions of Ergodicity Rate, Mixing Rate, Mixing Time, etc., were presented in the dissertation. The influences of parameters of geometry and kinematics of the kneader on ergodic and mixing performance of the system were analyzed. By introducing impact factor of crossing, the influences of crossing on the mixing performance were quantitatively studied, and results revealed that ergodicity and mixing are different processes of a system, of which, the continuous changes of velocity directions of the trajectory of the fluid in ergodic process accelerate the mixing process.
     A method of constructing fluid dynamics system of mixing based on Smale Horseshoe Mapping Model was put forward. The influences of parameters of geometry and kinematics of the kneader on Mixing Rate and Mixing Time of the system were analyzed. Results show that there is such an optimal range of speed ratio of rotation and revolution of the hollow blade for certain parameters of geometry and kinematics of the kneader that makes the fluid dynamics system hold strong chaotic properties. With assumption of fluid dynamics system being quasi-static, the characteristics of stream-function distributions of the two-dimensional systems of single screw blade and that of double screw blades were analyzed. Results show that double screw blades with different revolution speeds can make changes of the shapes of the trajectory in the mixing tank, and area of the zero shear rate region decreases as a result, which prohibits the generation of regular islands.
     By adopting Dynamic Mesh Model, mesh auto-updating with the planetary motion of the screw blades was realized after source code, based on User Defined Functions, being edited, compiled and hooked. Assume that the solid propellant slurry, which was prepared following the ordinary mixing process and reached some standard of mixing uniformity, is the continuous phase of a mixture of a fluid dynamics system, then the influences of parameters of geometry and kinematics of the kneader on the movement course of solid phase particles of the solid propellant slurry were analyzed by the use of Discrete Phase Model, and the movement characteristics of solid phase particles of the slurry was revealed. Moreover, the chaotic properties of the solid propellant sluny dynamics system in the mixing tank of the kneader was analyzed by the use of Eulerian Model, and the mixing mechanism of the solid propellant slurry in a complex mixing domain was revealed.
     Volume-weighted Intensity of Segregation was defined, and it was employed to compute and analyze the deviation of the tested density from the average value of the solid propellant slurry, then the evaluation of mixing uniformity of the slurry was obtained. Major parameters of the mixing process and their significant levels affecting the mixing performance of the slurry were also obtained by means of range analysis and variance analysis of the tested results of mixing uniformity of the solid propellant slurry.
引文
[1]易维坤,杜斌.航天制造技术.北京:中国宇航出版社,2003
    [2]唐汉祥,吴倩,陈江.推进剂药浆混合均匀性研究.推进技术,1999,20(1):80-83
    [3]易朋兴,胡友民,崔峰,等.立式捏合机捏合间隙影响CFD分析.化工学报,2007,58(10):2680-2684
    [4]易朋兴.立式捏合机设计研究与性能分析.[博士学位论文].武汉:华中科技大学,2007
    [5]Arratia P E C.The effects of theology on the mixing mechanisms in laminar flows in stirred tanks.[Doctoral Dissertation].USA:The Statc University of New Jersey,2003
    [6]Ottino J M,Muzzio F J,Tjahjadi M,and et al.Chaos,symmetry,and self-similarity:Exploiting order and disorder in mixing processes.Science.1992,257:754-760
    [7]Solomon T H,Igor Mczic.Uniform resonant chaotic mixing in fluid flows.Nature,2003,425(25):376-378
    [8]S Cerbelli,A Adrover,F Creta,and et al.Foundations of laminar chaotic mixing and spectral theory of linear operators.Chemical Engineering Science,2006,61(9):2754-2761
    [9]Tae Gon Kang,Martien A.Hulsen,Patrick D.Anderson,and et al.Chaotic advection using passive and externally actuated particles in a serpentine channel flow.Chemical Engineering Science,2007,62(23):6677-6686
    [10]Finn M D,Cox S M.Stokes flow in a mixer with changing geomctry.Journal of Engineering Mathematics,2001,41:75-99
    [11]叶定友,张德雄.中国航天固体火箭技术的发展.固体火箭技术,2004(12):24-27
    [12]唐汉祥,陈江,吴倩,等.硼粉改性对推进剂工艺性能的影响.含能材料,2005,13(2):69-74
    [13]袁桂芳,胡建军,赵文胜,等.含RDX的硝胺丁羟推进剂能量特性研究.含能材料,2002,10(4):157-160
    [14]陈志平,章序文,林兴华,等.搅拌与混合设备设计与选用手册.北京:化学工业出版社,2004
    [15]王峰.搅拌槽内液液固三相流的数值模拟与实验研究.[博士学位论文].北京:中国科学院过程工程研究所.2004
    [16]李万平.计算流体力学.武汉:华中科技大学出版社,2004
    [17]胡敏良.流体力学.武汉:武汉工业大学出版社,2000
    [18]Reynolds O.Study of fluid motion by means of colored bands.Nature.1894,50:161
    [19]Nagata S.Mixing:principles and applications.New York:John Willey & Sons,1972
    [20]Mohr W D,Saxton R L,J epson C H.Mixing in laminar flow systems.Ind Eng Chem.1957,49:1855-1857
    [21]Lamberto D J,Alvarez M M,and Muzzio F J.Experimental and computational investigation of the laminar flow structure in a stirred tank.Chem.Eng.Sci.1999,54:919-941
    [22]徐百平,瞿金平.三维动态混合过程界面追踪模拟与表征.应用力学学报,2006,23(1):1-6
    [23]高普云.非线性动力学:分叉、混沌与孤立子.长沙:国防科技大学出版社,2005
    [24]顾圣士.微分方程和动力系统.上海:上海交通大学出版社,2000
    [25]陈士华,陆君安.混沌动力学初步.武汉:武汉水利电力大学出版社,1998
    [26]Aref H.The development of Chaotic advection.Physics of Fluids,2004,14(4):1315-1325
    [27]Aref H.Stirring by chaotic advection.J.Fluid Mech.1984,143:1-21
    [28]Aref H,Balachandar S.Chaotic advection in a stokes flow.Phys.Fluids.1986,29:3515-3521
    [29]Chien W L,Rising H,and Ottino J M.Laminar mixing and chaotic mixing in several cavity flows.J.Fluid Mech.1986,170:355-377
    [30]Chaiken J,Chervray R,Tabor M,and et al.Experiment study of Lagrangian turbulence in Stokes flow.Proc R.Soc.London,1986,A408:165-174
    [31]Mozzio F J,Ottino J M.Coagulation in chaotic flows.Phys.Rev.A.1988,38(9):2516-2524
    [32]Leong C W,Ottino J M.Experiments on mixing due to chaotic advection in a cavity.J.Fluid Mech.1989,209:463-499
    [33]Swanson P D,Muzzio J M.A comparative computational and experimental study of chaotic mixing of viscous fluids.J.Fluid Mech.1990,213:227-249
    [34]Giona M,Cerbelli S,and Adrover A.Geometry of reaction interfaces in chaotic flows.Phys.Rev.Lett.2002,88(2):1-4
    [35]Zalc J M,Szalai E S,Alvarez M M,and et al.Using CFD to understand chaotic mixing in laminar stirred tanks.AIChE.J.2002,48(10):2124-2134
    [36] Troy Shinbrot, Albert Alexander, and Muzzio F J. Spontaneous chaotic granular mixing.Nature, 1999,397(25): 675-678
    [37] Lawal A, Kalyon D M, and Ji Z H. Computational study of chaotic mixing in co-rotating two-tipped kneading paddles: two-dimensional approach. Polym. Eng. Sci. 1993, 33:140-148
    [38] Yao W G, Sato H, Takahashi K, and et al. Mixing performance experiments in impeller stirred tanks subjected to unsteady rotational speeds. Chem. Eng. Sci. 1998, 53:3031-3040
    [39] Fountain G 0. Computational and experimental studies of a 3D chaotic model flow: the fundamental mixing tank. [Doctoral Dissertation]. USA: Northwestern University, 2001
    [40] Ling F H. Chaotic mixing in the Kenics static mixer. ANTEC, Proceeding of Soc of Plastics Engineers, Brookfield, CT, USA. 1995:130-134
    [41] 梁斌,段天平,傅红梅,等.化学反应工程.北京:科学出版社,2003
    [42] Danchwerts P V. Continuous flow systems: distribution of residence times. Chem. Eng.Sci. 1953, (2): 1-13
    
    [43] Levenspiel O. Chemical reaction engineering. New York: John Willey & Sons, 1998
    [44] Baldyga J, Bourne J R. Turbulent mixing and chemical reactions. West Sussex, England:Willey, 1999
    [45] Nauman E B, Kothari D, and Nigam K D P. Static Mixers to promote axial mixing.Chem. Eng. Res. Des. 2002,80(A6): 681-685
    [46] Edward L, Paul, Victor A A, and et al. Handbook of industrial mixing: science and practice. New York: John Wiley & Sons, 2004
    [47] Mazer A A. Design and analysis of mixing machine. [Doctoral Dissertation]. USA: The University of Arizona, 1990
    [48] Stephen Wiggins, Ottino J M. Foundations of chaotic mixing. Phil. Trans. R. Soc. Lond.A, 2004, 362: 937-970
    [49] Kresta S M, Wood P E. Prediction of the three dimensional turbulent flow in stirred tanks. AIChE J. 1991,37: 448-460
    [50] Fokema M D, Kresta S M, and Wood P E. Importance of using the correct impeller boundary conditions for CFD simulations of stirred tanks. Can. J. Chem. Eng. 1994, 72:177-183
    [51] Min Jian, Gao Zhengming. Large eddy simulations of mixing time in a stirred tank.Chinese J. Chem. Eng., 2006,14(1): 1-7
    
    [52] Min Jian, Gao Zhengming, and Shi Litian. CFD simulation of mixing in a stirred tank with multiple hydrofoil impellers. Chinese J. Chem. Eng., 2005,13(5): 253-258
    [53] Muzzio F J, Alvarez M M, Cerbelli S, and et al. The intermaterial area density generated by time- and spatially periodic 2D chaotic flow. Chemical Engineering Science. 2000,55:1497-1508
    [54] Swanson P D, Ottino J M. A comparative computational and experimental study of chaotic mixing of viscous fluids. J. Fluid Mech. 1990,213: 227-249
    [55] Shervin C R, Raughley D A, and Romaszewski R A. Flow visualization scale-up studies for the mixing of viscoelastic fluids. Chem. Eng. Sci. 1991,46(11): 2867-2873
    [56] Rahimi M, Senior P R, and Mann R. Visual 3-D modeling of stirred vessel mixing for an inclined-blade impeller. Chem. Eng. Res. Des. 2000, 78(A3): 348-353
    [57] Wood J C, Whittmore E R, and Badger W L. The measurement of stirrer performance. Chem. Met. Eng. 1922, 27(24): 1176-1179
    [58] Danckwerts P V, R A M. Flow-visualization by means of time-reaction. J. Fluid Mech.1963,16(3): 412-416
    [59] Baldyga J, Bourne J R. Interaction between mixing on various scales in stirred tank reactors. Chem. Eng. Sci. 1992,47(8): 1839-1848
    [60] Villermaux J, Falk L, and Founder M C. Potential use of a new parallel reaction system to characterize micro-mixing in stirred reactors. AIChE Symp. Ser. 1994, 299 (90):50-53
    [61] Fournier M C, Falk L, and Villermaux J. A new parallel competing reaction system for assessing micro-mixing—experimental approach. Chem. Eng. Sci. 1996, 51(22):5053-5064
    [62] Fournier M C, Falk L, and Villermaux J. A new parallel competing reaction system for assessing micro-mixing efficiency—determination of micro-mixing time by a simple mixing model. Chem. Eng. Sci. 1996,51(23): 5187-5192
    [63] Zipp R P, Patterson G K. Experimental measurements and simulation of mixing and chemical reaction in a stirred tank. Can. J. Chem. Eng. 1998, 76(3): 657-669
    [64] Clifford M J, Cox S M, and Roberts E P L. The influence of a lamellar structure upon the yield of a chemical reaction. Trans. IChemE. 2000, 78(A): 371-377
    [65] Ottino J M. Mixing and chemical reactions: A tutorial. Chem. Eng. Sci. 1994, 49(24):4005-4027
    [66] Scofield D F, Martin C J. Mixing measurements and theory. Internal report E. I. du pont de Nemours and Co. 1990
    [67] Scofield D F, Martin C J, and Pivovarov M A. Underlying geometry of flows. Internal report E. I. du pont de Nemours and Co. 1990
    [68] Maas H G, Gruen A. Digital photogrammetric techniques for high-resolution 3-dimensional flow velocity-measurements. Opt. Eng. 1995,34(7): 1970-1976
    [69] Chappie D, Kresta S M, Wall A, and et al. The effect of impeller and tank geometry on power number for a pitched blade turbine. Trans. Inst. Chem. Eng. A. 2002, 80:364-372
    [70] Fangary Y S, Barigou M, Seville J P K, and et al. Fluid trajectories in a stirred vessel of non-Newtonian liquid using positron emission particle tracking. Chem. Eng. Sci. 2000,55(24): 5969-5979
    [71] Lourenco L M, Krothopalli A, and Smith C A. Particle image velocimetry. Advances in Fluid Mechanics Measurements. Berlin: Springer-Verlag, 1989:127
    [72] Lourenco L M, Krothopalli A. Stereoscopic and time resolved PIV measurements in high-speed flows. AIAA 2004-2180, 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, 2004:1-15
    [73] Willert C E, Gharib M. Digital particle image velocimetry. Exp. Fluids. 1991, 10:181-193
    [74] Raffel M, Willert M, and Kompenhans J. Particle Image Velocimetry: A Practical Guide.Berlin: Springer-Verlag, 1998
    [75] Sheng J, Meng H, and Fox R O. Validation of CFD simulations of a stirred tank using particle image velocimetry data. Can. J. Chem. Eng. 1998,76:611-625
    [76] Hammad K J, PaPadopoulos G Phase-resolved PIV measurements within a tripe impeller stirred-tank. ASME2001 Fluids Engineering Division Summer Meeting, LA,USA, 2001
    
    [77] 冯连芳,王嘉骏,王凯, 等.流体混合技术新进展.化学工程, 2002,30(2): 70-74
    
    [78] Dickin F J, Dyakowski T, Williams R A, and et al. Process tomography for improving the design and control of multiphase systems: its current status and future prospects.ECAPT Conference, Manchester, England, 1992
    [79] Mews D, Ostendorf W. Application of tomographic measurement techniques for process engineering studies. Int. Chem. Eng. 1986,26(1): 11-21
    [80] Hoyle B S. Process tomography using ultrasonic sensors. Meas. Sci. Technol. 1996, 7:272-280
    [81] Stanley S J, Mann R, and Primrose K. Tomographic imaging in three dimensions for single-feed semi-batch operation of a stirred vessel. Trans. Inst. Chem. Eng. A. 2002, 80:903-909
    [82]Sommier N,Porion P,Evesque P,and et al.Magnetic resonance imaging investigation of the mixing-segregation process in a pharmaceutical blender.Int.J.Pharmaceutics.2001,222:243-258
    [83]约翰D.安德森.计算流体力学基础及其应用.吴颂平,刘赵淼译.北京:机械工业出版社,2007
    [84]苏铭德,黄素逸.计算流体力学基础.北京:清华大学社,1997
    [85]张国娟,闵健,高正明,等.翼形桨搅拌槽内混合过程的数值模拟.高校化学工程学报.2005,19(2):169-174
    [86]苗一,潘家祯,张国娟,等.双层涡轮桨搅拌槽内混合过程的数值模拟.华东理工大学学报(自然科学版).2006,32(3):352-356
    [87]Harvey P S,Greaves M.Turbulent flow in an agitated vessel.Part Ⅱ:numerical solution and model predictions.Trans Inst Chem Eng,1982b,60:201-210
    [88]Gunkel AA,Weber M E.Flow phenomena in stirred tanks.AIChE J,1975,21:931-949
    [89]Middleton J C,Pierce F,and Lynch P M.Computations of flow fields and complex reaction yield in turbulent stirred reactors,and comparison with experimental data.Chem Eng Res Des,1986,64:18-22
    [90]Fokema M D,Kresta S M,and Wood P E.Importance of using correct boundary conditions for CFD simulations of stirred tands.Can J Chem Eng,1994,72:177-183
    [91]Pericleous K A,Patel M K.The source-sink approach in the modeling of stirred reactors.Physic Chemical Hydrodynamics,1987,9:279-297
    [92]Xu Y,McGrath G.CFD predictions of stirred tank flows.Trans Inst Chem Eng,1996,17:471-475
    [93]Brucato A,Ciofalo M,Grisafi F,and et al.Micale G.Numerical prediction of flow fields in baffled stirred vessels:a comparison of alternative modeling approaches.Chem Eng Sci,1998,53:3653-368
    [94]Micale G,Brucato A,Grisafr F,and et al.Prediction of flow fields in a dual-impeller stirred vessel.AIChE,1999,45:445-464
    [95]Luo J Y,Issa R I,and Gosman A D.Prediction of impeller induced flows in mixing vessels using multiple frames of reference.Inst.Chem.Eng.Symp.Set.1994,136:549-556
    [96]Syrjanen J K,Manninen M T.Detailed CFD prediction of flow around a 45° pitched blade turbine.Proceedings of 10th European Conference on Mixing,Delft,2000,265-272
    [97]Lane G L,Schwarz M P,and Evans G M.Comparison of CFD methods for modeling of stirred tanks.Proceedings of 10th European Conference on Mixing,Delft:2000,273-280
    [98]Mousavi S M,Zamankhan P,Jafari A.Computer simulations of sodium formate solution in a mixing tank.Communications in Nonlinear Science and Numerical Simulation,2008,13:380-399
    [99]Ng K,Yianneskis M.Observations on the distribution of energy dissipation in stirred vessels.Trans IChemE,2000,78A:334-341
    [100]Jaworski Z,Bujalski W,and Otomo N.CFD study of homogenization with dual Rushton turbines-comparison with experimental results.Trans IChemE,2000,78(A):327-333
    [101]Gessner T.Dynamic Mesh Adaption for Supersonic Combustion Waves Modeled with Detailed Reaction Mechanisms.[Doctoral Dissertation].Germany:University of Freiburg,2001
    [102]Rudolph L.12th European Conference on Mixing.Fotograf Palermo,Italy,2006
    [103]江帆,陈维平,李元元,等.润滑用齿轮泵内部流场的动态模拟.现代制造工程,2007,6:124-126
    [104]程园畅,叶旭初.三桨叶搅拌釜相同混合时间条件下的CFD模拟及放大研究.南京工业大学学报,2007,29(4):54-58
    [105]周国忠,王英琛,施力田.用CFD研究搅拌槽内的混合过程.化工学报,2003,54(7):886-890
    [106]Lunden M,Stenberg O,and Andersson B.Evaluation of a method of measuring mixing time using numerical simulation and experimental data.Chem Eng Commun,1995,139:115-136
    [107]Jaworski Z,Bujalski W,Otomo N,and et al.CFD study of homogenization with dual Rushton turbines-comparison with experimental results.Trans IChemE,2000,78(A):327-333
    [108]焦海亮,包雨云,黄雄斌,等.高黏度流体混合研究进展.化工进展,2007,26(11):1574-1582
    [109]唐汉祥.推进剂药浆粘弹性特征研究.推进技术,1998,19(4):95-99
    [110]唐汉祥.推进剂药浆流变特征研究.固体火箭技术,1994,(3):28-34
    [111]侯林法.复合固体推进剂.北京:宇航出版社,2005
    [112]王正方,瞿瑞清.立式捏合机搅拌桨的设计.固体火箭技术,1993,(1):65-69
    [113]许章忠,瞿跃西.立式混合机桨叶运动轨迹分析.宇航学报,1996,17(3):104-107
    [114]Anderson P D,Oleksiy S,Galaktionov O S,and et al.Mixing of non-Newtonian fluids in time-periodic cavity flows[J].J.Non-Newtonian Fluid Mech.2000,93:265-286
    [115]Alvarez M M,Zalc J M,Shinbrot T,and et al.Mechanisms of mixing and creation of structure in laminar stirred tanks.AIChE Journal,2002,48(10):2135-2147
    [116]钱敏平,龚光鲁.随机过程论(第二版).北京:北京大学出版社,1997
    [117]欧阳莹之.复杂系统理论基础.田宝国,周亚,樊瑛译.上海:上海科技教育出版社,2002
    [118]杨国为.人工生命模型.北京:科学出版社,2005
    [119]朱位秋.非线性随机动力学与控制Hamilton理论体系框架.北京:科学出版社,2003
    [120]邱炜.动力系统中两类跟踪性的研究.[硕士学位论文].桂林:广西师范大学,2007
    [121]李明军,李开泰.序列伪轨跟踪性与拓扑可迁.应用数学,2000,13(4):25-28
    [122]杨润生.伪轨跟踪与混沌.数学学报,1996,39(3):382-386
    [123]周作领.符号动力系统.上海:上海科技教育出版社,1997
    [124]Rongbao Gu.The average-shadowing property and topological ergodicity.Journal of Computational and Applied Mathematics,2007,206:796-800
    [125]罗定军,滕利邦.微分动力系统导论引.高等教育出版社.北京:高等教育出版社,1993
    [126]Mitsuaki Funakoshi.Chaotic mixing and mixing efficiency in a short time.Fluid Dynamics Research,2008,40:1-33
    [127]Atobe T,Funakoshi M,and Inoue S.Orbital instability and chaos in the Stokes flow between two eccentric cylinders.Fluid Dynamics Research,1995,16:115-129
    [128]Ballal B Y,Rivlin R S.Flow of a Newtonian fluid between eccentric rotating cylinders:inertial effects.Archive for Rational Mechanics and Analysis,1976,62(3):237-294
    [129]陈予恕,唐云.非线性动力学中的线性分析方法.北京:科学出版社,1992
    [130]Kang T G,Singh M K,Kwon T H,and et al.Chaotic mixing using periodic and aperiodic sequences of mixing protocols in a micromixer.Microfluid Nanofluid,2008,4(6):589-599
    [131]孙恒,陈作模,葛文杰.机械原理(第七版).北京:高等教育出版社,2006
    [132]Fluent Inc.FLUENT User's Guide.Fluent Inc.,2003
    [133]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004
    [134]唐汉祥.AP级配和铝粉对HTPB推进剂药浆流变性的影响.固体火箭技术,1998,21(1):26-30
    [135]车得福,李会雄.多相流及其应用.西安:西安交通大学出版社,2007
    [136]李上文,赵凤起,袁潮,等.国外固体推进剂研究与开发的趋势.固体火箭技术,2002,25(2):36-42
    [137]方萍,何延.试验设计与统计.杭州:浙江大学出版社,2003
    [138]范传新.复合固体推进剂燃速标准物质均匀性研究.宇航计测技术,2005,25(6):28-31
    [139]曾甲牙.固体填充剂对推进剂力学性能的影响.固体火箭技术,2002,25(1):46-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700