用户名: 密码: 验证码:
车辆与结构相互作用随机动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一九六四年日本新干线的成功运营标志着现代高速铁路时代的来临。随后,德国的ICE高速列车和法国的TGV高速列车也相继投入使用。经过四十多年的发展,高速铁路已经成为世界上最经济、最具有效能的地面运输系统。随着车辆速度的提高,车辆与轨道、地基和桥梁等结构的动力相互作用问题也日益突出。一方面,车辆运行时会对周围环境产生冲击作用,引起周围结构的振动;另一方面,这些结构的振动又会对车辆运行的平稳性和安全性产生反作用。大量的实测数据和数值模拟表明,车辆与结构的相互作用具有很强的随机性。然而传统计算方法的低效率限制了人们采用随机振动理论对车辆与结构相互作用问题进行研究。迄今为止,关于车辆与结构随机振动分析的研究成果还不是很多。本博士学位论文在随机振动理论框架下将先进的计算力学方法,例如虚拟激励方法、精细积分方法、与哈密顿对偶体系密切相关的辛数学方法等,引入到车辆与结构的振动分析中,并且根据车辆与结构相互作用的特点对上述方法进行了扩展,提出了精确高效的分析方法,研究了车辆与结构耦合振动的统计特性。全文的主要研究内容如下:
     1.车辆与轨道结构垂向耦合随机振动分析
     对车辆与轨道结构耦合系统进行随机振动分析面临的主要问题是计算量大。若直接套用常规的线性随机振动公式来求解耦合系统的随机响应,不但因系统自由度众多而计算量庞大,而且计算过程也相当繁琐。本文将轨道视为周期性链式结构,将虚拟激励法和辛数学方法相结合来求解耦合系统的随机响应。亦即:首先使用虚拟激励法将随机轨道不平顺转化为一系列虚拟的简谐轨道不平顺,然后采用辛数学方法求解周期性轨道结构的频率响应特性,最后通过求解耦合系统的虚拟响应得到振动响应的功率谱和标准差。由于分析带有周期性边界条件的一个典型子结构就获得对整条轨道进行分析相同的结果,所以本方法的计算效率比通常基于有限元的方法高得多,对一典型算例表明可高出百倍以上。在数值算例中还讨论了车辆轨道耦合模型和车辆模型各自的适用范围,以及车辆速度、轨道结构阻尼等因素对耦合系统随机响应的影响。
     2.交通荷载引起的非平稳随机波在分层土壤介质中的传播
     车辆在运行时必然引起轨道结构的随机振动,并且这种振动会通过附近的地层向外传播,对邻近区域造成干扰。由于交通荷载具有随机性和移动性,所以就轨道结构附近地面任意的固定点而言,其振动响应是非平稳随机过程。这类非平稳随机波传播问题的计算存在较多困难,研究成果较少。本文建立了轨道—地层耦合分析模型。假定轨道结构由钢轨、枕木和道床等部分构成。地层结构为各向同性的分层介质。将随机波传播问题引入到哈密顿对偶体系进行求解。首先将虚拟激励法扩展到处理移动随机荷载作用下线性系统动力响应问题。然后证明在对偶体系下波传播的运动方程在频率—波数域内是线性哈密顿方程的两端边值问题。再然后应用精细积分法给出该问题在计算机意义下的精确解。最后根据地层结构各向同性的性质,给出了进一步加速计算的方法。在数值算例中研究了地面振动响应的统计特性,以及交通荷载之间的相关性对随机响应的影响。
     3.结构动力响应的高效计算
     当前处理移动荷载问题时常采用的Newmark法等都必须假定在每一时间步长内,荷载的大小和作用位置都是固定不变的。因此必须采用很小的时间步长来确保计算精度。但这是以增加计算量为代价的。为了克服上述限制,本文对精细积分法进行了推广,将它应用于处理移动荷载问题。在每一个积分步内,根据有限元方法的形函数或者平行力系平衡原理,提出了称为协调分解过程和简单分解过程的精细积分格式。这两种分解过程可以模拟荷载幅度的变化和作用位置的变化。因此非常显著地减小了因选取较大积分步长而引起的计算误差。当积分步长满足一定的条件时,协调分解过程甚至可以给出结构动力响应在计算机意义下的精确解。相比之下简单分解过程的精度虽略低些,但应用更为简便。根据不同的工程需求,对二者的应用可作灵活选择。大量的数值比较表明,本文所提出的二种精细积分格式在处理移动荷载问题时都比Newmark法优越得多。
     4.移动随机荷载作用下桥梁动力响应分析
     对车辆桥梁这种复杂的耦合系统进行随机分析,历来被认为是一件非常困难的工作。作为这项研究工作的基础,研究随机移动荷载作用下桥梁结构振动响应的统计特性,近年来引起了广泛的关注。目前对此虽然已经有较多研究成果发表,但多数以简单桥梁模型为研究对象,采用效率不高的数值方法或者解析方法求解随机响应。分析过程中普遍采用模态叠加法。但为了提高计算效率,计算结果中经常忽略掉模态响应之间的相关项。对多荷载激励问题更是鲜有讨论。本文采用有限元方法建立桥梁模型,借助高效的虚拟激励法和扩展精细积分法提出了一种切实可行的随机分析方法,克服了计算效率的瓶颈。在数值算例中,以单跨和多跨连续桥梁为例,研究了桥梁结构基本的随机振动特性,讨论了桥梁模态之间的相关性、荷载之间的相关性以及随机荷载统计特性对随机响应的影响。
     5.车辆与桥梁相互作用随机振动分析
     车辆通过桥梁时,由于轨道不平顺的存在,车辆与桥梁相互作用发生复杂的耦合随机振动。车桥系统的质量、刚度和阻尼分布都是随时间连续变化的。对于这样一个时变系统,目前尚无有效的随机振动方法。本文本着由易到难的原则将研究工作分为两个步骤:首先针对车桥系统的特点,推导了线性时变系统的虚拟激励法,用二维模型研究了车桥系统垂向振动响应的统计特性。然后将上述扩展的虚拟激励法引入到三维车桥系统的随机分析中,研究了三种轨道不平顺同时作用下车桥系统横向随机响应的统计特性。为了提高计算效率,本文还通过分析计算过程的特点,采用耦联法来求解车桥系统的运动方程。其中采用了杨永斌教授提出的车桥耦合单元(VBI)。在数值算例中,通过与Monte Carlo法的计算结果进行比较,表明本文方法不但计算效率高,而且精确可靠。在实际工程分析中,工程师们最为关注的是车桥系统动力响应的最大值。本文基于Gauss型随机变量的“3σ法则”提出了一种估计方法。数值模拟结果表明这样估计是准确可靠的。
In 1964, the successful operation of Shinkansen in Japan signifies the coming of the era of modern high speed railway transportation. Later, France and Germany develop TGV and ICE high speed train, respectively. After more than 40 years of development, such high speed transportation has become the most economical and efficient land transportation system. With the increasing of vehicle velocity, the dynamic interaction between vehicles and neighbouring structures such as the rails, groundbasis or nearby buildings, is received more and more attention. This is because, on one hand , the running of vehicles will induce vibration of surrounding structures. On the other hand, the dynamic reaction of such structures will affect the stable and safe operation of the vehicles considerable. A great deal of testing data and simulation-based numerical results show that dynamic interactions between vehicles and neighbouring structures are essentially random. Unfortunately, the complexity and low efficiency of the conventional