用户名: 密码: 验证码:
基于特征正交分解的桥梁风场随机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代桥梁正在向大跨方向发展,桥梁结构越来越轻柔,其抖振性能必须引起重视。为便于考虑各种非线性因素的影响,抖振响应计算多采用基于Monte Carlo随机模拟的时域分析方法。而作为时域方法的输入,桥梁脉动风速场的随机模拟是首先要解决的问题。目前的模拟方法中,原型谱表示法相对于线性滤波法,具有高精度和鲁棒性等特征,在工程实际中已经得到了广泛的应用。特征正交分解(POD)型谱表示法的核心是以对功率谱矩阵的特征值分解取代原型谱表示法中的Cholesky分解,物理意义明确且可通过模态截断节省计算量。本文的研究主要在POD型谱表示法的精度、误差、运算速度、加速算法等以前研究较少涉及的方面开展,希望能给出在工程实际运用时风场随机模拟方法的合理选择指引。主要工作包括以下方面:
     (1)研究了用POD型谱表示法来精确的模拟一维多变量风场。给出了仅随机相位的特征正交分解型谱表示法模拟公式,研究了运用模态截断所带来风场模拟的误差和一维复杂风场特征正交分解的特性。使用Matlab和Fortran两类语言编制程序,对比分析了两类谱表示法的计算效率。研究表明,POD型谱表示法具有非常明确的物理意义,模态截断给模拟带来的误差可以得到有效控制,但POD型谱表示法在计算效率方面并无明显的优势。提出了一种改进型的POD型谱表示法,分离了自谱和相干函数的影响,有更明确的物理意义。给出了谱表示法的统一表达式,以及FFT用于加速谱表示法的算法。讨论了风场模拟结果各项矩统计量的时域估计方法。给出了POD型谱表示法模拟具有桥塔风效应风场的简化算法。
     (2)对两类谱表示法在理论上和数值上进行了精细化的误差分析。以模拟三变量风场为例,详细推导了一个风场样本的均值、相关函数、功率谱函数、根方差等概率统计量的时域估计表达式。推导得到了各统计量时域估计值的偏度误差和随机误差的解析解,然后将三变量风场的误差计算结果推广至一般情况,对比分析了两类谱表示法的模拟随机误差。POD型谱表示法的总体相对随机误差和根方差相对随机误差要小于原型谱表示法,且在空间分布是均匀的,而原型谱表示法误差随点号递增,这是POD型谱表示法的一个重大优点。考察了降低随机误差的可行方法,且详细讨论了利用双索引频率和POD型谱表示法模拟各态历经性风场的新算法。建议使用多次模拟取平均值的方法来降低随机误差。
     (3)研究了提高谱表示法计算效率的方法。逐一讨论了利用快速Hartley变换(FHT)、连续线状结构风场POD的半解析解和POD频率插值三类算法来加速谱表示法时,它们各自的实用算法,及各类算法对计算效率的提高和对模拟精度的影响。研究结果表明,使用FHT提高计算效率远不如采用高优化的FFT算法有效;对点数较多的桥面风场,可以利用连续线状结构风场POD的半解析解加速;应当优先选择对数等距布置基点、基点数量为总频率点数的1/16左右、特征值线性插值、特征向量近似插值的改进POD型插值模拟算法。
     (4)研究了三维风场模拟中的若干具体问题。描述了一般三维风场相干模型,推导了双特征正交分解法的简化模拟公式,可有效的节省计算量。并将简化的模拟算法应用于四渡河大跨悬索桥的三维风场模拟。
     最后,对计算效率、随机误差、物理意义、截断误差、加速算法等5个影响选择因素的综合对比分析结论表明,POD型谱表示法比原型谱表示法更值得选择。
In China, it is worth noting that more and more long-span bridges are now being constructed planned, or will be planned. The structural typology of these bridges, even more dominated by growing slenderness, lightness, and elegance, is putting wind effects, especially the buffeting responses of the structures, into a pronominent role. It is very convenient to take into account manifold nonlinear effects, if the buffeting responses of bridges are evaluated in time domain. When using the time domain methods, namely, the Monte Carlo simulation-based methods, the stochastic wind velocity fields on bridges must be simulated first of all.
     Here study on the simulation methods will be addressed. Due to its higher accuracy and robustness, the spectral representation method is more popular in the simulation of wind fields, than the linear filtering (AR, MA, or ARMA) method. Actually, it has become the dominant class of simulation methods. Two types of spectral representation methods exist. One is the original spectral representation method, involving the Cholesky decomposition of spectral density matrixes. The other, the newer one, is named the proper orthogonal decomposition(POD)-based spectral representation method, in which the eigen decomposition of the spectral matrixes is taken for instead of the Cholesky decomposition.
     From the physical viewpoint, the mechanism of the latter method can be described more meaningfully. And less computational cost will be consumed if the modal truncation technique is embedded into the POD-based method. In order to provide a guide of the choice between the two types of spectral representation methods, the truncation accuracy, the stochastic error assessment, the computation efficiency and the improvement approaches of the POD-based method deserve special attention. Consequently, study on the following aspects will be included in this dissertation.
     (1) Concerning how to simulate 1d-nV(1 dimensional, n variate) stochastic wind velocity fields more accurate by using the POD-based spectral representation method. Simulation formula of POD-based spectral representation method is given at first. Then discussion on the effects on the simulation accuracy, induced by involving the modal truncation technique, is carried out. Some characteristics of POD of a 1d-nV complex wind field are also investigated. The computational efficiency of the two types of methods, programmed in both Matlab and Fortran 90 language, is compared. It is shown that the POD-based method is more meaningful in physical sense, but it consumes more computational cost even if the modal truncation technique is embedded in. The error induced by this technique can be controlled effictively. In addition, an alternative form of POD, CPOD, is presented, whose physical mechanism can be interpreted more clearly than POD, due to the separation of the auto/cross effect of/between the components of the field. The CPOD-based spectral representation method is also derived. Thus, a unified formula for POD-based, CPOD-based and original methods is proposed, with the approach of incorporating the FFT (Fast Fourier Transform) algorithm into the formula, to speed-up computation of the spectral representation methods. The methods, which can be used to estimate the statistical moments of the simulated wind fields, are also provided. Furthermore, the POD-based method can be employed to simulate the wind fields including wind passage effects.
     (2) Concerning the detailed error assessment of the two types of spectral representation methods, both analytical and numerical. A one dimensional tri-variate (1d-3V) stationary vector process is considered firstly, as the example case. The temporal estimations of the mean values, correlation functions, power spectra and standard deviations of the generated process are derived over the period of the simulated process. By calculating the mathematic expectations and standard deviations of the temporal estimations, the bias errors and stochastic errors of the first and second order statistical moments of the sample process are obtained in close-form. Therefore, a series of formulas for error assessment of the two types of methods are derived, respectively, by extending the results of 1d-3V process into the general 1d-nV process. Then the stochastic errors of the two types of methods are analyzed numerically, for comparison. It is manifested that the POD-based method is superior to the original method, because the total stochastic errors and the relative stochastic errors of the standard deviations of the processes generated by the former are less in sum. Also these errors generated by the POD-based method are distributed uniformly in space, according to the order of point numbers. In contrast, the errors of the processes generated by the original method are not uniform, but increasing according to the order of point numbers. Further, discussion on some possible methodologies for reducing stochastic errors is carried out. In particular, simulation of ergodic wind fields is studied in detail, by using the POD-based method incorporated with the double-index frequency series technique. It is suggested that taking averages of buffeting responses due to several simulated samples of the same wind field could produce less stochastic errors.
     (3) Concerning the improvement approaches for speeding up the computation of the POD-based spectral representation method. Three approaches are considered, including utilizing the fast Hartley transform(FHT) algorithm, utilizing the close-form solutions of POD of the linear continuous wind fields and utilizing interpolation of POD eignvectors and eignvalues in frequency domain. The practical procedures, efficiency, and effects on accuracy of the three improvement approaches are investigated. Firstly, it is concluded that some optimized algorithms of FFT are far more efficient than the only FHT algorithm. Secondly, the close-form solutions of POD can be efficient, only when the simulation of wind fields on bridge decks is needed, in which an amount of points are included. Thirdly, the CPOD-based method is suitable for combination with the interpolation approach. The amount of the interpolation nodes can be equal to 1/16 of the total number of the sampling discrete frequency series or so. These nodes are distributed linearly if the frequency series are taken with logarithmic scale. Furthermore, the CPOD eignvectors and eignvalues can be piecewise interpolated linearly and roundly, respectively, accounting for higher accuracy.
     (4) Concerning the simulation of 3-dimentional wind fields on complex bridge structures. The generalization of auto/cross power spectral density functions of complex 3-dimentional wind fields is described. Then the double POD(DPOD)-based spectral representation method for the simulation of 3-dimentional wind fields are derived, in order to make the simulation more efficient. A series of simplified formulas of the DPOD-based method are obtained, programmed, and then used in the simulation of the 3-dimentional wind velocity field on the Sidu River long-span suspension bridge.
     Finally, based on the comparison of the two types of spectral representation method in five aspects, that is, the computation efficiency, the stochastic error, the mechanism in the physical sense, the truncation accuracy, and the improvement approaches, it can be concluded that, when an engineer or a researcher need to simulate some wind velocity fields on bridges, he or she should prefer to the POD-based method firstly.
引文
[1] Diana G., Falco M., Cheli F., et al. The aeroelastic study of the Messina straits bridge. Natural Hazards, 2003, 30(1): 79-106
    [2] Larsen A. Aerodynamic aspects of the final design of the 1624 m suspension bridge across the Great Belt. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2-3): 261-285.
    [3] Miyata T., Yamaguchi K. Aerodynamics of wind effects on the Akashi Kaikyo bridge. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 48(2-3): 287-315
    [4]项海帆等.现代桥梁抗风理论与实践.北京:人民交通出版社, 2005
    [5]钟万勰,林家浩,吴志刚,等.大跨度桥梁分析方法的一些进展.大连理工大学学报, 2000, 40(2): 127-135
    [6]项海帆,陈艾荣.特大跨度桥梁抗风研究的新进展.土木工程学报, 2003, 36(4): 1-8
    [7] Solari G. Integrated procedures in wind engineering. International Journal of Fluid Mechanics Research, 2002, 29(3-4): 323-328
    [8] Kareem A. Wind effects on structures: A probabilistic viewpoint. Probabilistic Engineering Mechanics, 1987, 2(4): 166-197
    [9] Davenport A. G. Buffeting of a suspension bridge by storm winds. Journal of Structural Engineering, ASCE, 1962, 8(3): 233-269
    [10] Scanlan R. H. Action of flexible bridges under wind, .2. Buffeting theory. Journal of Sound and Vibration, 1978, 60(2): 201-211
    [11] Scanlan R. H. Action of flexible bridges under wind, .1. Flutter theory. Journal of Sound and Vibration, 1978, 60(2): 187-199
    [12] Scanlan R. H., Jones N. P. Aeroelastic analysis of cable-stayed bridges. Journal of Structural Engineering, ASCE, 1990, 116(2): 279-297
    [13] Scanlan R. H., Stroh S. L., Raggett J. D. Methods of wind response investigation employed for the Kap Shui Mun bridge. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54-55: 1-11
    [14] Jain A., Jones N. P., Scanlan R. H. Coupled flutter and buffeting analysis of long-span bridges. Journal of Structural Engineering, ASCE, 1996, 122(7): 716-725
    [15] Katsuchi H., Jones N. P., Scanlan R. H. Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge. Journal of Structural Engineering, ASCE, 1999, 125(1): 60-70
    [16] Chen X., Matsumoto M., Kareem A. Aerodynamic coupling effects on flutter and buffeting of bridges. Journal of Engineering Mechanics, ASCE, 2000, 126(1): 17-26
    [17] Chen X., Kareem A., Matsumoto M. Multimode coupled flutter and buffeting analysis of long span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(7-8): 649-664
    [18] Chen X., Kareem A. Advanced analysis of coupled buffeting response of bridges: A complex modal decomposition approach. Probabilistic Engineering Mechanics, 2002, 17(2): 201-213
    [19]孙东科.长跨桥梁三维风振分析[博士学位论文].大连:大连理工大学, 1999
    [20]林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社, 2004
    [21]丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析[博士学位论文].上海:同济大学, 2001
    [22] Baker C. J. Wind engineering--Past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, In Press, Corrected Proof
    [23] Shinozuka M. Monte-Carlo solution of structural dynamics. Computers and Structures, 1972, 2(5-6): 855-874
    [24] Vaicaitis R., Shinozuka M., Takeno M. Response analysis of tall buildings to wind loading. Journal of Structural Engineering, ASCE, 1975, 101(3): 585-600
    [25] Beliveau J. G., Vaicaitis R., Shinozuka M. Motion of suspension bridge subject to wind loads. Journal of Structural Engineering, ASCE, 1977, 103(6): 1189-1205
    [26] Kovacs I., Svensson H. S., Jordet E. Analytical aerodynamic investigation of cable-stayed Helgeland bridge. Journal of Structural Engineering, ASCE, 1992, 118(1): 147-168
    [27] Minh N. N., Miyata T., Yamada H., et al. Numerical simulation of wind turbulence and buffeting analysis of long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83: 301-315
    [28] Ding Q., Lee P. K. K. Computer simulation of buffeting actions of suspension bridges under turbulent wind. Computers and Structures, 2000, 76(6): 787-797
    [29] Ding Q., Lee P. K. K., Lo S. H. Time domain buffeting analysis of suspension bridges subjected to turbulent wind with effective attack angle. Journal of Sound and Vibration, 2000, 233(2): 311
    [30] Su C., Han D. J., Yan Q. S., et al. Wind-induced vibration analysis of the Hong Kong Ting Kau bridge. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2003, 156(3): 263-272
    [31] Kim H.-K., Shinozuka M., Chang S.-P. Geometrically nonlinear buffeting response of a cable-stayed bridge. Journal of Engineering Mechanics, ASCE, 2004, 130(7): 848-857
    [32]周述华.大跨度悬索桥空间非线性抖振响应仿真分析[博士学位论文].成都:西南交通大学, 1993
    [33]刘春华.大跨度桥梁抖振响应的非线性时程分析[博士学位论文].上海:同济大学, 1995
    [34]曹映泓.大跨度桥梁非线性颤振和抖振时程分析[博士学位论文].上海:同济大学, 1999
    [35]卢伟.大跨度斜拉桥抖振动力可靠性分析[博士学位论文].成都:西南交通大学, 2000
    [36]蒋永林.斜拉桥抖振响应分析[博士学位论文].成都:西南交通大学, 2000
    [37]罗雄.利用短期实际风速记录模拟极值风速及桥梁时域抖振分析[博士学位论文].成都:西南交通大学, 2002
    [38]邹小江.斜拉桥风振响应时域分析及静风稳定性研究[博士学位论文].广州:华南理工大学, 2003
    [39]李永乐.风—车—桥系统非线性空间耦合振动研究[博士学位论文].成都:西南交通大学, 2003
    [40]张志田.大跨度桥梁非线性抖振及其对风致稳定性影响的研究[博士学位论文].上海:同济大学, 2004
    [41]甘文.大跨悬索桥抖振动力可靠性分析[硕士学位论文].武汉:华中科技大学, 2006
    [42]彭元诚.龙潭河特大桥静力稳定性及风致抖振时域分析[博士学位论文].武汉:华中科技大学, 2006
    [43]埃米尔?希缪,罗伯特?H?斯坎伦.风对结构的作用-风工程导论(第2版).刘尚培,项海帆,谢霁明译.上海:同济大学出版社, 1992
    [44] Chen X., Matsumoto M., Kareem A. Time domain flutter and buffeting response analysis of bridges. Journal of Engineering Mechanics, ASCE, 2000, 126(1): 7-16
    [45] Chen X., Kareem A. Nonlinear response analysis of long-span bridges under turbulent winds. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14-15): 1335-1350
    [46] Chen X., Kareem A. Advances in modeling of aerodynamic forces on bridge decks. Journal of Engineering Mechanics, ASCE, 2002, 128(11): 1193-1205
    [47] Chen X., Kareem A. New frontiers in aerodynamic tailoring of long span bridges: An advanced analysis framework. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(12-15): 1511-1528
    [48] Chen X., Kareem A. Aeroelastic analysis of bridges: Effects of turbulence and aerodynamic nonlinearities. Journal of Engineering Mechanics, ASCE, 2003, 129(8): 885-895
    [49] Caracoglia L., Jones N. P. Time domain vs. Frequency domain characterization of aeroelastic forces for bridge deck sections. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(3): 371-402
    [50] Lazzari M. Time domain modelling of aeroelastic bridge decks: A comparative study and an application. International Journal for Numerical Methods in Engineering, 2005, 62(8): 1064-1104
    [51] Lazzari M., Vitaliani R. V., Saetta A. V. Aeroelastic forces and dynamic response of long-span bridges. International Journal for Numerical Methods in Engineering, 2004, 60(6): 1011-1048
    [52] Boonyapinyo V., Miyata T., Yamada H. Advanced aerodynamic analysis of suspension bridges by state-space approach. Journal of Structural Engineering, ASCE, 1999, 125(12): 1357-1366
    [53] Chen X., Kareem A. Aeroelastic analysis of bridges under multicorrelated winds: Integrated state-space approach. Journal of Engineering Mechanics, ASCE, 2001, 127(11): 1124-1134
    [54]谢霁明.桥梁三维颤振分析的状态空间法.同济大学学报:自然科学版, 1985, (3): 1-13
    [55] Elishakoff I. Notes on philosophy of the Monte Carlo method. International Applied Mechanics, 2003, 39(7): 753-762
    [56] JTG/T D60-01-2004.公路桥梁抗风设计规范
    [57]陈贤川.大跨度屋盖结构风致响应和等效风荷载的理论研究及应用[博士学位论文].杭州:浙江大学, 2005
    [58] GB 50009-2001.建筑结构荷载规范
    [59] Solari G., Piccardo G. Probabilistic 3-D turbulence modeling for gust buffeting of structures. Probabilistic Engineering Mechanics, 2001, 16(1): 73-86
    [60] Hino M. Spectrum of gusty wind. in: Proceedings of the 3rd International Conference on Wind Effects on Buildings and Structures. Tokyo, Japan: 1971. 69-77
    [61] Simiu E. Wind spectra and dynamic alongwind response. Journal of Structural Engineering, ASCE, 1974, 100(9): 1897-1910
    [62] Carassale L., Solari G. Monte Carlo simulation of wind velocity fields on complex structures. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(5): 323-339
    [63] Von Karman T. Progress in the statistical theory of turbulence. Proceedings of the National Academy of Sciences of USA, 1948, 34: 530-539
    [64] Architechture Institute of Japan. AIJ recommendations for loads on buildings. 1996
    [65] Davenport A. G. The spectrum of horizontal gustiness near the ground in high winds. Quarterly Journal of the Royal Meteorological Society, 1961, 87: 194-211
    [66]黄本才.结构抗风分析原理及应用.上海:同济大学出版社, 2001
    [67] Harris R. I. The nature of the wind. in: Proceedings of the Seminar on the Modern Design of Wind Sensitive Structures. Institution of Civil Engineers, London: 1970. 29-55
    [68] Kaimal J. C. Turbulence spectra, length scales and structure parameters in the stable surface layer. Boundary-layer meteorology, 1973, 4: 289-309
    [69]项海帆等.公路桥梁抗风设计指南.北京:人民交通出版社, 1996
    [70] Panofsky H. A., Mccormick R. A. The spectrum of vertical velocity near the surface. Quarterly Journal of the Royal Meteorological Society, 1960, 86: 546-564
    [71] Kristensen L., Panofsky H. A., Smith S. D. Lateral coherence of longitudinal wind components in strong winds. Boundary-layer meteorology, 1981, 21: 199-205
    [72] Davenport A. G. The dependence of wind loads on meteorological parameters. in: Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures. Ottawa: 1967. 19-82
    [73] Priestley M. B. Evolutionary spectra and non-stationary processes. Journal of Royal Statistic Society, Series B, 1965, 27(2): 204-237
    [74]尼格姆.随机振动概论.何成慧等译.上海:上海交通大学出版社, 1985
    [75] Van Trees H. L.检测、估计和调制理论(卷1).毛士艺等译.北京:国防工业出版社, 1983
    [76] Spanos P. D., Zeldin B. A. Monte Carlo treatment of random fields: A broad perspective. Applied Mechanics Reviews, 1998, 51(3): 219-237
    [77] Rice S. O. Mathematical analysis of random noises. in: Wax N., editor. Selected Papers on Noises and Stochastic Processes. New York: Dover, 1954. 133-294
    [78] Yang J. N. Simulation of random envelope processes. Journal of Sound and Vibration, 1972, 21(1): 73-85
    [79] Shinozuka M. Simulation of multivariate and multidimensional random processes. Journal of the Acoustical Society of America, 1971, 49(1, Part 2): 357-368
    [80] Shinozuka M., Jan C. M. Digital simulation of random processes and its applications. Journal of Sound and Vibration, 1972, 25(1): 111-128
    [81]星谷胜.随机振动分析.常宝崎译.北京:地震出版社, 1977
    [82] Shinozuka M. Stochastic fields and their digital simulation. in: Schuller G. I., Shinozuka, M., editors. Stochastic Methods in Structural Dynamics. Dordrecht: Martinus Nijhoff Publishers,1987. 93-133
    [83] Shinozuka M., Deodatis G. Simulation of stochastic processes by spectral representation. Apply Mechanics Review, 1991, 44(4): 191-204
    [84] Grigoriu M. On the spectral representation method in simulation. Probabilistic Engineering Mechanics, 1993, 8(2): 75-90
    [85] Soong T. T., Grigoriu M. Random vibration of mechanical and structural systems. Englewood Cliffs, New Jersey: P T R Prentice-Hall, Inc., 1993
    [86] Mignolet M. P., Harish M. V. Comparison of some simulation algorithms on basis of distribution. Journal of Engineering Mechanics, ASCE, 1996, 122(2): 172-176
    [87] Sun T. C., Chaika M. On simulation of a Gaussian stationary process. Journal of Time Series Analysis, 1997, 18(1): 79-93
    [88] Yang J. N. On the normality and accuracy of simulated random processes. Journal of Sound and Vibration, 1973, 26(3): 417-428
    [89] Augusti G., Borri C., Gusella V. Simulation of wind loading and response of geometrically non-linear structures with particular reference to large antennas. Structural Safety, 1990, 8(1-4): 161-179
    [90] Iannuzzi A., Spinelli P. Artificial wind generation and structural response. Journal of Structural Engineering, ASCE, 1987, 113(12): 2382-2398
    [91] Shinozuka M. Digital simulation of random process in engineering mechanics with the aid of FFT technique. in: Ariaratnamm S. T., Leipholtz, H. H. E., editors. Stochastics problems in mechanics. Waterloo: University of waterloo press, 1974. 277-286
    [92] Shinozuka M., Levy R. Digital generation of alongwind velocity-field. Journal of Engineering Mechanics, ASCE, 1977, 103(4): 689-700
    [93] Shinozuka M., Deodatis G. Stochastic process models for earthquake ground motion. Probabilistic Engineering Mechanics, 1988, 3(3): 114-123
    [94] Deodatis G., Shinozuka M. Simulation of seismic ground motion using stochastic waves. Journal of Engineering Mechanics, ASCE, 1989, 115(12): 2723-2737
    [95] Shinozuka M., Deodatis G. Stochastic wave models for stationary and homogeneous seismic ground motion. Structural Safety, 1991, 10(1-3): 235-246
    [96] Deodatis G., Shinozuka M., Papageorgiou A. Stochastic wave representation of seismic ground motion .1. F-K spectra. Journal of Engineering Mechanics, ASCE, 1990, 116(11): 2363-2379
    [97] Deodatis G., Shinozuka M., Papageorgiou A. Stochastic wave representation of seismic ground motion .2. Simulation. Journal of Engineering Mechanics, ASCE, 1990, 116(11): 2381-2399
    [98] Shinozuka M., Deodatis G. Simulation of multi-dimensional gaussian stochastic fields by spectral representation. Applied Mechanics Reviews, 1996, 49(1): 29-53
    [99] Mann J. Wind field simulation. Probabilistic Engineering Mechanics, 1998, 13(4): 269-282
    [100]李明水,贺德馨.自然风场的数值模拟.空气动力学学报, 1999, 17(1): 44-51
    [101]周岱,马骏,吴筑海.空间结构三维风时程模拟及其小波分析.工程力学, 2006, 23(3): 88-95
    [102] Shinozuka M., Yun C. B., Seya H. Stochastic methods in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36(1-3): 829-843
    [103] Ramadan O., Novak M. Simulation of spatially incoherent random ground motions. Journal of Engineering Mechanics, ASCE, 1993, 119(5): 997-1016
    [104] Deodatis G. Simulation of ergodic multivariate stochastic processes. Journal of Engineering Mechanics, ASCE, 1996, 122(8): 778-787
    [105] Yang W. W., Chang T. Y. P., Chang C. C. An efficient wind field simulation technique for bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 697-708
    [106] Yang W. W., Chang T. Y. P. Numerical simulation of turbulent fluctuations along the axis of a bridge. Engineering Structures, 1998, 20(9): 837-848
    [107] Cao Y., Xiang H., Zhou Y. Simulation of stochastic wind velocity field on long-span bridges. Journal of Engineering Mechanics, ASCE, 2000, 126(1): 1-6
    [108] Li Y., Liao H., Qiang S. Simplifying the simulation of stochastic wind velocity fields for long cable-stayed bridges. Computers and Structures, 2004, 82(20-21): 1591-1598
    [109] Rossi R., Lazzari M., Vitaliani R. Wind field simulation for structural engineering purposes. International Journal for Numerical Methods in Engineering, 2004, 61(5): 738-763
    [110] Deodatis G. Non-stationary stochastic vector processes: Seismic ground motion applications. Probabilistic Engineering Mechanics, 1996, 11(3): 149-168
    [111] Chen L., Letchford C. W. A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure. Engineering Structures, 2004, 26(5): 619-629
    [112]王之宏.风荷载的模拟研究.建筑结构学报, 1994, 15(1): 44-52
    [113]曹映泓,项海帆,周颖.大跨度桥梁随机风场的模拟.土木工程学报, 1998, 31(3): 72-79
    [114]苏成,韩大建,颜全胜,等.大跨度桥梁风场模拟及气动力计算.华南理工大学学报(自然科学版), 1999, 27(11): 36-43
    [115]骆宁安,杨文武,韩大建.大跨度桥梁脉动风场的随机模拟.华南理工大学学报(自然科学版), 2002, 30(3): 57-60
    [116]韩大建,邹小江,苏成.大跨度桥梁考虑桥塔风效应的随机风场模拟.工程力学, 2003, 20(6): 18-23
    [117]李永乐,周述华,强士中.大跨度斜拉桥三维脉动风场模拟.土木工程学报, 2003, 36(10): 60-65
    [118] Solari G., Carassale L., Tubino F. POD methods and applications in wind engineering, Keynote paper. in: C.D. Proc.,6th Asia-Pacific Conference on Wind Engineering. Seoul: 2005
    [119] Solari G., Carassale L. Modal transformation tools in structural dynamics and wind engineering. Wind and Structures, 2000, 3(4): 221-241
    [120] Carassale L. POD-based filters for the representation of random loads on structures. Probabilistic Engineering Mechanics, 2005, 20(3): 263-280
    [121] Davenport A. G. How can we simplify and generalize wind loads? Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54-55: 657-669
    [122] Tamura Y., Suganuma S., Kikuchi H., et al. Proper orthogonal decomposition of random windpressure field. Journal of Fluids and Structures, 1999, 13(7-8): 1069-1095
    [123] Ricciardelli F., Solari G., De Grenet E. T. Analysis of the wind loading of a bridge deck box section using proper orthogonal decomposition. in: 3rd East European Conference on Wind Engineering. Kiev, Ukraine: 2002
    [124] Ricciardelli F. On the wind loading mechanism of long-span bridge deck box sections. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(12-15): 1411-1430
    [125] De Grenet E. T., Ricciardelli F. Spectral proper transformation of wind pressure fluctuations: Application to a square cylinder and a bridge deck. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(14-15): 1281-1297
    [126] Ruan D., He H., Castanon D. A., et al. Normalized proper orthogonal decomposition (NPOD) for building pressure data compression. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(6): 447-461
    [127] Carassale L., Hibi K., Pagnini L. C., et al. POD analysis of the dynamic wind pressure on a tall building. in: Proc., 5th International Colloquium on Bluff Body Aerodynamics & Applications, BBAA V. Ottawa: 2004
    [128] Chen L., Letchford C. W. Proper orthogonal decomposition of two vertical profiles of full-scale nonstationary downburst wind speeds[lzcl]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(3): 187-216
    [129] Chen L., Letchford C. W. Multi-scale correlation analyses of two lateral profiles of full-scale downburst wind speeds. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(9): 675-696
    [130]肖智勇.本征正交分解(POD)方法在高层建筑风荷载及其动态响应中的应用研究[硕士学位论文].汕头:汕头大学, 2001
    [131]陶青秋.本征正交分解(POD)法在建筑物风荷载及动态响应中的应用研究[硕士学位论文].汕头:汕头大学, 2002
    [132]周福,倪振华,谢壮宁.利用POD对双坡屋盖风压场预测.力学季刊, 2005, 26(2): 248-256
    [133]李方慧,倪振华,谢壮宁. POD方法在重建双坡屋盖风压场中的应用.工程力学, 2005, 22(S1): 177-182
    [134]夏法宝,梁枢果,郭必武,等.武汉国际证券大厦表面风压重组的POD法.华中科技大学学报(城市科学版), 2005, 22(2): 90-94
    [135] Li Y., Kareem A. Stochastic decomposition and application to probabilistic dynamics. Journal of Engineering Mechanics, ASCE, 1995, 121(1): 162-174
    [136] Gullo I., Di Paola M., Spanos P. D. Spectral approximation for wind induced structural vibration studies. Meccanica, 1998, 33(3): 291-298
    [137] Benfratello S., Di Paola M., Spanos P. D. Stochastic response of MDOF wind-excited structures by means of Volterra series approach. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 1135-1145
    [138] Benfratello S., Muscolino G. Filter approach to the stochastic analysis of mdof wind-excited structures. Probabilistic Engineering Mechanics, 1999, 14(4): 311-321
    [139] Carassale L., Piccardo G., Solari G. Wind response of structures by double modal transformation. in: Proceedings of Second East European Conference on Wind Engineering. vol. 1, 1998. 81-88
    [140] Carassale L., Piccardo G., Solari G. Double modal transformation and wind engineering applications. Journal of Engineering Mechanics, ASCE, 2001, 127(5): 432-439
    [141] Carassale L., Solari G. Proper orthogonal decomposition of multi-variate loading processes. in: Proc. 8th ASCE Speciality Conference on Probabilistic Mechanics and Structural Reliability. 2000
    [142] Solari G., Tubino F. Gust buffeting of long span bridges by double modal transformation. in: C.D. Proc., 4th European & African Conference on Wind Engineering. Prague: 2005
    [143] Kareem A., Mei G. Stochastic decomposition for simulation and model space reduction in wind induced dynamics of structures. in: Melchers R. E., Stewart, M. G., editors. Application of Statistics and Probability. Balkema,Rotterdam: 1999. 757-764
    [144] Chen X., Kareem A. On the application of stochastic decomposition in the analysis of wind effects. in: Proc., Int. Conf. on Advances in Struct. Dyn. (ASD 2000) The Hong Kong Polytechnic University, Hong Kong: vol. 126, 2000. 135-142
    [145] Carassale L., Piccardo G., Solari G. Double modal transformation in continuous modeling. in: Proc., 10th International Conference on Wind Engineering. vol. 3, 1999. 1479-1484
    [146] Di Paola M., Muscolino G., Sofi A. Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads. Wind and Structures, 2004, 7(2): 107-130
    [147] Gattulli V., Martinelli L., Perotti F., et al. Dynamics of suspended cables under turbulence loading: Reduced models of wind field and mechanical system. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(3): 183-207
    [148] Carassale L., Tubino F., Solari G. Seismic response of multi-supported structures by proper orthogonal decomposition. in: Proceeding of International Conference on Advances in Structural Dynamics. Hong Kong: 2000
    [149] Tubino F., Carassale L., Solari G. Seismic response of multi-supported structures by proper orthogonal decomposition. Earthquake Engineering and Structural Dynamics, 2003, 32(11): 1639-1654
    [150]张建胜,武岳,陈波,等. Ritz-POD法及其在大跨度屋盖结构风振分析中的应用.沈阳建筑大学学报(自然科学版), 2005, 21(6): 601-605
    [151]陈波.大跨屋盖结构等效静风荷载精细化理论研究[博士学位论文].哈尔滨:哈尔滨工业大学, 2006
    [152] Li Y., Kareem A. Simulation of multivariate random processes: Hybrid DFT and digital filtering approach. Journal of Engineering Mechanics, ASCE, 1993, 119(5): 1078-1098
    [153] Li Y., Kareem A. Simulation of multivariate nonstationary random processes: Hybrid DFT and digital filtering approach. Journal of Engineering Mechanics, ASCE, 1997, 123(12): 1302-1310
    [154] Di Paola M., Pisano A. A. Multivariate stochastic wave generation. Applied Ocean Research, 1996, 18(6): 361-365
    [155] Di Paola M. Digital simulation of wind field velocity. Journal of Wind Engineering andIndustrial Aerodynamics, 1998, 74-76(1): 91-109
    [156] Di Paola M., Gullo I. Digital generation of multivariate wind field processes. Probabilistic Engineering Mechanics, 2001, 16(1): 1-10
    [157] Di Paola M., Zingales M. Digital simulation of multivariate earthquake ground motions. Earthquake Engineering and Structural Dynamics, 2000, 29(7): 1011-1027
    [158] Carassale L., Solari G. Wind modes for structural dynamics: A continuous approach. Probabilistic Engineering Mechanics, 2002, 17(2): 157-166
    [159] Solari G., Tubino F. A turbulence model based on principal components. Probabilistic Engineering Mechanics, 2002, 17(4): 327
    [160] Tubino F., Solari G. Double proper orthogonal decomposition for representing and simulating turbulence fields. Journal of Engineering Mechanics, ASCE, 2005, 131(12): 1302-1312
    [161] Burlando M., Carassale L., Borghesi M. V., et al. Numerical simulation of turbulent wind fields at airports in complex terrain. in: C.D. Proc., 4th European & African Conference on Wind Engineering. Prague: 2005
    [162] Chen X., Kareem A. Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures. Journal of Engineering Mechanics, ASCE, 2005, 131(4): 325-339
    [163] Ding Q. S., Zhu L. D., Xiang H. F. Simulation of stationary Gaussian stochastic wind velocity field. Wind and Structures, 2006, 9(3): 231-243
    [164] Facchini L. The numerical simulation of Gaussian cross-correlated wind velocity fluctuations by means of a hybrid model. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 64(2-3): 187-202
    [165] Yamazaki F., Shinozuka M. Simulation of stochastic fields by statistical preconditioning. Journal of Engineering Mechanics, ASCE, 1990, 116(2): 268-287
    [166] Huang S. P., Quek S. T., Phoon K. K. Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes. International Journal for Numerical Methods in Engineering, 2001, 52(9): 1029-1043
    [167] Chen L., Letchford W. C. Simulation of multivariate stationary Gaussian stochastic processes: Hybrid spectral representation and proper orthogonal decomposition approach. Journal of Engineering Mechanics, ASCE, 2005, 131(8): 801-808
    [168] Hemon P., Santi F. Applications of biorthogonal decompositions in fluid-structure interactions. Journal of Fluids and Structures, 2003, 17(8): 1123-1143
    [169] Hemon P., Santi F. Simulation of a spatially correlated turbulent velocity field using biorthogonal decomposition. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(1): 21-29
    [170] Box G. E. P., Jenkins G. M. Time series analysis: Forecasting and control. San Francissco: Halden-Day, 1970.第二版有中译本:时间序列分析:预测与控制(第二版).顾岚译.北京:中国统计出版社, 1997
    [171] Gersch W., Liu R. S.-Z. Time series methods for the synthesis of random vibration systems. Journal of Applied Mechanics, ASME, 1976, 46(2): 159-165Industrial Aerodynamics, 1998, 74-76(1): 91-109
    [156] Di Paola M., Gullo I. Digital generation of multivariate wind field processes. Probabilistic Engineering Mechanics, 2001, 16(1): 1-10
    [157] Di Paola M., Zingales M. Digital simulation of multivariate earthquake ground motions. Earthquake Engineering and Structural Dynamics, 2000, 29(7): 1011-1027
    [158] Carassale L., Solari G. Wind modes for structural dynamics: A continuous approach. Probabilistic Engineering Mechanics, 2002, 17(2): 157-166
    [159] Solari G., Tubino F. A turbulence model based on principal components. Probabilistic Engineering Mechanics, 2002, 17(4): 327
    [160] Tubino F., Solari G. Double proper orthogonal decomposition for representing and simulating turbulence fields. Journal of Engineering Mechanics, ASCE, 2005, 131(12): 1302-1312
    [161] Burlando M., Carassale L., Borghesi M. V., et al. Numerical simulation of turbulent wind fields at airports in complex terrain. in: C.D. Proc., 4th European & African Conference on Wind Engineering. Prague: 2005
    [162] Chen X., Kareem A. Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures. Journal of Engineering Mechanics, ASCE, 2005, 131(4): 325-339
    [163] Ding Q. S., Zhu L. D., Xiang H. F. Simulation of stationary Gaussian stochastic wind velocity field. Wind and Structures, 2006, 9(3): 231-243
    [164] Facchini L. The numerical simulation of Gaussian cross-correlated wind velocity fluctuations by means of a hybrid model. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 64(2-3): 187-202
    [165] Yamazaki F., Shinozuka M. Simulation of stochastic fields by statistical preconditioning. Journal of Engineering Mechanics, ASCE, 1990, 116(2): 268-287
    [166] Huang S. P., Quek S. T., Phoon K. K. Convergence study of the truncated Karhunen-Loeve expansion for simulation of stochastic processes. International Journal for Numerical Methods in Engineering, 2001, 52(9): 1029-1043
    [167] Chen L., Letchford W. C. Simulation of multivariate stationary Gaussian stochastic processes: Hybrid spectral representation and proper orthogonal decomposition approach. Journal of Engineering Mechanics, ASCE, 2005, 131(8): 801-808
    [168] Hemon P., Santi F. Applications of biorthogonal decompositions in fluid-structure interactions. Journal of Fluids and Structures, 2003, 17(8): 1123-1143
    [169] Hemon P., Santi F. Simulation of a spatially correlated turbulent velocity field using biorthogonal decomposition. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(1): 21-29
    [170] Box G. E. P., Jenkins G. M. Time series analysis: Forecasting and control. San Francissco: Halden-Day, 1970.第二版有中译本:时间序列分析:预测与控制(第二版).顾岚译.北京:中国统计出版社, 1997
    [171] Gersch W., Liu R. S.-Z. Time series methods for the synthesis of random vibration systems. Journal of Applied Mechanics, ASME, 1976, 46(2): 159-165Houston: University of Houston, 1988
    [190] Li Y., Kareem A. ARMA representation of wind field. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36(1-3): 415-427
    [191] Li Y., Kareem A. ARMA systems in wind engineering. Probabilistic Engineering Mechanics, 1990, 5(2): 50-59
    [192] Li Y., Kareem A. Recursive modeling of dynamic systems Journal of Engineering Mechanics, ASCE, 1990, 116(3): 660-679
    [193] Novak D., Stoyanoff S., Herda H. Error assessment for wind histories generated by autoregressive method. Structural Safety, 1995, 17(2): 79-90
    [194] Naganuma T., Deodatis G., Shinozuka M. ARMA model for two-dimensional processes. Journal of Engineering Mechanics, ASCE, 1987, 113(2): 234-251
    [195] Mignolet M. P., Spanos P. D. Simulation of homogeneous two-dimensional random fields: Part I - AR and ARMA models. Journal of Applied Mechanics, ASME, 1992, 59(2): 260-269
    [196] Spanos P. D., Mignolet M. P. Simulation of homogeneous two-dimensional random fields: Part II - MA and ARMA models. Journal of Applied Mechanics, ASME, 1992, 59(2): 270-277
    [197] Reed R. D., Scanlan R. H. Time series analysis of cooling tower wind loading. Journal of Structural Engineering, ASCE, 1983, 109(2): 538-554
    [198] Ewing B. T., Kruse J. B., Schroeder J. L., et al. Time series analysis of wind speed using VAR and the generalized impulse response technique. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(3): 209-219
    [199] Kozin F. Autoregressive moving average models of earthquake records. Probabilistic Engineering Mechanics, 1988, 3(2): 58-63
    [200] Deodatis G., Shinozuka M. Auto-regressive model for nonstationary stochastic processes. Journal of Engineering Mechanics, ASCE, 1988, 114(11): 1995-2012
    [201]缪炳祺.随机过程数字仿真的ARMA法.振动工程学报, 1990, 3(1): 60-63
    [202]缪炳祺.随机振动数字仿真中激励谱的实现.浙江工学院学报, 1990, (2): 22-26
    [203]缪炳祺. ARMA模型用于多变量随机过程的数字仿真.振动工程学报, 1991, 4(4): 70-73
    [204]缪炳祺.关于ARMA模型参数确定方法的改进.振动与冲击, 1991, 10(2): 56-60
    [205]缪炳祺.随机振动响应谱特性估计的数字模拟方法.浙江工学院学报, 1992, (3): 26-31
    [206]缪炳祺.海浪运动数字模拟的ARMA法.振动与冲击, 1993, 12(3): 49-53
    [207]赵臣,张小刚,吕伟平.具有空间相关性风场的计算机模拟.空间结构, 1996, 2(2): 21-25
    [208]周志勇.具钝形截面的风敏感结构与风的耦合作用分析与研究[博士学位论文].南京:东南大学, 1999
    [209]周志勇,项海帆,陈艾荣.多变量ARMA模型与大跨结构随机风场的数值仿真.自然科学进展, 2001, (11): 631-634
    [210]王修琼,林炽杰.混合回归模型及其在高耸结构风响应时域分析中的应用.空气动力学学报, 2000, 18(4): 478-483
    [211]王修琼,张相庭.混合回归模型及其在高层建筑风响应时域分析中的应用.振动与冲击, 2000, 19(1): 5-7
    [212]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制.空间结构, 2001, 7(3): 3-11
    [213]胡雪莲,李正良,晏致涛.大跨度桥梁结构风荷载模拟研究.重庆建筑大学学报, 2005, 27(3): 63-67
    [214]赵建飞,谢步瀛.大跨度桥梁风荷载模拟及程序编制.结构工程师, 2006, 22(2): 42-49
    [215] Zeldin B. A., Spanos P. D. Random field representation and synthesis using wavelet bases. Journal of Applied Mechanics, Transactions ASME, 1996, 63(4): 946-952
    [216] Kitagawa T., Nomura T. A wavelet-based method to generate artificial wind fluctuation data. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(7): 943-964
    [217]王毅.基于小波方法的随机风场模拟与分析[硕士学位论文].上海:同济大学, 2004
    [218]韩艳.利用小波逆变换模拟随机风场的脉动风.见:第十二届全国结构风工程学术会议论文集.陕西,西安: 2005. 156-161
    [219] Gurley K., Kareem A. Applications of wavelet transforms in earthquake, wind and ocean engineering. Engineering Structures, 1999, 21(2): 149-167
    [220] Gurley K. R., Tognarelli M. A., Kareem A. Analysis and simulation tools for wind engineering. Probabilistic Engineering Mechanics, 1997, 12(1): 9-31
    [221] Kareem A., Kijewski T. Time-frequency analysis of wind effects on structures. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 1435-1452
    [222] Spanos P. D., Failla G. Wavelets: Theoretical concepts and vibrations related applications. Shock and Vibration Digest, 2005, 37(5): 359-375
    [223] Schueller G. I., editor. A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics, 1997, 12(4): 197-321
    [224] Li Y., Kareem A. Simulation of multivariate nonstationary random processes by FFT. Journal of Engineering Mechanics, ASCE, 1991, 117(9): 1037-1059
    [225] Grigoriu M. Simulation of stationary process via a sampling theorem. Journal of Sound and Vibration, 1993, 166(2): 301-313
    [226] Grigoriu M., Balopoulou S. Simulation method for stationary Gaussian random functions based on the sampling theorem. Probabilistic Engineering Mechanics, 1993, 8(3-4): 239-254
    [227] Grigoriu M. Evaluation of Karhunen--Loeve, spectral, and sampling representations for stochastic processes. Journal of Engineering Mechanics, ASCE, 2006, 132(2): 179-189
    [228] Grigoriu M. Spectral representation based model for Monte Carlo simulation. Probabilistic Engineering Mechanics, 2000, 15(4): 365-370
    [229] Grigoriu M. Algorithm for generating samples of homogeneous Gaussian fields. Journal of Engineering Mechanics, ASCE, 2003, 129(1): 43-49
    [230]曾宪武,韩大建.大跨度桥梁风场模拟方法对比研究.地震工程与工程振动, 2004, 24(1): 135-140
    [231]李英民,董银峰,夏洪流,等.考虑频率非平稳特性的地震波ARMA模型仿真方法.重庆建筑大学学报, 2000, 22(S1): 123-127
    [232] Chen X., Kareem A. Curve veering of eigenvalue loci of bridges with aeroelastic effects. Journal
    [212]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制.空间结构, 2001, 7(3): 3-11
    [213]胡雪莲,李正良,晏致涛.大跨度桥梁结构风荷载模拟研究.重庆建筑大学学报, 2005, 27(3): 63-67
    [214]赵建飞,谢步瀛.大跨度桥梁风荷载模拟及程序编制.结构工程师, 2006, 22(2): 42-49
    [215] Zeldin B. A., Spanos P. D. Random field representation and synthesis using wavelet bases. Journal of Applied Mechanics, Transactions ASME, 1996, 63(4): 946-952
    [216] Kitagawa T., Nomura T. A wavelet-based method to generate artificial wind fluctuation data. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(7): 943-964
    [217]王毅.基于小波方法的随机风场模拟与分析[硕士学位论文].上海:同济大学, 2004
    [218]韩艳.利用小波逆变换模拟随机风场的脉动风.见:第十二届全国结构风工程学术会议论文集.陕西,西安: 2005. 156-161
    [219] Gurley K., Kareem A. Applications of wavelet transforms in earthquake, wind and ocean engineering. Engineering Structures, 1999, 21(2): 149-167
    [220] