用户名: 密码: 验证码:
大跨桥梁多维多点地震反应分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理论研究和震害经验都表明,地震是复杂的多维多点运动。多维指的是地震动包括三个平动和三个转动分量;多点,又称为非一致激励或者地震地面运动的空间变化等,指的是结构各支承如果相距较远,所承受的地震地面运动一般是不同的,包括行波效应、部分相干效应和局部场地土效应等。对于大跨桥梁,研究其在多维多点地震作用下的反应特性具有重要的现实意义。本文对多维多点地震动输入,曲线桥多维地震反应分析,多维多点反应谱法及大跨斜拉桥地震反应特性,高墩大跨曲线连续刚构桥多维多点地震敏感参数分析以及多维多点地震动对减、隔震桥梁的影响分析等五个方面进行了研究,完成了以下主要研究内容:
     (1)提出一种基于小波变换的拟合规范反应谱的多维地震动模拟算法。该方法基于已有的三维实际地震动利用小波变换修正拟合反应谱得到三维人造地震动时程曲线。求解过程中引入快速小波变换法,大大减少了计算量。另外,研究了多维多点的随机模型,针对以往研究中未考虑多点地震动不同点不同地震动分量之间相干性的问题,利用SMART-I台阵的地震记录,分析了其相干函数的值的范围,研究表明:不同点不同地震动分量之间的相干性较弱,随频率的变化趋势不明显,可假定为常数。最后,给出了多维多点人工地震动时程记录模拟的方法。
     (2)针对曲线桥这种不规则结构,研究了其在单维以及多维地震时程反应分析时的主方向问题,推导给出了多维地震时程分析主方向的求解公式。利用本文方法,仅通过两次时程分析就可以很方便的求得单维和双向地震动作用下曲线桥地震反应的主方向,大大减少了计算量。最后,对比分析了SUM法、SRSS法以及百分比准则等组合方法的准确性。研究结果表明,采用各种组合方法不一定能得到保守的结果,建议对关键部位的内力和位移沿最不利角度输入进行计算。
     (3)将Kiureghian给出的MSRS多点反应谱方法推广至多维多点领域,利用MATLAB编写了大跨桥梁多维多点反应谱法的程序,研究了大跨斜拉桥在多维多点地震作用下的反应特性。研究结果表明,竖向多点地震反应分析对斜拉桥放大作用最大,纵向多点地震反应分析次之,横向多点地震反应分析影响最小;相比行波效应的影响,部分相干效应的影响较小,初步设计时可不考虑;另外,拟静力效应对桥梁内力影响有限:不考虑同一点和不同点不同分量之间的相干性对斜拉桥可能造成不安全的估计。由此给出了斜拉桥考虑多维多点地震反应的简化方法。最后,提出利用遗传算法求出多维多点反应谱法参数变化时的最大值,用于抗震设计以保证结构的安全。
     (4)对高墩大跨径曲线连续刚构桥和高墩大跨径直线连续刚构桥在多维多点地震激励下的响应特征进行对比研究,分析了由于“弯”对刚构桥抗震性能带来的影响:然后深入研究了横系梁的设置、桥墩高度、桥梁跨数等敏感参数对桥梁抗震性能的影响。研究表明:“弯”的效应可放大主梁的地震响应,而对主墩地震响应影响较小;在满足稳定性的条件下不设系梁或者少设系梁对地震响应有利;桥墩越高对地震响应一般更有利;跨数增加对桥梁主墩地震响应并不敏感:多维多点地震效应可减小主墩的地震响应,而较大的放大主梁的地震响应。
     (5)利用SIMULINK仿真工具箱建立了桥梁在多维多点地震激励下的减震控制分析模型。研究了曲线桥在多维多点地震激励下的半主动控制分析,重点探讨了多维多点地震激励以及地震输入的不同角度对结构减震效果的影响规律。研究结果表明,多维多点地震激励对结构的减震效果影响显著,可能显著降低桥梁的预期减震率。激励角度和多点激励效应是相互耦合的。建议在确定半主动控制系统的参数时,应考虑多维多点地震激励的影响,并在激励角度沿着曲线桥弦向方向输入时进行设计,以保证结构的控震效果。此外,利用非线性时程分析法对铅芯橡胶支座隔震桥梁在多点地震激励下的反应规律进行了探索。研究了行波效应、部分相干效应以及局部场地土效应对体系的影响规律。研究表明,采用传统的一致激励假设,可能低估桥梁的响应;三种影响因素中,局部场地土条件的差异影响最大,行波效应次之,部分相干效应的影响最小。
Both theoretical research and earthquake damage analysis indicate that earthquake excitations are complex multi-component and multi-support movements. Multi-component refers to the six components of earthquake including three transiational components and three rotational components. Multi-support, also known as non-uniform excitation or spatially variability of earthquake, refers to the different excitations of different supports of the structures. It includes three aspects: wave passage effect, incoherence effect and local site effect. As to large-span bridges, it is significant to analyze the seismic performance under multi-component and multi-support excitations. The five aspects of work done in this thesis are listed as follows.
     (1) A wavelet-based procedure is proposed to generate artificial multi-dimensional accelerograms whose response spectra are compatible with three-dimensional target spectra. Through wavelet transform, the recorded time histories are scaled to match the target response spectra. Fast wavelet transform method are introduced to improve calculation efficiency. Then, random multi-component and multi-support model is established. The coherency between different components of different supports is analyzed using the SMART-I array accelerogram records. The results show that the coherency between different components of different supports is low, and can be assumed as a constant independent of frequency. Finally, the method to generate multi-component multi-support artificial time histories is given.
     (2) As to curved bridge, the method to determine the critical angle in time history analysis is investigated. The formula to decide the angle is proposed. Through two individual time history analysis, the unfavourable direction of one dimensional and two-dimensional earthquake can be determined. Then, the combination rules for orthogonal effects of time history analysis, such as the SUM rule, 100/30,100/40 percentage rules and the SRSS rule are also examined. The results show that these combination rules can't guarantee conservative results. And the paired acceleration time histories along the critical angle should be used in the analysis.
     (3) According to the MSRS method proposed by Kiureghian, the MATLAB program of seismic response under multi-component and multi-support excitation is established. The seismic performance of large-span cable-stayed bridge under multi-component and multi-support excitations is studied. The results show that: the amplification effect of vertical multi-support excitation is the largest, and longitudinal multi-support excitation takes second place. Transverse multi-support excitation has smallest effect on the bridge. As to wave passage effect, incoherence effect can be omitted. Pseudo-static effect has very limit effect on the total response. The coherency between different components of different and same supports should be considered in order to guarantee the safety of the bridge. Simple calculation method is recommended to account for the multi-component and multi-support effect. Finally, the method using genetic algorithm is proposed to find the maximum value of multi-component and multi-support response spectrum method.
     (4) The dynamic characteristics of large-span curved and linear continuous rigid frame bridge with high pier under multi-component and multi-support earthquake are compared. The influence of 'curve' to the seismic performance of the bridge type is discussed. Then, curvature, the setup of straining beam, the height of pier and the span number of the bridge to the seismic response of the bridge type are also analyzed. The results indicate that: the influence of 'curve' can amplify the seismic response of main girder, and has little effect on the seismic response of piers; the setup of straining beam can amplify the response of the bridge; Increasing the height of the bridge can decrease the seismic response of bridge; span number is not sensitive to the seismic response of the bridge piers; the effect of multi-component and multi-support can decrease the response of the pier and increase the response of the beam.
     (5) Semi-active control model of bridge under multi-component and multi-support earthquake is established using SIMULINK toolbox. The semi-active analysis of curved bridge under multi-component and multi-support excitation is studied. The emphasis is placed on influence of multi-component and multi-support and the excitation angle to the mitigation rate. The results indicate that the mitigation rate can be decreased by multi-component multi-support effect of earthquake, and the effect of excitation angle and multi-support excitation are coupled. In addition, based on the model of LRB isolated bridge established, the influence of spatially ground motion on the longitudinal seismic response of the system is studied using nonlinear time history analysis. The influence of wave passage effect, incoherence effect and local site effect are studied. The results indicate that the seismic response can be underestimated using the traditional assumption of uniform excitation. And the local site effect has largest detrimental influence on the bridge; wave passage effect takes the second place; incoherence effect takes the least.
引文
[1]李宏男.建筑抗震设计原理.北京:中国建筑工业出版社,1996.
    [2]李宏男.结构多维抗震理论.北京:科学出版社,2006.
    [3]林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展.力学进展,2001,31(3):350-359.
    [4]屈铁军,王前信.多点输入地震反应分析研究的进展.世界地震工程,1993,9(1):30-36.
    [5]苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展.同济大学学报,1999,27(2):189-193.
    [6]李宏男.地震动的转动分量及有关的结构反应分析.世界地震工程,1991,7(4):44-51.
    [7]Li H.N.,Sun L.Y.and Wang S.Y.Improved approach for obtaining rotational components of seismic motion.Nuclear Engineering and Design,2004,232(2):131-137.
    [8]Lopez O.A.,Hernandez J.J.Response spectra for two horizontal seismic components and application of the CQC3-rule.Proceedings of the 7th U.S.National Conference on Earthquake Engineering,Boston,2002.
    [9]Bozorgnia Y.,Campbell K.W.,Niazi M.Observed spectral characteristics of vertical ground motion recorded during worldwide earthquakes from 1957 to 1995.Proceedings of the 12th World Conference on Earthquake Engineering,New Zealand,2000.Paper No.2671.
    [10]Hernandez J.J.,Lopez O.A.Evaluation of combination rules for peak response calculation in three-component seismic analysis.Earthquake Engineering and Structural Dynamics,2003,32:1585-1602.
    [11]Niazi M.,Bozorgnia Y.Behavior of near-source vertical and horizontal response spectra at SMART-I array,Taiwan.Earthquake Engineering and Structural Dynamics,1992,21(1):37-50.
    [12]王国权.921台湾集集地震近断层地面运动特征:(博士学位论文).北京:中国地震局地质研究所.2001.
    [13]Ohno S.,Konno T.,Abe K.,et al.Method of evaluating horizontal and vertical earthquake ground motions for aseismic design.Proceedings of the 11th World Conference on Earthquake Engineering,Mexico,1996.Paper No.1791.
    [14]耿淑伟,陶夏新.地震动加速度反应谱竖向分量与水平分量的比值.地震工程与工程振动,2004,24(5):33-38.
    [15]Penzien J,Watabe M.Characteristics of 3-dimensional earthquake ground motion.Earthquake Engineering and Structural Dynamics,1975,4:365-374.
    [16]Lopez O.A.,Torres R.The critical angle of seismic incidence and the maximum structural response.Earthquake Engineering and Structural Dynamics,1997,26:881-894.
    [17]Menun C,Kiureghian A.D.A replacement for the 30%,40%and SRSS rules for multicomponent seismic analysis.Earthquake Spectra,1998,4(1):153-156.
    [18]克拉夫,彭津著,王光远译.结构动力学.北京:高等教育出版社,2006.
    [19]Hadjian A.H.On the correlation of the components of strong ground motion-part2.Bulletin of Seismological Society of America,1981,71(4):1323-1331.
    [20]Chen C.,Lee J.P.Correlation of artificially generated three component time-histories.Proceedings of the Second International Conference on Structural Mechanics in Reactor Technology,Berlin,Germany,1973.Paper No.K1/8
    [21]黄玉平,刘季.双向水平地震动的空间相关性.哈尔滨建筑工程学院学报,1987,3:10-14.
    [22]王君杰.多点多维地震动随机模型及结构的反应谱分析:(博士学位论文)哈尔滨:国家地震局工程力学研究所,1992.
    [23]钟菊芳,胡晓,屈铁军.同一测点不同地震动分量空间相干性分析.地震研究,2005,28(4):378-382.
    [24]冯启民,胡聿贤.空间相关地面运动的数学模型.地震工程与工程振动,1981,1(2):1-8.
    [25]Harichandran R S,Vanmarcke E H.Stochastic variation of earthquake ground motion in space and time.Journal of Engineering Mechanics,1986,112(2):154-175.
    [26]Loh C.H.,Yeh Y.T.Spatial variation and stochastic modeling of seismic differential ground movement.Earthquake Engineering and Structural Dynamics,1988,16(5):583-596.
    [27]Loh C.H,Lin S.G.Directionality and simulation in spatial variation of seismic waves.Engineering Structures,1990,12:1-27.
    [28]Abrahamson N.A.,Schneider J.F.,Stepp J.C.Empirical spatial coherence functions for application to soil-structure interaction analyses.Earthquake Spectra,1991,7(1):1-27.
    [29]屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型.地震学报,1996,18(1):55-62.
    [30]Oliveira C.S.,Hao H.,Penzien J.Ground motion modeling for multiple-input structural analysis.Structural Safety,1991,10:79-93.
    [31]Nakamura H.Depth-dependent spatial variation of ground motion based on seismic array records.Proceedings of the 11th World Conference on Earthquake Engineering,Mexico,1996.Paper No.731.
    [32]王君杰,陈虎.面向设计应用的地震动空间相干函数模型.地震工程与工程振动,2007,27(1):16-23.
    [333 Wang J.J.,Chen H.A new spatial coherence model and analytical coefficients for multi-support response spectrum combination.Earthquake Engineering and Engineering Vibration.2007,6(3):225-235.
    [34]Luco J.E.,Wong H.L.Response of a rigid foundation to a spatially random ground motion.Earthquake Engineering and Structural Dynamics,1986,14:891-908.
    [35]Somerville P.G.,Mclaren J.P.,Sen M.K.,et.al.The influnce of site condition on the spatial incoherence of ground motions.Structural Safety,1991,10:1-14.
    [36]Kiureghian A.D.A coherency model for spatially varying ground motions.Earthquake Engineering and Structural Dynamics,1996,25(1):99-111.
    [37]Yang Q.S.,Chen Y.J.A practical coherency model for spatially varying ground motions.Structural Engineering and Mechanics,2000,9(2):141-152.
    [38]丁海平,刘启方,金星等.基岩地震动的一个相干函数模型-倾滑断层情形.地震工程与工程振动,2003,23(2):8-11.
    [39]丁海平,刘启方,金星等.基岩地震动的一个相干函数模型一走滑断层情形.地震学报,2004,26(1):62-67.
    [40]刘先明,叶继红,李爱群.竖向地震动场的空间相干函数模型.工程力学,2004,21(2):140-144.
    [41]金星,廖振鹏.地震动随机场的物理模拟.地震工程与工程振动,1994,14(3):11-19.
    [42]李小军,赵风新,胡聿贤.空间相干地震动场模拟的研究.地震学报,1997,19(2):212-215.
    [43]Zerva A.,Zhang O.Correlation patterns in characteristics of spatially variable seismic ground motions.Earthquake Engineering and Structural Dynamics,1997,26:19-39.
    [44]Yamamura N.,Tanaka H.Response analysis of flexible MDOF systems for multiple-support seismic excitation.Earthquake Engineering and Structural Dynamics,1992,19:345-357.
    [45]Berrah M,Kausel E.Response spectrum analysis of structures subjected to spatially varying motions.Earthquake Engineering and Structural Dynamics,1992,21:461-470.
    [46]Berrah M,Kausel E.A modal combination rule for spatially varying seismic motions.Earthquake Engineering and Structural Dynamics,1993,22:791-800.
    [47]Kiureghian A.D.,Neuenhofer A.Response spectrum method of multi-support seismic excitations.Earthquake Engineering and Structural Dynamics,1992,21:713-740.
    [48]Loh C.H.,Ku B.D.An efficient analysis of structural response for multiple-support seismic excitations.Engineering Structures,1995,17(1):15-25.
    [49]Kahan M.,Gibert R.Influence of seismic waves spatial variability on bridges:a sensitivity analysis.Earthquake Engineering and Structural Dynamics,1996,25:795-814.
    [50]王淑波.大型桥梁抗震反应谱分析理论及应用研究:(博士学位论文).上海:同济大学,1998.
    [51]夏友柏,王年桥.多点地震激励下基于改进振型位移法的反应谱方法.世界地震工程,2003,19(1):164-169.
    [52]李杰,李建华.多点激励下结构随机地震反应分析的反应谱方法.地震工程与工程振动,2004,24(3):21-29.
    [53]刘先明,叶继红,李爱群.多点输入反应谱法的理论研究.土木工程学报,2005,38(3):17-22.
    [54]Allam S.M.,Datta T.K.Analysis of cable-stayed bridges under multi-component random ground motion by response spectrum method.Engineering Structures,2000,22:1367-1377.
    [55]Heredia-Zavoni E.,Vammarake E.H.Seismic random vibration analysis of multi-support structural systems.Journal of Engineering Mechanics,1994,120(5):1107-1128.
    [56]刘洪兵.大跨度桥梁考虑多点激励及地形效应的地震响应分析:(博士学位论文).北京:北方交通大学,2000.
    [57]孙建梅.多点输入下大跨空间结构抗震性能和分析方法的研究:(博士学位论文).南京:东南大学,2005.
    [58]苏亮.大跨空间结构的多点反应谱法和多点地震反应性状的研究:(博士后研究工作报告).浙江:浙江大学,2007.
    [59]Zembaty Z,Krenk S.Spatial seismic excitations and response spectra.Journal of Engineering Mechanics,1993,119(12):2449-2460.
    [60]Jeng V,Kasai K.Spectral relative motion of two structures due to seismic travel waves.Journal of Structural Engineering,122(10):1128-1135.
    [61]Trifunac M D,Todorovska M I.Response spectra for differential motion of columns.Earthquake Engineering and Structural Dynamics,1997,26:251-268.
    [62]Trifunac M D,Gicev V.Response spectra for differential motion of columns paper Ⅱ:Out-of-plane response.Soil Dynamics and Earthquake Engineering,2006,26:1149-60.
    [63]Su L,Dong S L,Kato S.A new average response spectrum method for linear response analysis of structures to spatial earthquake ground motions.Engineering Structures,2006,28(13):1835-1842.
    [64]Su L,Dong S L,Kato S.Seismic design for steel trussed arch to multi-support excitations.Journal of Constructional Steel Research,2007,63(6):725-734.
    [65]陈文兵,唐家详.水平任意向地震输入下双塔楼联体结构的动力分析.振动与冲击.2003,22(1):29-32.
    [66]Chopra A.K.著,谢礼立,吕大刚等译.结构动力学-理论及其在地震工程中的应用.北京:高等教育出版社,2007.
    [67]爱德华.L.维尔逊著.结构静力与动力分析—强调地震工程学的物理方法.北京金土木软件技术有限公司,中国建筑标准设计研究院译.北京:中国建筑工业出版社,2006.
    [68]陈幼平,周宏业.斜拉桥地震反应的行波效应.土木工程学报,1996,29(6):61-68.
    [69]陈幼平,周宏业.斜拉桥地震破坏的计算研究.地震工程与工程振动,1995,15(3):127-134.
    [70]罗尧治,王荣.索穹顶结构动力特性及多维多点抗震性能研究.浙江大学学报(工学版).2005,39(1):39-45.
    [71]刘枫,肖从真,徐自国等.首都机场3号航站楼多维多点输入时程地震反应分析.建筑结构学报,2006.27(5):56-63.
    [72]杨志,韩庆华,周全智等.多维多点激励下老山自行车馆屋盖结构的地震反应分析.天津大学学报,2007,40(11):1277-1283.
    [73]Nazmy A.S.,Abdel-Ghaffar A.M.Nonlinear earthquake-response analysis of long-span cable-stayed bridges:Theory.Earthquake Engineering and Structural Dynamics,1990,19:45-62.
    [74]Nazmy A.S.,Abdel-Ghaffar A.M.Effects of ground motion spatial variability on the response of cable-stayed bridges.Earthquake Engineering and Structural Dynamics,1992,21:1-20.
    [75]秦权,孙晓燕,贺瑞等.苏通桥对非一致地震地面运动的反应和人工波质量的讨论.工程力学,2006,23(9):71-83.
    [76]Zanardo G.,Hao H.Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion.Earthquake Engineering and Structural Dynamics,2002,31:1325-1345.
    [77]Zanardo G.Performance evaluation of short span reinforced concrete arch bridges.Journal of Bridge Engineering,2004,9(5):424-434.
    [78]Kiureghian A.D.Structural response to stationary excitation.Journal of Engineering Mechanics,1980,106(6):1195-1213.
    [79]王虎栓,汪近仁.高层建筑随机地震反应分析.地震工程与工程振动,1988,8(3):86-96.
    [80]Harichandran R.S.,Wang W.Effects of spatially varying earthquake excitation on surface lifelines.Proceedings of Fourth U.S.National Conference on Earthquake Engineering,Palm Springs,1990.Vol.1:885-894.
    [81]Harichandran R.S.,Wang W.Response of indeterminate two-span beam to spatially varying seismic motion.Earthquake Engineering and Structural Dynamics,1990,19:173-187.
    [82]Harichandran R.S.,Hawwari A.,Sweidan B.N.Response of long-span bridges to spatially varying ground motion.Journal of Structural Engineering,1996,122(5):476-484.
    [83]林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004.
    [84]薛素铎,王雪生,曹资.空间网格结构多维多点随机地震响应分析的高效算法.世界地震工程,2004,20(3):43-49.
    [85]曹资,薛素铎.空间结构抗震理论与设计.北京:科学出版社,2005.
    [86]赵灿晖,周志祥.大跨度钢管混凝土拱桥在多维多点地震激励作用下的平稳随机响应.世界地震工程,2007,23(4):66-71.
    [87]李忠献,林伟,丁阳.大跨度空间网格结构多维多点随机地震反应分析.地震工程与工程振动,2006,26(1):56-63.
    [88]丁阳,林伟,李忠献.大跨度空间结构多维多点非平稳随机地震反应分析.工程力学,2007,24(3):97-103.
    [89]Hao H.Arch responses to correlated multiple excitations.Earthquake Engineering and Structural Dynamics,1993,22:389-404.
    [90]Hao H.Ground motion spatial variation effects on circular arch responses.Journal of Engineering Mechanics,1994,120(11):2326-2341.
    [91]Hao H.,Oliveira C.S.,Penzien J.Multiple-station ground motion processing and simulation based on SMART-I array data.Nuclear Engineering and Design,1989,111:293-310.
    [92]Oliveira C.S.,Hao H.,Penzien J.Ground motion modeling for multiple-input structural analysis.Structural Safety,1991,10:79-93.
    [93]Manohar C.S.,Sarkar A.Critical earthquake input power spectral density function models for engineering structures.Earthquake Engineering and Structural Dynamics,1995,24:1549-1566.
    [94]项海帆.斜张桥在行波作用下的地震反应分析.同济大学学报,1983,11(2):1-9.
    [95]范立础,王君杰.陈玮.非一致地震激励下大跨度斜拉桥的响应特征.计算力学学报,2001,18(3):358-363.
    [96]史志利,李忠献,陈平.大跨度斜拉桥多点激励地震反应分析.特种结构,2004,21(2):46-50.
    [97]Soyluk K.Dumanoglu A.A.A stochastic analysis of long span structures subjected to spatially varying ground motions including the site-response effect.Engineering Structures,2003,25:1301-1310.
    [98]Soyluk K.Dumanoglu A.A.Spatial variability effects of ground motions on cable-stayed bridges.Soil Dynamics and Earthquake Engineering,2004,24:241-250.
    [99]Soyluk K.Comparison of random vibration methods for multi-support seismic excitation analysis of long-span bridges.Engineering Structures,2004,26:1573-1583.
    [100]全伟.下部结构设计参数对大跨径连续刚构桥抗震性能影响分析:(硕士学位论文).西安:长安大学,2004.
    [101]周勇军,全伟,贺拴海.基于正交实验的连续刚构桥地震响应敏感参数分析.地震研究,2006,29(2):176-180.
    [102]周勇军.高墩大跨曲线连续刚构桥梁地震响应的设计参数研究:(博士学位论文).西安:长安大学,2006.
    [103]李忠献,史志利.行波激励下大跨度连续刚构桥的地震反应分析.地震工程与工程振动,2003,23(2):68-76.
    [104]刘洪兵.范立础.大跨桥梁考虑地形及多点激励的地震响应分析.同济大学学报,200331(6):641-646.
    [105]Dumanoglu A.A.,Brownjohn J.M.W.,Severn R.T.Seismic analysis of the faith sultan mehmet suspension bridge.Earthquake Engineering and Structural Dynamics,1992,21:881-906.
    [106]胡世德,范立础.江阴长江大桥纵向地震反应分析.同济大学学报,1994,22(4):434-438.
    [107]刘春城,郭丽波,李福军.非一致激励下自锚式悬索桥的非线性地震反应分析.武汉理工大学学报(交通科学与工程版),2007,31(5):864-867.
    [108]黄海新,张哲,石磊等.多点激励下自锚式斜拉-悬吊协作体系桥地震反应分析.地震工程与工程振动,2007,27(5):124-128.
    [109]王君杰,王前信,江近仁.大跨度拱桥在空间变化地震动下的响应.振动工程学报,1995,8(2):119-126.
    [110]Tzanetos N.,Elnashai A.S.,Hamdan F.H.,et al.Inelastic dynamic response of RC bridges subjected to spatial non-synchronous earthquake motion.Advances in Structural Engineering,2000,3(3):191-214.
    [111]Kim S.H.,Feng M.Q.Fragility analysis of bridges under ground motion with spatial variation.Journal of Nonlinear Mechanics,2003,38:705-721.
    [112]Sextos A.G.,Pitilakis K.D.,Kappos A.J.Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion,site effects and soil-structure interaction phenomena.Part 1:Methodology and analytical tools.Earthquake Engineering and Structural Dynamics,2003,32:607-627.
    [113]Sextos A.G.,Pitilakis K.D.,Kappos A.J.Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion,site effectsand soil-structure interaction phenomena.Part 2:Parametric study.Earthquake Engineering and Structural Dynamics,2003,32:629-652.
    [114]Lou L.,Zerva A.Effects of spatially variable ground motions on the seismic response of a skewed,multi-span,RC highway bridge.Soil Dynamics and Earthquake Engineering,2005,25:729-740.
    [115]Lupoi A.,Franchin P.,Pinto P.E.,et al.Seismic design of bridges accounting for spatial variability of ground motion.Earthquake Engineering and Structural Dynamics,2005,34:327-348.
    [116]Ghobarah A.,Aziz T.S.,Ei-Attar M.Response of transmission lines to multiple support excitation.Engineering Structures,1996,18(12):936-946.
    [117]岳茂光,李宏男,王东升等.行波激励下输电塔一导线体系纵向地震反应分析.中国电机工程学报,2006,26(23):145-150.
    [118]全伟,李宏男,岳茂光.多点激励下输电塔一导线体系纵向地震反应分析.振动与冲击(已录用).
    [119]HarichandranR.S.,Chen M.T.Reliability of an earth dam excited by spatially varying earthquake ground motion.Proceedings of llth World Conference on Earthquake Engineering,Amsterdam,1996,Paper No.1287.
    [120]Alves S.W.,Hall J.F.Generation of spatially nonuniform ground motion for nonlinear analysis of a concrete arch dam.Earthquake Engineering and Structural Dynamics.2006,35:1339-1357.
    [121]Hindy A.,Novak M.Pipleline response to random ground motion.Journal of Engineering Mechanics,1980,106(2):339-360.
    [122]屈铁军,王前信.地下管线在空间随机分布的地震作用下的反应.工程力学,2003,20(3):120-124.
    [123]董汝博.多点地震动作用下海底悬跨管道非线性分析:(博士学位论文).大连:大连理工大学,2008.
    [124]Hahn G.D.,Liu X.Torsional response of unsymmetric buildings to incoherent ground motions.Journal of Structural Engineering,1994,120(4):1158-1181.
    [125]Hao H.,Duan X.N.Seismic response of asymmetric structures to multiple ground motions.Journal of Structural Engineering,1995,121(11):1557-1564.
    [126]Hao H.,Duan X.N.Multiple excitation effects on response of.symmetric buildings.Engineering Structures,1996,18(9):732-740.
    [127]Hao H.Torsional response of building structures to spatial random ground motions.Engineering Structures,1997,19(2):105-112.
    [128]Hao H.Response of two-way eccentric building to nonuniform base excitations.Engineering Structures,1998,20(8):677-684.
    [129]Hao H.Spatial ground motion effect on relative displacement of adjacent building structures.Earthquake Engineering and Structural Dynamics,1999,28:333-349.
    [130]Heredia-Zavoni E.,Barranco F.Torsion in symmetric structures due tog round-motion spatial variation.Journal of Engineering Mechanics,1996,122:834-843.
    [131]Heredia-Zavoni E.,Leyva A.Torsional response of symmetric buildings to incoherent and phase-delayed earthquake ground motion.Earthquake Engineering and Structural Dynamics,2003,32:1021-1038.
    [132]Aviles J.,Suarez M,Sanchez-Sesma F.J.Effects of wave passage on the relevent dynamic properties of structures with flexible foundation.Earthquake Engineering and Structural Dynamics.2002,31:139-159.
    [133]夏友柏,王年桥,李爱群.空间刚架受多点随机激励的响应.东南大学学报,2000,30(4):48-53.
    [134]杨庆山,刘文华,田玉基.国家体育场在多点激励作用下的地震反应分析.土木工程学报,2008,41(2):35-41.
    [135]Caicedo J.M.,Dyke S.J,Moon S.J.,et.al.Phase II benchmark control problem for seismic response of cable-stayed bridges.Journal of Structural Control,2003,10:137-168.
    [136]代泽兵,黄金枝,王红霞.基于智能阻尼器的大跨度斜拉桥多支承激励地震振动控制.振动与冲击,2005,24(2):66-70.
    [137]史志利,张建华,李忠献.行波激励下MR阻尼器对桥梁地震反应控制效果的研究.特种结构,2006,23(1),74-77.
    [138]亓兴军,李小军.大跨漂浮体系斜拉桥减震控制研究.振动与冲击,2007,26(3):79-82.
    [139]吴春秋,朱以文.大跨度结构TMD减震系统多点激励的地震随机响应分析.地震工程与工程振动,2003,23(4):131-135.
    [140]Ates S.,Bayraktar.Stochastic response of seismically isolated highway bridges with friction pendulum systems to spatially varying earthquake ground motions.Engineering Structures,2005,27:1843-1858.
    [141]Ates S.,Bayraktar A.,Dumanoglu A.A.The effect of spatially varying earthquake ground motions on the stochastic response of bridges isolated with friction pendulum systems,Soil Dynamics and Earthquake Engineering,2006,26:31-44.
    [142]江宜城,杨德喜,李黎等.LRB隔震桥梁空间变异性地震随机响应分析.振动与冲击,2007,26(1):104-107.
    [143]Hao H.,Stability of simple beam subjected to multiple seismic excitaions.Journal of Engineering Mechanics.1997,123(7):739-742.
    [144]Ohsaki M.Sensitivity of optimum designs for spatially varying ground motions.Journal of Structural Engineering.2001,127:1324-1329.
    [145]丁光莹,李杰.多点非一致激励长跨结构抗震可靠度分析.世界地震工程,2000,16(3):84-89.
    [146]李建华,李杰.多点激励下结构抗震可靠度分析的反应谱方法.防灾减灾工程学报,2004,24(3):242-246.
    [147]孙建梅,叶继红,程文瀼.多点输入下大跨空间网格结构的可靠度分析.应用力学学报,2005,22(4):560-566.
    [148]Hao H.A parametric study of the required seating length for bridge decks during earthquake.Earthquake Engineering and Structural Dynamics,1998,27:91-103.
    [149]Jankowski R.,Wilde K.,Fujino Y.Pounding of superstructure segments in isolated bridge during earthquakes.Earthquake Engineering and Structural Dynamics,1998,27:487-502.
    [150]Jankowski R.,Wilde K.,Fujino Y.Reduction of pounding effects in elevated bridges during earthquakes.Earthquake Engineering and Structural Dynamics,2000,29:195-212.
    [151]Chouw N.,Hao H.Study of SSI and non-uniformground motion effect on pounding between bridge girders.Soil Dynamics and Earthquake Engineering,2005,25:717-728.
    [152]ChouwN.,Hao H.Significance of SSI and nonuniform near-faultground motions in bridge response Ⅰ:Effect on response with conventional expansion joint.Engineering Structures,2008,30:141-153.
    [153]Chouw N.,Hao H.Significance of SSI and nonuniformnear-faultground motions in bridge response Ⅱ:Effect on response with modular expansion joint.Engineering Structures,2008,30:154-162.
    [154]李忠献,岳福青,周莉.考虑地震动空间效应的城市高架桥梁地震碰撞响应分析.天津大学学报,2006,39(8):938-943.
    [155]王军文,张运波,李建中等.地震动行波效应对连续梁桥纵向地震碰撞反应的影响.工程力学,2007,24(11):100-105.
    [156]中华人民共和国国家标准,建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2001.
    [157]胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合.地震工程与工程振动.1986,6(2):37-49.
    [158]杨庆山,姜海鹏.基于相位差谱的人造地震动的反应谱拟合.地震工程与工程振动.2002,22(1):32-38.
    [159]曹晖,赖明,白绍良.适合于地震工程信号分析的快速小波变换法研究.工程力学.2002,19(4):141-148.
    [160]曹晖,赖明,白绍良.基于小波变换的地震地面运动仿真研究.土木工程学报.2002,35(4):40-46.
    [161]Iyama J,Kuwamura H.Application of wavelets to analysis and simulation of earthquake motions.Earthquake Engineering and Structural Dynamics,1999,28:255-272.
    [162]Mukherjee S,Gupta V.K.Wavelet-based generation of spectrum compatible time histories.Soil Dynamics and Earthquake Engineering,2002,22:799-804.
    [163]Kubo T,Penzien J.Simulation of three-dimensional strong ground motions along principal axes,San Fernado earthquake.Earthquake Engineering and Structural Dynamics,1979,7(2):279-294.
    [164]Watabe M.,Iwasaki R,Tohdo M,et al.Simulation of three-dimensional earthquake ground motions along principal axes.Proceedings of the 7th World Conference on Earthquake Engineering,Turkish,1980.
    [165]李英民,赖明,白绍良.基于三参数模型的双向水平地震动相关设计反应谱研究.世界地震工程.2002,18(4):5-10.
    [166]李英民,白绍良,赖明.不同地震水准反应谱之间的关系和罕遇地震作用设计反应谱的确定.地震工程与工程振动.2003,23(6):9-16.
    [167]周锡元,齐微,徐平等.震级、震中距和场地条件对反应谱特性的影响分析.北京工业大学学报.2006,32(2):97-103.
    [168]Basu B,Gupta V.K.Seismic response of SDOF systems by wavelet modeling of nonstationary processes.Journal of Engineering Mechanics,1998,124(10):1142-1150.
    [169]欧进萍著.结构随机振动.北京:高等教育出版社,1998.
    [170]Simos N.,Philippacopoulos A.J.,Papandreou D.Power spectra based seismic structural responses using cross crorrelated free-field earthquake motions.Transactions of SMiRT16,Washington DC,USA,August 2001,Paper Number:1754.
    [171]吴健,金峰,徐艳杰.多维地震动各方向相关性对拱坝动应力的影响.地震工程与工程振动,2005,25(2):50-54.
    [172]Abrahamson N.A.,Bolt B.A.,Darragh R.B.,et al.The SMART-1 accelerograph array (1980-1987):A review.Earthquake spectra,1987,3(2):263-281.
    [173]屈铁军,王前信.空间相关的多点地震动合成(Ⅰ)-基本公式.地震工程与工程振动,1998,18(2):8-15.
    [174]杨庆山,姜海鹏.基于相位差谱的时-频非平稳人造地震动的反应谱拟和.地震工程与工程振动,2002,22(1):32-38.
    [175]Shama A.A.Simplified procedure for simulating spatially correlated earthquake ground motions.Engineering Strutures,2007,29:248-258.
    [176]董汝博,周晶,冯新.一种考虑局部场地收敛性的多点地震动合成方法.振动与冲击,2007,13(1):28-34.
    [177]Trujillo D.M.A new approach to the integration of accelerometer data.Earthquake Engineering and Structural Dynamics,1982,10:529-535.
    [178]潘晓东.非平稳随机地震下堤坝非线性有效应力动力响应可靠度分析:(博士学位论文).杭州:浙江大学,2004.
    [179]朱东生.桥梁抗震设计中几个问题的研究(输入地震动、曲线桥地震反应、梁桥隔震):(博士学位论文).成都:西南交通大学.1999.
    [180]李宏男,孙丽.结构在多维地震动作用下抗震计算组合方法.大连理工大学学报,2003.43(3):338-343.
    [181]范立础,聂利英,李建中.复杂结构地震波输入最不利方向标准问题.同济大学学报,2003,31(6):631-636.
    [182]高晓安.曲线桥梁抗震设计方法研究:(博士学位论文).北京:中国建筑科学研究院,2003.
    [183]Heredia-Zavoni E,Machicao-Barrionuebo R.Response to orthogonal components of ground motion and assessment of percentage combination rules.Earthquake Engineering and Structural Dynamics,2004,33:271-284.
    [184]刘晶波,杜修力.结构动力学.北京:机械工业出版社.2005.
    [185]刘先明.大跨度空间网格结构多点输入反应谱理论的研究和应用:(博士学位论文).南京:东南大学,2003.
    [186]Nakamura Y.,Kiureghian A.D.,Liu D.Multiple-support response spectrum analysis of the Golden Gate Bridge.Report No.UCB/EERC-93/05,Earthquake Engineering Research Center,University of California at Berkeley,1993.
    [187]Kiureghian A.D.,Keshishian P.,Hakobian A.Multiple support response spectrum analysis of bridges including the site-response effect & the MSRS code.Report No.UCB/EERC-97/02,Earthquake Engineering Research Center,University of California at Berkeley,1997.
    [188]中华人民共和国交通部部标准,公路工程抗震设计规范(JTJ 004-89).北京:人民交通出版社,1999.
    [189]于德广,周广春.MSRS方法中存在的问题及其改进.低温建筑技术,2006,6:62-63.
    [190]王君杰,范立础.规范反应谱长周期修正方法的探讨.土木工程学报,1998,31(6):49-55.
    [191]李建华.工程结构抗震可靠度实用分析方法的研究:(博士学位论文).上海:同济大学,2004.
    [192]Bommer J.J.,Elnashai A.S.Displacement spectra for seismic design.Journal of Earthquake Engineering,1999,3:1-32.
    [193]Tolls S.V.,Faccioli E.Displacement design spectra.Journal of Earthquake Engineering,1999,3:107-125.
    [194]Kavashima K.,Aizawa K.Modification of earthquake response spectra with respect to damping ratio.Proceedings of 3nd U.S.National Conference of Earthquake Engineering,South Carolina.1986.
    [195]Kaul M.K.Stochastic characterization of earthquakes through their response spectrum.Earthquake Engineering and Structural Dynamics,1978,6:497-509.
    [196]Burdisso R.A.,Singh M.P.Multiple supported secondary systems part Ⅰ:response spectrum analysis.Earthquake Engineering and Structural Dynamics,1987,15:53-77.
    [197]Wilson J.C.,Gravelle W.Modeling of a cable-stayed bridge for dynamic analysis.Earthquake Engineering and Structural Dynamics,1991,20:707-721.
    [198]Soneji B.B.,Jangid R.S.Passive hybrid systems for earthquake protection of cable-stayed bridge.Engineering Structures,2007,29:57-70.
    [199]Wilson J.C.,Liu T.Ambient ambient vibration mearsurements on a cable-stayed bridge.Earthquake Engineering and Structural Dynamics,1991,20:723-747.
    [200]Fleming J.F.,Egeseli E.A.Dynamic behaviour of cable-stayed bridge.Earthquake Engineering and Structural Dynamics,1982,8:1-16.
    [201]徐荣桥.结构分析的有限元法与MATLAB程序设计.北京:人民交通出版社,2006.
    [202]P.I.Kattan著,韩来彬译.MATLAB有限元分析与应用.北京:清华大学出版社,2005.
    [203]雷英杰,张善文,李续武等.MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社,2006.
    [204]王丽,周锡元,闰维明.曲线梁桥地震响应的简化分析方法.工程力学,2006,23(6):77-84.
    [205]Williams D,Godden W.Seismic response of long curved bridge structures:experimental model studies.Earthquake Engineering and Structural Dynamics,1979,7(2):107-128.
    [206]Kawashima K,Penzien J.Theoretical and experimental dynamic behaviour of a curved model bridge structure.Earthquake Engineering and Structural Dynamics,1979,7(2):129-145.
    [207]朱东生,刘世忠,虞庐松.曲线桥地震反应研究.中国公路学报,2002,15(3):42-48.
    [208]高晓安,周锡元.曲线桥梁在多向地震作用下的动力分析方法.特种结构,2005,22(1):56-88.
    [209]阎石,张海.高架桥地震反应半主动控制分析.地震工程与工程振动,2003,23(6):169-173.
    [210]史志利.大跨度桥梁多点激励反应分析与MR阻尼器控制:(博士学位论文).天津:天津大学,2006.
    [211]亓兴军,李小军,唐晖.曲线桥弯扭耦合减震半主动控制分析.公路交通科技.2006,23(9):54-57.
    [212]全伟,李宏男.大跨结构多维多点输入抗震研究进展.防灾减灾工程学报,2006,26(3):343-351.
    [213]李宏男,李忠献,祁皑等.结构振动与控制.北京:中国建筑工业出版社,2005.
    [214]欧进萍.结构振动控制一主动、半主动和智能控制.北京:科学出版社,2003.
    [215]亓兴军,李小军,申永刚.地震行波输入下大跨连续刚构桥梁半主动控制效应分析.振动与冲击,2007,26(2):117-120.
    [216]王丽,闫维明,阎贵平.铅芯橡胶支座参数对隔震桥梁动力响应的影响.北京工业大学学报.2004,30(3):304-308.
    [217]陈水生,万益春,野田尚昭.隔震桥梁地震响应非线性分析.长安大学学报(自然科学版),26(1):54-58.
    [218]范立础,王志强.桥梁减隔震设计.北京:人民交通出版社.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700