random vibration approaches has considerably restricted the development of the relevant research work. So far, not many papers in this field can be found in the literature. In the present ph.d thesis, based on the theoretical framework of random vibration, some advanced computational mechanics methodology, such as the pseudo excitation method for random vibration, the precise integration methods in the time domain or the space domain, the symplectic geometric scheme, which is closely related to Hamiltonian duality system, and others, are introduced into the present research on dynamic analyses of various coupled vehicle-structure systems. Some innovative schemes based on the above methodology have been further developed, which can be summarized as follows:
     1. Vertical random vibration analysis of vehicle-track coupling systems
     The main difficulty in the random vibration analysis of vehicle-track systems is the prohibitive computational effort required when using the conventional approaches. In addition, the process is also quite complicated. In the present paper, the tack is regarded as an infinitely long periodic structure. The pseudo excitation method (PEM) and the symplectic geometric method are combined to perform the random vibration analysis. That means, the random unevenness of the rail-surfaces are firstly transformed into the summation of a series of harmonic unevenness in terms of the PEM, then the symplectic approach is used in the solution of the frequency-response characteristic of the periodic railway structure, finally the random responses of the couples vehicle-railway system are computed by means of the PEM accurately and efficiently. It is noted that analyzing a typical substructure with periodical boundary conditions will produce the frequency-response characteristic of the entire railway, therefore the efficiency of this approach is much higher that usual FEM-based approached, even reaches more than 100 times for a typical numerical example. Numerical comparisons also show the suitability of the coupled model and the traditional rigid track model, as well as the influences of track damping and vehicle velocity on the system random vibration.
     2. Traffic induced non-stationary random wave propagation in layered soil media.
     Moving vehicles will induce track random vibration, which will propagate through thenearby ground, typically layered soil media. Such kind of non-stationary random wave propagation problems is in general quite difficult to solve. In this thesis, a track-ground coupling system is set up, by which the rail is modeled as a single infinite Euler beam connected to sleepers and hence to ballast. This ballast rests on the ground, which is assumed to consist of layered transversely isotropic soil. The random wave propagation problem is introduced into a Hamiltonian duality system. First, the non-stationary power spectral density (PSD) and the time-dependent standard deviation is derived conveniently by means of PEM. Then it is proved that in the frequency-wave number domain the coefficient matrix of wave propagation state equation is Hamiltonian, which can be solve accurately by using the precise integration method (PIM). At last in order to decrease the computational effort, an improved computational procedure is proposed, which takes advantage of the transverse isotropic property of the layered soil to reduce the threefold iteration process into a twofold one. In the numerical examples, the statistical characteristic of the ground response and the effect of correlation between loads are studied.
     3. An accurate and efficient algorithm for dynamic analysis of FE structures subjected to moving loads
     When dealing with moving loads, generally direct integration methods, such as the Newmark method, are used which require the position and magnitude of the load to be invariant in each integration step, so that a very small integration step size is needed to ensure sufficient precision, witch can increase computational effort considerable. In order to overcome this shortcoming, the precise integration method (PIM) is extended to deal with dynamic analysis of FE structures subjected to moving loads.
     In each time step, based on FEM shape functions or the force equilibrium principle, two alternative decomposition procedures, i.e. consistent decomposition and simplified decomposition, are proposed. The resulting methods allow the position of the load and its magnitude to vary with time in each integration step and thus reduce the computational error considerable. When the time step stratified some conditions, the consistent decomposition procedure can give results up to computer precision. The simplified decomposition procedure is relatively less accurate, but very convenient for using. Numerous numerical comparisons show that either proposed method is greatly superior to the Newmark method.
     4. Non-stationary random vibration of bridges subjected to moving loads
     It is well know that the random vibration analysis of vehicle-bridge coupling system is a very difficult problem. As the fundamental of this problem, the dynamic analysis of bridge subjected to random moving loads is received much attention in recent years. Some research papers have been published. However, most of these papers used relatively simple bridge models and adopted analytical solution or inefficient numerical method to get stochastic response. The modal superposition is used in the analysis, but the cross-correlation between modal responses is usually neglected in order to decrease the computational effort. Moreover the investigation of the influence of the correlation between loads for multi-load problems is lacking. In the present paper, a FE bridge model is used, An efficient method based on PEM and PIM is proposed, which overcome the computation bottleneck. Numerical examples investigate the dynamic statistical characteristic of a simply supported beam and of a three non-uniform span beam, and discuss the effect of the cross-correlation between modal responses and that of between loads, and the type of random loads.
     5. Efficient dynamic analysis for non-stationary random vibration of vehicle-bridge systems
     When vehicles cross bridges, due to track irregularity the interaction between vehicle and bridge will generate complicated random vibration. The mass, stiffness and damping of vehicle bridge system is time dependent. For such a system, there is no mature random vibration formulation to deal with it. According to the principle of "From easiness to difficulty", the present paper takes two steps in the research work.First, the pseudo excitation method (PEM) is extended to handle the random analysis of time-dependent systems, in which the PSD and deviation is derived. The statistical characteristics of vertical dynamic responses for vehicle bridge system are investigated. Then, the extended PEM is introduced into 3D dynamic analysis, in which three types track irregularity are considered. To reduce the computational effort a vehicle bridge interaction (VBI) element is adopted by considering the feature of stochastic analysis procedure. In the numerical examples, the proposed method is justified by comparing with Monte Carlo simulation results. Also, a method, based on the 3σrule for Gaussian stochastic processes, to estimate maximum responses is suggested. Examples include a train moving across both simply supported and three-span continuous bridges and some observed phenomena are discussed.
引文
[1]中华人民共和国国家标准.工程结构可靠性设计统一标准(征求意见稿).北京,2006.
    [2]夏禾,张楠.车辆与结构动力相互作用.北京:科学出版社,2005.
    [3]王贵春,潘家英.轨道不平顺导致的车桥耦合振动分析.铁道工程学报.2006,(8):30-33.
    [4]京广线沙河桥试验小组.京广线南沙河桥检定试验报告.1973.
    [5]何度心.桥梁振动研究.北京:地震出版社,1989.
    [6]Crandall S H.Random Vibration:The MIT Press,1958.
    [7]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用.北京:中国铁道出版社,1999.
    [8]Lin J H.A Fast CQC Algorithm of PSD Matrices for Random Seismic Responses.Computers & Structures.1992,44(3):683-687.
    [9]Lin J H,Zhang W S,Williams F W.Pseudo-Excitation Algorithm for non-Stationary Random Seismic Responses.Engineering Structures.1994,16:270-276.
    [10]Lin J H,Zhao Y,Zhang Y H.Accurate and Highly Efficient Algorithms for Structural Stationary/non-Stationary Random Responses.Computer Methods in Applied Mechanics and Engineering.2001,191(1-2):103-111.
    [11]林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004.
    [12]Lin J H,Zhang Y H.Seismic Random Vibration of Long-span Structures,in:Silva C W d,editor.Vibration and Shock Handbook.Boca Raton,Florida:CRC Press,2005.
    [13]Zhong W X,Williams F W.A Precise Time Step Integration Method.Proceedings of the Institution of Mechanical Engineers 1995,208(C):427-430.
    [14]钟万勰.结构动力方程的精细时程积分法.大连理工大学学报.1993,34(2):131-136.
    [15]钟万勰.计算结构力学与最优控制.大连:大连理工大学出版社,1993.
    [16]钟万勰.卡尔曼-布西滤波的精细积分.大连理工大学学报.1999,39(2):191-200.
    [17]钟万勰.应用力学的辛数学方法.北京:高等教育出版社,2006.
    [18]姚伟岸,钟万勰.辛弹性力学.北京:高等教育出版社,2002.
    [19]Zhong W X,Williams F W.Wave Problems for Repetitive Structures and Symplectic Mathematics.Proc.of Mechanical Engineering Institution,Part-C:Journal of Mechanical Engineering Science.1992,206:371-379.
    [20]钟万勰.应用力学对偶体系.北京:科学出版社,2002.
    [21]Zhong W X.Duality System in Applied Mechanics and Optimal Control.Boston:Kluwer Academic,2004.
    [22]钟万勰.弹性力学求解新体系.大连:大连理工大学出版社,1995.
    [23]钟万勰,吴志刚,谭述君.状态空间控制理论与计算.北京:科学出版社,2007.
    [24]杨永斌,姚达忠.高速铁路车桥互制理论.台北:图文技术服务有限公司,2000.
    [25]Yau J D.Dynamic Response of Bridges Traveled by Trains(Analytical and Numerical Approaches):(Ph.d Thesis).Taiwan National University:Taipei,1996.
    [26]Wu Y S.Dynamic Interactions of Train-Rail-Bridge System under Normal and Seismic Conditions:(Ph.d Thesis).National Taiwan University:Taipei,2000.
    [27]Yang Y B,Yau J D,Wu Y S.Vehicle-Bridge Intercation Dynamics-with Applications to High-Speed Railways.Singapore:World Scientific,2004.
    [28]陈厚群,粱爱虎,杜修力.拱坝非均匀多点输入的抗震可靠度分析.城市与工程减灾基础研究论文集.北京:科学出版社,1995.
    [29]Sun D K,Xu Y L,Ko J M,Lin J H.Fully Coupled Buffeting Analysis of Long Span Cable-Supported Bridges:Formulation.Journal of Sound and Vibration.1999,228(3):569-588.
    [30]赵又群,郭孔辉.具有随机道路输入的人-车-路闭环操纵系统的响应分析与操纵安全性评价.汽车工程.1997,19(5):273-278.
    [31]Li J.Response Analysis of Stochastic Parameter Structures under non-Stationary Random Excitation.Computational Mechanics.2001,27(1):61-68.
    [32]Bennett P N.Extended Eigenvalue Analysis of Advanced Aerospace Structures.(Ph.d Thesis) College of Cardiff University of Wales:Cardiff,1994.
    [33]Lin J H,Yang F,Bennett P N,Williams F W.Propagation of Stationary Random Waves along Sub-Structural Chains.Journal of Sound and Vibration.1995,180:757-767.
    [34]Lin Y.K.Probabilistic Theory of Structural Dynamics.New York:McGraw-Hill,1967.
    [35]星谷胜(日).随机振动分析.北京:地震出版社,1977.
    [36]Nigam N C.Introduction to Random Vibrations.MIT Press,1983
    [37]Soong T T.Random vibration of mechanical and structural systems:PTR Prentice Hall,1993.
    [38]欧进萍 王.结构随机振动.北京:高等教育出版社,1998.
    [39]庄表中,王行新.随机振动概论.北京:地震出版社,1982.
    [40]徐昭鑫.随机振动.北京:高等教育出版社,1990.
    [41]朱位秋.随机振动.北京:科学出版社,1992.
    [42]张景绘.工程随机振动理论.西安:西安交通大学出版社,1988.
    [43]Priestly M B.Evolutionary Spectra and Non-Stationary Random Process.J.R.Statst.Soc.Ser.B.1965,28(2):204-230.
    [44]Priestly M B.Power Spectral Analysis of Non-Stationary Random Processes.Journal of Sound and Vibration.1967,6:86-97.
    [45]Hammond J K.On The Response of Single and MDOF System to Non-Stationary Random Excitation.Journal of Sound and Vibration.1968,7(3):393-416.
    [46]Lee M,Penzien J.Stochastic Analysis of Structures and Piping Systems Subjected to Stationary Multiple Support Excitations.Earthquake Engineering and Structural Dynamics.1983,11:91-110.
    [47]Lin Y K,Zhang R,Yong Y.Multiply Supported Pipeline under Seismic Wave Excitations.Journal of Engineering Mechanics.1990,116:1094-1108.
    [48]Lin Y K,Yang J N.Multimode Bridge Response to Wind Excitations.J.Engineering Mechanics,ASCE.1983,109(2):586-603
    [49]Jain A,Jones N P,Scanlan R H.Coupled Flutter and Buffeting Analysis of Long-Span Bridges.J.Structural Engineering,.1996,122(7):716-725.
    [50]李杰.随机结构系统.北京:科学出版社,1996.
    [51]Lin Y K,Cai G Q.Exact Stationary Response Solution for Second Order Nonlinear Systems under Parametric and External White Noise Excitations,Part Ⅱ.J.Appl.Mech.1988,55:702-705.
    [52]Caughey T K.Nonlinear Theory of Random Vibration.Adv.in Appl.Mech.1971,11:209-243.
    [53]朱位秋.随机平均法及其应用.力学进展.1987,17(3):342-351
    [54]Roberts J B,Spanos P D.Stochastic Averaging:An Approximate Method of Solving Random Vibration Problems.Int.J.Non-Lin.Mech.1986,21:111-134.
    [55]Iyengar R N.Random Vibration of A Second Order Nonlinear Elastic System.Journal of Sound and Vibration.1975,40:155-165.
    [56]Noori M,Davoodi H,Saffar A.An Ito Based General Approximation Technique for Random Vibration of Hysteretic Systems.Part Ⅰ:An Gaussian Analysis.Journal of Sound and Vibration.1958,127:331-342.
    [57]Lin Y K,et al.Methods of Stochastic Dynamics.Struct.Saf.1986,3:176-194.
    [58]Socha L,Soong T T.Linearization in Analysis of Nonlinear Stochastic Systems.Applied Mechanics Reviews.1991,44(10):399-422.
    [59]Lutes L D.Approximate Technique for Treating Random Vibration of Hysteretic Systems.J.Acoust.Soc.Am.1970,48(299-306).
    [60]朱位秋,余金涛.预测非线性系统随机响应的等效非线性系统法.固体力学学报.1989,10(1):34-44.
    [61]朱位秋.非线性随机动力学与控制:Hamilton理论体系框架.北京:科学出版社,2003.
    [62]罗林.轨道随机干扰函数.中国铁道科学.1982,13(1):74-110.
    [63]长沙铁道学院随机振动研究室.关于机车车辆/轨道系统随机激励函数的研究.长沙铁道学院学报.1985(2):1-36.
    [64]王澜.轨道结构随机振动理论及其在轨道结构减振中的应用:(博士学位论文).北京:铁道部科学研究院,1988.
    [65]铁道部科学研究院铁道建设研究所.我国干线轨道不平顺功率谱的研究.北京:铁道部科学研究院,1999.
    [66]曾三元,吴应暄.铁道车辆垂向随机动态响应.长沙铁道学院学报.1984(1).
    [67]胡津亚,铁路机车车辆的线性和非线性随机振动.铁道学报.1981(4).
    [68]陈泽深,王成国.车辆随机振动的协方差分析方法.中国铁道科学.2001,22(4):1-7.
    [69]张格明.线路轨道不平顺管理标准的研究.中国铁道科学.1995,16(4):31-40.
    [70]张格明.中高速条件下车线桥动力分析模型与轨道不平顺影响:(博士学位论文).北京:铁道部科学研究院,2001.
    [71]周劲松,李大光,沈刚,任利惠,张详韦.磁浮车辆运行平稳性的虚拟激励分析方法.交通运输工程学报.2008,8(1):5-9.
    [72]Remington PJ.Wheel/Rail Noise-Part Ⅰ:Characterization of the Wheel/Rail Dynamics System.Journal of Sound and Vibration.1976,45(3).
    [73]Bender E K,Remington P J.The Influence of Rails on Train Noise.Journal of Sound and Vibration.1974(3).
    [74]Grassie S L,George R W,Johnson K L.The Behavior of Railway Wheelsets and Track at High Frequencies of Excitation.Journal of Mechanical Engineering Science.1982,24.
    [75]王澜,姚明初.轨道结构随机振动理论及其在轨道结构减振研究中的应用.中国铁道科学.1989(2):41-59.
    [76]李成辉,万复光.轨道结构随机振动.铁道科学.1998,20(3):97-101.
    [77]陈果.车辆轨道耦合系统随机振动分析-第3章:(博士学位论文).成都:西南交通大学,2000.
    [78]Lei X,Noda N A.Analyses of Dynamic Response of Vehicle and Track Coupling System with Random Irregularity of Track Vertical Profile.Journal of Sound and Vibration.2002,258(1):147-165.
    [79]徐劲,蒋沧如,谢伟平.武汉轻轨系统轨道结构随机振动研究.武汉理工大学学报.2007.29(6):100-103.
    [80]陈果,车辆轨道耦合系统随机振动分析-第5章:(博士学位论文).成都:西南交通大学,2000.
    [81]陈果,翟婉明,左洪福.轨道随机不平顺对车辆轨:道系统横向振动的影响.南京航空航天大学学报.2001,33(3):227-232.
    [82]王开云,翟婉明,刘建新,封全保,蔡成标.线路不平顺波长对提速列车横向舒适性影响.交通运输工程学报.2007,7(1):1-5.
    [83]龙许友,魏庆朝,冯雅薇,时瑾.轨道不平顺激励下直线电机车辆 轨道动力响应.交通运输工程学报,2008:8(2):9-13
    [84]时瑾,魏庆朝,万传风,邓亚士.随机不平顺激励下磁浮车辆轨道梁动力响应.力学学报,2006,38(6):850-857.
    [85]Jones D V,Petyt M.Ground Vibration in The Vicinity of a Strip Load:a Two-Dimensional Half Space Model.Journal of Sound and Vibration.1991,147:155-166.
    [86]Jones D V,Petyt M.Ground Vibration in The Vicinity of a Strip Load:an Elastic Layer on Half Space.Journal of Sound and Vibration.1993,161:1-18.
    [87]Jones D V,Petyt M.Ground Vibration in The Vicinity of a Rectangular Load on a Half Space.Journal of Sound and Vibration.1993,166:141-159.
    [88]Jones D V,Le Houedec D,Peplow A T,et al.Ground vibration in the vicinity of a moving harmonic rectangular load on a half-space.European Journal of Mechanics a-Solids.1998,17(1):153-166.
    [89] Jones C J C, Block J R. Prediction of Ground Vibration from Freight Trains. Journal of Sound and Vibration. 1996,193(1): 205-213.
    [90] Sheng X, Jones C J C, Petyt M. Ground Vibration Generated by a Harmonic Load Acting on a Railway Track. Journal of Sound and Vibration. 1999,225(1): 3-28.
    [91] Sheng X, Jones C J C, Petyt M. Ground Vibration Generated by a Load Moving along a Railway Track. Journal of Sound and Vibration. 1999,228(1): 129-156.
    [92]Dieterman H A, Metrikine A. The Equivalent Stiffness of a Half-Space Interacting with a Beam: Critical Velocities of a Moving Load along The Beam. European Journal of Mechanics a-Solids. 1996,15(1): 67-90.
    [93] Metrikine A V, Popp K. Vibration of a Periodically Supported Beam on an Elastic Half-Space. European Journal of Mechanics a-Solids. 1999,18(4): 679-701.
    [94] Vostroukhov A, Metrikine A. Periodically Supported Beam on a Visco-Elastic Layer as a Model for Dynamic Analysis of a High-Speed Railway Track. International Journal of Solids and Structures. 2003,40(21): 5723-5752.
    [95]Lombaert G, Degrande G, Clouteau D. Numerical Modelling of Free Field Traffic-Induced Vibrations. Soil Dynamics and Earthquake Engineering. 2000,19(7): 473-488.
    [96] Hunt H E M. Stochastic Modelling of Traffic-Induced Ground Vibration. Journal of Sound and Vibration. 1991,144: 53-70.
    [97] Hunt H E M. Modelling of Road Vehicles for Calculation of Traffic-Induced Vibration as a Random Process. Journal of Sound and Vibration. 1991,144: 41-51.
    [98] Hunt H E M. Modelling of Rail Vehicles and Track for Calculation of Ground-Vibration Transmission into Buildings. Journal of Sound and Vibration. 1996,193(1): 185-194.
    [99] Sun L, Greenberg B S. Dynamic Response of Linear Systems to Moving Stochastic Sources. Journal of Sound and Vibration. 2000,229(4): 957-972.
    [100] Lombaert G, Degrande G, Clouteau D. The Non-Stationary Free-Field Response for a Moving Load with a Random Amplitude. Journal of Sound and Vibration. 2004, 278(3): 611-635.
    [101] Sheng X, Jones C J C, Thompson D J. ATheoretical Study on The Influence of The Track on Train-Induced Ground Vibration. Journal of Sound and Vibration. 2004, 272(3-5): 909-936.
    [102] Sheng X, Jones C J C, Thompson D J. A Theoretical Model for Ground Vibration from Trains Generated by Vertical Track Irregularities. Journal of Sound and Vibration. 2004,272(3-5): 937-965.
    
    [103] L.Fryba. Dynamics of Railway Bridges. London:Thomas Telford, 1996.
    [104] L.Fryba. Vibration of Solids and Structures under Moving Loads. London:Thomas Telford, 1999.
    [105] Wu J S, Chiang L K. Dynamic Analysis of an Arch due to a Moving Load. Journal of Sound and Vibration. 2004,269(3-5): 511-534.
    [106] Lee S Y, Yhim S S. Dynamic Behavior of Long-Span Box Girder Bridges Subjected to Moving Loads: Numerical Analysis and Experimental Verification. International Journal of Solids and Structures. 2005,42(18-19): 5021-5035.
    [107] Henchi K, Fafard M, Dhatt G, et al. Dynamic Behavior of Multi-Span Beams under Moving Loads. Journal of Sound and Vibration. 1997,199(1): 33-50.
    [108] Zheng D Y, Cheung Y K, Au F T K, et al. Vibration of Multi-Span Non-Uniform Beams under Moving Loads by Using Modified Beam Vibration Functions. Journal of Sound and Vibration. 1998,212(3): 455-467.
    [109] Wu J J, Whittaker A R, Cartmell M P. The Use of Finite Element Techniques for Calculating the Dynamic Response of Structures to Moving Loads. Computers & Structures. 2000, 78(6): 789-799.
    [110] Zhu X Q, Law S S. Precise Time-Step Integration for The Dynamic Response of a Continuous Beam under Moving Loads. Journal of Sound and Vibration. 2001,240(5): 962-970.
    [111] Tung C C. Random Response of Highway Bridges to Vehicle Loads. J.Engrg.Mech.Proc. ASCE93. 1967,93(5): 73-94.
    [112] L.Fryba, Non-Stationary Vibrations of Bridges under Random Moving Load, in Eighth Congress of the International Association for Bridge and Strucutral Engineering. 1968:NewYork.
    [113] L.Fryba. Non-Stationary Response of a Beam to a Moving Random Force. Journal of Sound and Vibration. 1976,46(3): 323-338.
    [114] Iwankiewicz R, Sniady P. Vibration of a Beam under a Random Stream of Moving Forces. Journal of Structure Mechanics. 1984,12: 13-26.
    [115] Ricciardi G. Random Vibration of Beam under Moving Loads. Journal of Engineering Mechanics-ASCE 1994,120: 2361-2380.
    [116] Wang R T, Lin T Y. Random Vibration of Multi-Span Timoshenko Beam due to a Moving Load. Journal of Sound and Vibration. 1998,213: 127-138.
    [117] Sniady P, Biernat S, Sieniawska R, et al. Vibrations of The Beam due to a Load Moving with Stochastic Velocity. Probabilistic Engineering Mechanics. 2001,16(1): 53-59.
    [118] Zibdeh H S, Rackwitz R. Response Moments of an Elastic Beam Subjected to Poissonian Moving Loads. Journal of Sound and Vibration. 1995,188(4): 479-495.
    [119] Zibdeh H S. Stochastic Vibration of an Elastic Beam Due to Random Moving Loads and Deterministic Axial Forces. Engineering Structures. 1995,17(7): 530-535.
    [120] Zibdeh H S, Rackwitz R. Moving Loads on Beams with General Boundary Conditions. Journal of Sound and Vibration. 1996,195(1): 85-102.
    [121] Zibdeh H S, Abu-Hilal M. Stochastic Vibration of Laminated Composite Coated Beam Traversed by a Random Moving Load. Engineering Structures. 2003,25(3): 397-404.
    [122] Zibdeh H S, Juma H S. Dynamic Response of a Rotating Beam Subjected to a Random Moving Load. Journal of Sound and Vibration. 1999,223(5): 741-758.
    [123] Abu Hilal M, Zibdeh H S. Vibration Analysis of Beams with General Boundary Conditions Traversed by a Moving Force. Journal of Sound and Vibration. 2000,229(2): 377-388.
    [124] Willis R Appendix of the Report of Commissioners Appointed to Inquire Application of Iron to Rail way Structures. His Majesty's Stationary Office, London, 1849.
    [125] Chu K H, Garg V K, Dhar C L. Railway-Bridge Impact: Simplified Train and Bridge Model. Journal of the Structural Division, ASCE. 1979,105(9): 1823-1844.
    [126] Chu K H, Garg V K, Wiriyachai A. Dynamic Interaction of Railway Train and Bridge. Vehicle System Dynamics. 1980,9(4): 207-236.
    [127] Wiriyachai A, Chu K H, Gary V K. Impact Study by Various Bridge Models. Earthquake Engineering and Structural Dynamics. 1982,10(1): 31-45.
    [128] Bhatti M H. Vertical and Lateral Dynamic Response of Railway Bridges due to Nonlinear Vehicle and Track Irregularities.(Ph.d Thesis). Chicago: Illinois Institute of Technology:, 1982.
    [129] Wang T L, Chu K H. Railway Bridge Vehicle Interaction Studies with New Vehicle Model.Journal of Structural Engineering.1991,117(7):2099-2116.
    [130]Wang T L,Impact and Fatigue in Open Deck Steel Truss and Ballasted Prestressed Concrete Railway Bridges..(Ph.d Thesis) Chicago:Illinois Institute of Technology,1984.
    [131]Kalker J J.Survey of Wheel Rail Rolling Contact Theory.Vehicle System Dynamics.1979,8(4):317-358.
    [132]Shen Z Y,Hedriek J K,Elkins J A.A Comparison of Alternative Creep Force Models for Rail Vehicle Dynamic Analysis.In 8th IAVSD Symp.1984:Cambridge.
    [133]李小珍.高速铁路列车桥梁系统耦合振动理论及应用研究(博士学位论文).成都:西南交通大学,2000.
    [134]宁晓骏.高速铁路列车桥梁基础空间耦合振动研究(博士学位论文).成都:西南交通大学,1998.
    [135]沈锐利.高速铁路桥梁与车辆耦合振动研究.(博士学位论文).成都:西南交通大学,1998.
    [136]何发礼.高速铁路中下跨度曲线桥梁车桥耦合振动研究(博士学位论文).成都:西南交通大学,1999.
    [137]单德山.高速铁路曲线桥梁车桥耦合振动分析及大跨度曲线桥梁设计研究.(博士学位论文).成都:西南交通大学,1999.
    [138]夏禾,陈英俊.车-粱-墩体系动力相互作用分析.土木工程学报.1992,25(2):3-12.
    [139]张楠,夏禾.地震对多跨简支桥梁上列车运行安全的影响.世界地震工程.2001,17(4):43-49.
    [140]Xia H,Xu Y L,Chan T H T.Dynamic Interaction of Long Suspension Bridges with Running Trains.Journal of Sound and Vibration.2000,237(2):263-280.
    [141]Xia H,Zhang N,Gao R.Experimental Analysis of Railway Bridge under High-Speed Trains.Journal of Sound and Vibration.2005,282(1-2):517-528.
    [142]Xia H,De Roeck G,Zhang N,et al.Experimental Analysis of a High-Speed Railway Bridge under Thalys trains.Journal of Sound and Vibration.2003,268(1):103-113.
    [143]Xia H,Zhang N,De Roeck G.Dynamic Analysis of High Speed Railway Bridge under Articulated Trains.Computers & Structures.2003,81(26-27):2467-2478.
    [144]朱汉华.列车桥梁时变系统振动能量随机分析理论.(博士学位论文) 长沙:长 沙铁道学院,1993。
    [145]曾庆元.弹性系统动力学总势能不变值原理.华中理工大学学报.2000,28(1):1-3.
    [146]郭向荣,曾庆元.高速铁路结合粱桥与列车系统振动分析模型.华中理工大学学报.2000,28(3):60-62.
    [147]曾庆元.列车桥梁时变系统的横向振动分析.铁道学报.1991,13(2):38-46.
    [148]王媛,向俊.秦沈客运专线高速列车构架人工蛇行波的随机模拟.铁道科学与工程学报,2005,2(1):45-50
    [149]程庆国,许慰平.大跨度铁路斜拉桥列车走性行探讨,武汉:全国桥梁结构学术大会.1992.
    [150]程庆国,潘家英.大跨度铁路斜拉桥竖向刚度分析,武汉:全国桥梁结构学术大会.1992.
    [151]许慰平.大跨度铁路桥梁车桥空间耦合振动研究.(博士学位论文).北京:铁道科学研究院,1988.
    [152]高芒芒.高速铁路列车-线路-桥梁耦合振动及列车走行性研究.北京:铁道科学研究院,2002.
    [153]高岩,沈锐利,柯在田,张煅.提速对桥梁振动与车辆过桥走行性的影响以及对策.中国铁道科学.2000,21(2):19-25.
    [154]王刚,曹雪琴.高速铁路大跨度斜拉桥车桥动力分析.上海铁道大学学报.2000,21(8):7-11.
    [155]盛国刚,李传习,赵冰.桥梁表面不平顺对车桥耦合振动系统动力效应的影响.应用力学学报,2007,24(1):124-127
    [156]Au F T K,Cheng Y S,Cheung Y K.Effects of Random Road Surface Roughness and Long-Term Deflection of Prestressed Concrete Girder and Cable-Stayed Bridges on Impact due to Moving Vehicles.Computers & Structures.2001,79(8):853-872.
    [157]Au F T K,Wang J J,Cheung Y K.Impact Study of Cable-Stayed Railway Bridge with Random Rail Irregularities.Engineering Structures.2002,24(5):529-541.
    [158]王解军.运行列车作用下桥梁的动力反应:(博士学位论文).长沙:湖南大学:2000.
    [159]晋智斌.车_线_桥耦合系统及车_桥随机振动:(博士学位论文).成都:西南交通大学,2007.
    [160]翟婉明.车辆轨道耦合动力学(第九章).北京:中国铁道出版社,2007.
    [161]Gry L.Dynamic Modelling of Railway Track Based on Wave Propagation.Journal of Sound and Vibration.1996,195(3):477-505.
    [162]Gry L,Gontier C.Dynamic Modelling of Railway Track:A Periodic Model Based on A Generalized Beam Formulation.Journal of Sound and Vibration.1997,199(4):531-558.
    [163]Kruse H,Popp K,Krzyzynski T.On Steady State Dynamics of Railway Tracks Modeled as Continuous Periodic Structures.Machine Dynamics Problems.1998,20:149-166.
    [164]Thompson D J.Vehicle-Rail Noise Generation,Part 3:Rail Vibration.Journal of Sound and Vibration.1993,161:421-446.
    [165]Myklestad N O.The Concept of Complex Damping.Journal of Applied mechanics.1952,20:284-286.
    [166]全玉云.机车车辆/轨道系统垂向耦合动力学有限元分析的研究(博士学位论文).北京:铁道部科学研究院,2000.
    [167]李国豪.工程结构抗震动力学.上海:科学技术出版社,1984.
    [168]雷晓燕.轨道力学与工程新方法.北京:中国铁道出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700