用户名: 密码: 验证码:
盾构施工引起地基移动与近邻建筑保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然盾构法施工技术有了很大的发展,但仍不可避免会引起地层的扰动,导致隧道周围地层变形及引起地表沉降,引起近邻建筑物的损害,从而引发环境土工问题,这种现象在软土地层中尤为显著。本文以武汉长江隧道工程关键技术研究项目为依托,系统地研究了泥水盾构施工对地基和建筑物的影响以及相应的保护措施。
     本论文的创新之处体现在以下五个方面:一、以广州地铁二号线越三盾构区间工程、南京地铁一期工程15标盾构区间工程、武汉长江公路隧道盾构区间工程为对象,对于其施工引起地表施工期纵向沉降规律进行研究,揭示其在软弱地层盾构法施工引起地基变位的原因及其产生机理。二、以武汉越江公路隧道为工程背景,针对不同工况下,考虑和不考虑上部建筑物,进行大量二维和三维有限元数值试验,二维分析表明,可以用来预测哪些部位对于建筑物来说是最危险的部位;隧道埋深小于1.0D情况下,影响范围不大,但是影响程度却在增加,对于泥水盾构来说,埋深越小,意味着施工参数调整幅度小,施工更为不利,地面更容易冒浆。三维数值试验表明,上部建筑物的存在对隧道周围塑性区的大小影响不大,后续隧道对其先行隧道周围的塑性区影响较大,表明后行隧道开挖对两隧道之间附近的土体具有一定的影响;考虑建筑物的存在,横向沉降槽的形状明显不同,沉降槽形状由连续光滑变得有锯齿状的突变;建筑物纵向来看,出现的危险时刻是在隧道开挖面通过前后的4D范围内。针对三维分析模型,通过有关参数调整,数值实验结果和现场试验结果比较接近。三、建立了系统的建筑物保护体系,为了防止对相邻的既有建筑物产生影响,首先应该做的就是给予影响的盾构一侧采取主动措施,必须从盾构机的泥浆质量、泥水压力、盾构推进压力、掘进速度、同步注浆及姿态控制等各方面加强控制。然而,当即便采取了盾构一侧的措施仍担心对既有建筑物产生不利影响时,就必须对近邻建筑物采取相应的加固措施。以上系统的理论保护体系已应用于古建筑鲁兹故居和武汉理工电教楼,并取得较好的施工效果和社会效益。四、针对武汉长江隧道工程,结合国内外工程经验,提出了武汉长江隧道近邻建筑物保护标准,针对古建筑保护,提出了双控控制标准,建筑物本身变化(裂缝)和建筑物沉降以及地面沉降,并成功应用于工程中。五、对横断面沉降槽进行研究表明,对于武汉地层,Peck公式仍可以使用,对于双线隧道引起的沉降槽,提出超几何方法,解决了其沉降最大值不一定出现在两隧道中心,而且沉降槽经常出现不对称的情况,对于Peck公式是一个改进,并提出了先行沉降和附件沉降引起的沉降槽宽度系数设计建议值分别取0.45和0.5。
     以上研究成果的获得,为越江盾构隧道的成功贯通,鲁兹故居的成功保护,为后续工程的设计,施工,监测将起到不可忽视的的作用。
Although the shield construction technique has developed greatly, it will inevitably cause the stratum perturbation, so as to distort soil and cause the surface subsidence, and distory the close adjacent buildings, thus the initiation environment earthwork problem will appear. This phenomenon is especially remarkable in the soft soil. Taking Wuhan Yangtze River tunneling key technologies research project as the background, the dissertation studies the effect of the slurry shield construction to the ground and buildings and protection measures in the full scales.
     This dissertation's innovation including five aspects as follows: First, taking Guangzhou subway two lines Yue San shield sector project, the NanJing subway first phase 15 sign shield sector project and the Wuhan Yangtze River highway tunnel shield project as the object, it studies the lasted subsidence rule during the shield construction period to discover the reason and mechanism of the ground dislodgement in the weak stratum shield law construction. Second, taking the Wuhan Yangtze river highway tunnel as the project background, the two-dimension and the three dimension finite element numerical simulations are conducted with considering or without considering the building in view of the different operating mode. The two-dimension analysis indicates that it may be used to forecast which spots are the most dangerous spots during the whole process. The tunnel burying depth is smaller than in the 1.0D situation, the area of the settlement is less narrow, but the value of peck settlement is larger. Regarding to the slurry shield tunnel, the burying depth is smaller, it means that the construction parameter turning band is small, the construction is more disadvantageous, the ground is easier to brave the thick liquid. The three dimension numerical simulation indicates that building's existence does not influence badly on the plastic area's size around the tunnel. It indicates that the next tunnel excavation the nearby soil body has certain influence on two tunnels. Considering that building's existence, crosswise subsider shape obvious different, the subsider shape smoothly continuously has the zigzag sudden change. The dangerous time of the building longitudinal is around the tunnel excavated surface passes in the AD scope. For the three dimension model, the experimental result and the field test result are quite close with the related parameter adjustment. Third, the building protection system has been established in order to prevent to influence on the neighboring building, first it is for tunnel excavation to take the driving measure. The shield machine mud quality, the slurry pressure, the shield advance the pressure, the tunneling speed, the synchronized slurry and the attitude control and so on in various aspects should be controlled increasingly. However, even if when taking tunnel excavation measure is still to worry that the building was affected adversely, the corresponding reinforcement measure must be taken in the close building. Above The theory protection system applies in the historic building Luci and the Wuhan Institute of Technology electricity and education building, and makes the good construction progress and the social efficiency.
     Fourth, in view of the Wuhan Yangtze River tunneling, referring to the domestic and foreign project experience, the dissertation proposes protection standard of the Wuhan Yangtze River tunnel normal neighbor buildings, and double controls standard in view of the historic building protection-the building itself changes (crack) and the building subsidence as well as the surface subsidence, applies successfully in the project. Fifth, it conducts the research to the cross section subsider to indicate that the Peck formula still might use for the Wuhan stratum, proposes the superpueition technique for settlement cough of the double tunnel, which solves its subsidence maximum value to vary from two tunnel centers, moreover the subsider had the asymmetrical situation frequently, for the Peck formula, it is an improvement and proposes firstly the subsidence and the appendix subsidence caused the trough width parameter design proposal value are 0.45 and 0.5, separately.
     Above research results will play an important role in the river shield tunnel's success penetration, protection of the Luci, the construction and the monitor of the following projects. It also will offer important reference to the similar projects in the design, construction and the measurement.
引文
[1]钱七虎.迎接我国城市地下空间开发高潮.岩土工程学报,1998,(1):112-113.
    [2]刘建航,侯学渊.盾构法隧道.北京:中国铁道出版社,1991.
    [3]孙钧.地铁隧道盾构掘进施工市区的环境土工安全技术标准及其变形与沉降控制.世界隧道,2000:223-240.
    [4]张志勇.盾构施工对周围环境影响研究综述.现代隧道技术,2002,39(2):7-11.
    [5]中铁隧道集团.地面建筑物和地下管线保护.武汉长江隧道工程施工总承包投标文件.2004.
    [6]Peck R B.Deep excavation and tunneling in soft ground,in:Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering.Mexico City:Mexico City press,vol.State of the Art Volume,1969.225-290.
    [7]Attewell P B.Glossop N.H.,Farmer I.W.Ground deformations caused by tunnelling in a silty alluvial clay.Ground Engineering,1978,11(8):32-41.
    [8]O 'Reilly M P,New B M.Settlemet above tunnels in the United Kingdom-their magnitude and prediction,in:Tunnelling'82 Symposium.London:vol.Institution of Mining and Metallurgy,1982.173-181.
    [9]Fujita K.On the surface settlements caused by various methods of shield tunneling in:11th ICSMFE.San Francisco:1981.609-610.
    [10]Mair R J,Taylor R N.Bracegirdle A.Subsurface setlement profiles above tunnels in clay.Geotechnique,1993,43(2):315-320.
    [11]Mair R J,Taylor R N.Bored tunnelling in the urban environment,in:14th ICSMFE.Rotterdam:The Netherlands press,1993.1352-1375.
    [12]Lee K M,Ji H W.et al.Ground response to the construction of shanghai metro Tunnel-line2.Soils and Foundations,1999,39(3):113-134.
    [13]Palmer J H,Belshaw D J.Deformation and pore pressure in the vicinity of a precast,segmented,concret-lined tunnel in clay.Canadian Geotechnical Journal,1980,17(1):174-184.
    [14]Atewell P B,Selby A R.Tunnelilng in compressible soils:large ground movements and structural implications.Tunnelling and underground space technology,1989,4(4):481-487.
    [15]Mair R J,Taylor R N.Burland J.B.Prediction of ground movements and assessment of risk building damage due to bored tunneling,in:Proceedings Geotechnical Aspect of Underground Construction in soil Ground.Roterdam:The Netherlands press,1996.
    [16]Attewell P B,Woodman J.P.Predicting the dynamics of ground setlement and its derivatives caused by tunneling in soil.Ground Engineering,1982,15(8):13-20.
    [17]Cording E J.Hansmire W H.Displacements around soft ground tunnels,in:5th Pan American Conference on Soil Mechanics and Foundation Engineering:vol.General Rep,1975.571-632.
    [18]刘建航.上海地铁1号线地下工程的技术概要.95上海国际建筑技术研讨会论文集,1995.
    [19]Ata A A.Ground settlements induced by slurry shield tunneling in Stratified soils,in:North American Tunneling'96.Lozdemir:vol.1,1996.43-50.
    [20]Fang Y S,Lin SJ.Lin J.L.Time and setlement in EPB shield tunnelling.Tunnels &Tunnelling,1993,134(11):27-28.
    [21]李建华.盾构法隧道施工引起地层移动的模糊一随机理论预测与控制研究[博士学位论文].上海:同济大学.1995.
    [22]Cheng I Y.Application of neural networks to automatic soil pressure balance control for shield tunneling.Autoniation in Construction,1997,5(5):421-426.
    [23]Shi J S,et.al.Modular neural networks for predicting setlements during tunnelin.Joural of Geotechnical and Geoenvironmental Engineering,ASCE.1998,124(5):389-395.
    [24]孙钧,袁金荣.盾构施工扰动与地层移动及其智能神经网络预测.岩土工程学报,2001,23(3):261-267.
    [25]Clough G W,Schmidt B.Design and performance of excavation and tunnels in soft clay.Elsevier Press.1981:569-634.
    [26]Mair R J,Taylor R N.Prediction of clay behaviour around tunnels using plasticity solutions Predictive Soil Mechanics.in:Worth Memorial Symposium.Oxford:Thomas Telford Press,1992.449-463.
    [27]Loganathan N,Poulos H G.Analytical prediction for tunneling-induced ground movement in clays.Journal of Geotechnical and Geoenvironmental Engineering,ASCE 1998,124(9):846-856.
    [28]施建勇,张静.隧道施工引起土体变形的半解析分析.河海大学学报,2002,30(6):48-51.
    [29]Rowe R K,Lo K Y,Kack G J.A method of estimating surface settlement above shallow tunnels in soft soil.Canadian Geotechnical Journal,1983,20:11-22.
    [30]Lee K M,Rowe R K,Lo K Y.Subsidence owing to tunnelling.Estimating the gap parameter.Canadian Geotechnical Journal,1992,29:929-940.
    [31]Rowe R.K.,Lee.K.M.An evaluation of simplified techniques for estimating three dimensional undrained ground movements due to tunneling in soft soils.Canadian Geotechnical Journal,1992,29:39-52.
    [32]Clough G W,Shirasuna T,Finno R J.Finite element analysis of advanced shield tunneling in Soils.in:Kawamotot and Ichikawa Y.Ed.Numerical Methods in Geomechanics.Roterdam Balkema,1985.1167-1174.
    [33]于宁,朱合华.盾构施工仿真及其相邻影响的数值分析.岩土力学,2004,25(2):292-296.
    [34]张云,殷宗泽,徐永福.盾构法隧道引起的地表变形分析.岩石力学与工程学报,2002,2l(2):388-392.
    [35]Finno R J,Clough G W.Evaluation of soil response to EPB tunnelling.J.Geotech.Engrg.,ASCE.1985,111(2):155-173.
    [36]Abu-Farsakh M Y,Voyiadjis G Z.Computation model for the simulation of the shield tunneling process in cohesive soils.Int.J.Numer.Anal.Meth.Geotech,1999,23:23-44.
    [37]Lee K M,Rowe R K.Finite element modelling of the three-dimensional ground deformations due to tunneling in soft cohesive soils Part Ⅰ.Methods of analysis.Computers and Geotechnics,1990,2(2):87-110.
    [38]Lee K M,Rowe R K.Finite element modelling of the three-dimensional ground deformations due to tunneling in soft cohesive soils.Part Ⅱ.Results.Computers and Geotechnics,1990,2(2):111-138.
    [39]刘洪洲,孙钧.软土隧道盾构推进中地面沉降影响因素的数值法研究.现代隧道技术,2001,38(6):24-28.
    [40]孙钧,刘红洲.上海地铁交叠盾构隧道施工变形问题.同济大学学报,2002,30(4):379-385.
    [41]Lin D G,Tseng C T,et al.3-D Deformation analysis of earth pressure balance shield tunnelling in Bangkok subsoil.Journal of the southeast asian geotechnical society,2002,(4):13-27.
    [42]Manuel M,et al.Prediction and analysis of subsidence induced by shield tunnelling in the Madrid Metro extension.Canadian Geotechnical Journal,2002,39(6):1273-1287.
    [43]王敏强,陈胜宏.盾构推进隧道结构三维非线性有限元仿真.岩石力学与工程学报,2002,21(2):228-232.
    [44]Charles W W Ng,Gordon Lee TK.Three-dimensional ground settlements and stress-transfer mechanisms due to open-face tunneling.Canadian Geotechnical Journal,2005,42(4):1015-1029.
    [45]Thomas K,Gunther M.A numerical study of the effect of soil and grout material properties and cover depth in shield tunneling.Computers and Geotechnics,2006,33:234-247.
    [46]Mair R J,Philips R,el al.Application of centrifuge modeling to the design of tunnel sand excavations in soft caly.in:Symposium on Application of centrifuge Mode lingt of Geotechnical Design.Manchester:Balkema,vol.357-380,1984.
    [47]Mair RJ,Gunn MJ,Oreily MP.软粘土中浅埋隧道周围地层运动.隧道译丛,1983.10:47-53.
    [48]Kuwahara H,Yamazaki T,Kusakabe O.G round deformation mechanism of shield tunneling due to tail void formation in soft clay.in:Proc.,14 th Int.Conf.on Soil Mech.And Found.Engrg.Roterdam:Balkema,1997.1457-1460.
    [49]易宏伟,孙钧.盾构施工对软粘土的扰动机理分析.同济大学学报,2000,28(3):277-281.
    [50]张庆贺,朱忠隆,杨俊龙.朱继文盾构推进引起十体扰动理论分析及试验研究.岩石力学与工程学报,1999,18(6):699-703.
    [51]蒋洪胜,侯学渊.盾构掘进对隧道周围土层扰动的理论与实测分析.岩石力学与工程学报,2003,22(9):1514-1520.
    [52]徐永福,陈建山,傅德明.盾构掘进对周围土体力学性质的影响.岩石力学与工程报,2003,22(7):1174-1179.
    [53]Burland J B,Wroth C P.Settlement of buildings and associated damage,in:Proc.Conf.on Settlement of Structures.London,England:Pentech Press,1974.611-654.
    [54]Burland J B,Broms BB.Mello V F.Behaviour of foundations and structures,in:9th International Conference on Soil Mechanics and Foundation Engineering.Tokyo:vol.State-of-the-Art Report,1977.495-546.
    [55]Boscardin M D,Cording E G.Building response to excavation-induced settlement.Journal of Geotechnical Engineering,ASCE.1989,115(1):1-21.
    [56]Burland J B.Assessment of risk of damage to buildings due to tunneling and excavation,in:1st International Conference on Earthquake Geotechnical Engineering:vol.Invited special lecture to IS-Tokyo 95,1995.
    [57]Breth H.Chambosse G.Settlement behavior of buildings above subway tunnels in Frankfurt clay.in:Proc,Conf.on Settlement of Structures.London,England:Pentech Press,1974.329-336.
    [58]Frischmann W W,et.al.Prediction of the Mansion House against damage causing by ground movements due to the Docklands Light Railway Extension.in:Proc Inst.Civil Engineering:1994.65-76.
    [59]王占生,王梦恕.盾构施工对周围建筑物的安全影响及处理措施.中国安全科学报,2002,12(2):45-50.
    [60]Forth R A,Thorley C B.Hong Kong Island Line Predictions and performance,in:Mair R J,Taylor R N.editor.Proceedings Geotechnical Aspect of Underground Construction in soil Ground.Roterdam:Balkema,1996.677-682.
    [61]Hergarden H J,et al.Ground movements due to tunnelling:influence on pile foundations,in:Mair,R.J.,Taylor,R.N.,(e ds),editor.Proc.Int.Symposium on Geotechnical Aspects of Underground Construction in Soft Ground.London:Balkema,1996.519-524.
    [62]Chen L T,Poulos H G.Loganathan N.Pile response caused by tunnelling.Journal of Geotechnical and Geoenvironmental Engineering,ASCE.1999,125(3):207-215.
    [63]Mroueh H,Shahrour L.Three-dimensional finite element analysis of the interaction between tunnelling and pile foundations.Int.J.Numer.Anal.Meth.Geomech.,2002,26:217-230.
    [64]李永盛,黄海鹰.盾构推进对相邻桩体力学影响的实用计算方法.同济大学学报,1997,25(3):274-280.
    [65]曾小清,张庆贺,曹志远.地铁工程双线盾构平行推进的相互作用.同济大学学报,1997(25):4.
    [66]李强,德顺.盾构施工中垂直交叉隧道变形的三维有限元分析.岩土力学,2001,22(3):334-338.
    [67]陈先国,高波.地铁近距离平行隧道有限元数值模拟.岩石力学与工程学报,2002,21(9):1330-1334.
    [68]Mroueh H,Shahrour I.A full 3-D finite element analysis of tunneling-adjacent structures interaction.Computers and.Geotechnics,2003,30(3):245-253.
    [69]Cheng C Y,Dasari G R.et al.Finite element analysis of tunnel -soil-pile interaction using displacement controlled model.Tunnelling and Underground Space Technology,2007,22(4):450-466.
    [70]朱合华,崔茂玉,杨金松.盾构衬砌管片的设计模型与荷载分布的研究.岩土工程学报.2000,22(2):190-194.
    [71]Lee K M,et al.The equivalence of a jointed shield-driven tunnellining to acontinuous ring structure.Canadian Geotechnical Journal,2001,38(3):1175-1183.
    [72]黄宏伟,减小龙.盾构隧道纵向变形性态研究分析.地下空间,2002,22(3):244-251.
    [73]官林星,朱合华,于宁.考虑荷载工况组合的盾构衬砌横向受力分析.岩土力学.2004,25(8):1302-1306.
    [74]地盘工学会(日),牛清山,陈凤英,徐华(译).盾构法的调查、设计、施工.北京:中国建筑工业出版社,2008.
    [75]潘昌实.隧道力学数值方法.北京:中国铁道出版社,1995.
    [76]石亦平,周玉容.ABAQUS有限元分析实例详解.北京:机械工业出版社,2006.
    [77]章根德.土的本构模型及其工程应用.北京:科学出版社,1995.
    [78]周文波.盾构法隧道施工技术及应用.北京:中国建筑工业出版社,2004.
    [79]赵运臣.城市地下工程施工引起的地表沉降规律分析及数据库开发[硕士学位论文].同济大学学报,2007.
    [80]Addenbrooke T I,Potts D M.Twin tunnel interaction:surface and subsurface effect.The International Journal of Geomechanics,2001,1(2):249-271.
    [81]易宏伟,孙钧.盾构施工对软粘土的扰动机理分析.同济大学学报,1999,28(3):277-281.
    [82]骆建军,王梦恕.地铁施工对管线的影响.中国铁道科学,2006,27(6):125-128.
    [83]刘元雪,施建勇,等.盾构法隧道施工数值模拟.岩土工程学报,2004,26(2):239-243.
    [84]姜忻良,赵志民,李园..隧道开挖引起土层沉降槽曲线形态的分析与计算.岩土力学,2004,25(10):1542-1544.
    [85]杨秋玲,马可栓.大体积混凝土水化热温度场三维有限元分析.哈尔滨工业大学学报,2004,36(2):261-263.
    [86]马可栓,丁烈云,彭畅.越江隧道泥水盾构施工引起地层移动的有限元分析.西安交通大学学报,2007,41(9):1119-1123.
    [87]Potts D M,Addenbrooke T I.A structure's influence on tunneling-induced ground movements.ICE Journal of Geotechnical Engineering,1997,125(2):109-125.
    [88]Karakus M,Fowell R J.Back analysis for tunneling induced ground movements and stress redistribution.Tunnelling and underground space technology,2005,20(6):514-524.
    [89]Burd H J,Houlsby G T.et al.Modeling tunneling-induced settlement of masonry buildings.Institution of Civil Engineers and Geotechnical Engineering,2000,14(3):17-29.
    [90]Leca E,Leblais Y.Kuhnhenn K.Underground works in soils and soft rock tunnelling,in:International Conference on Geotechnical and Geological Engineering,2000,220-268.
    [91]Addenbrooke T I,Potts D M,Puzrin A M.The influence of prefailure soil stiffness on the numerical analysis of tunnel construction.Geotechnique,1997,47(3): 693-712.
    [92]Moiler S C,Vermeer P A.On numerical simulation of tunnel installation.Tunnelling and Underground Space Technology,2007,23(1):1-15.
    [93]Sagaseta C.Analysis of undrained soil deformation due to ground loss.Geotechnique,1987,37(3):301-320.
    [94]Ma K S,Ding L Y.Finite element analysis of tunnel-soil-building interaction using displacement controlled model.WSEAS Transactions on Applied and Theoretical Mechanics,2008,3(3):73-82.
    [95]Ma K S,Ding L Y.Assessing a soft twin tunneling numerical model using field data.Academic Journal of Xi'an Jiao tong University,2009,21(1).
    [96]土木学会(日),朱伟(译).隧道标准规范(盾构篇)及解说.北京:中国建筑工业出版社,2001.
    [97]马可栓,丁烈云.大型泥水盾构隧道下穿武九铁路沉降控制技术.铁道建筑,2008,(5):54-56.
    [98]卫龙武,吕志涛,郭彤.建筑物评估、加固与改造.南京:江苏科学技术出版社,2006.
    [99]中国建筑科学研究院.既有建筑地基基础加固技术规范(JGJ123-2000).北京:中国建筑工业出版社,2000.
    [100]Leca E,Clough GW.Construction and instrumentation of underground excavations.in:13th International Conference on Soil Mechanics and Foundation Engineering.New Delhi:1994.303-310.
    [101]Dunnicliff J.Geotechnical Instrumentation for Monitoring field Performance.New York:Wiley Press,1988.
    [102]ITA/AITES.Settlements induced by tunneling in Soft Ground.Tunnelling and Undergroun d Space Technology,2007,22(2):119-149.
    [103]丁智.盾构隧道施工与邻近建筑物相互影响研究[硕士学位论文].杭州:浙江大学,2007.
    [104]中华人民共和国建设部.建筑地基基础设计规范(GB50007-2002).北京:中国建筑工业出版社.2002.
    [105]Attewell P B,Farmer I W.Ground deformations resulting from shield tunneling in London clay.Canadian Geotechnical Journal,1974,11(2):380-395.
    [106]Shirlaw J N,Doran S,Bejamin B.A case study of two tunnels driven in the Singapore 'boulder bed' and in grout coral sands.Engineering Geology and Underground Movements,Geological Society Engineering Geology,1988,(5):93-103.
    [107] Chapman D N, Ahn S K, Hunt D V L. Investigating ground movements caused by the construction of multiple tunnels in soft ground using laboratory model tests. Canadian Geotechnical Journal, 2007,44(6): 631-643.
    [108] Cooper M L, et al. Prediction of Settlement in Existing Tunnel Caused by the Second of Twin Tunnels. Journal of the Transportation Research Board,2007, 1814/2002: 103-111.
    [109] Suwansawat S E. Describing Settlement Troughs over Twin Tunnels Using a Superposition Technique. Journal of Geotechnical and Geoenvironmental and Engineering,2007, 133(4): 445-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700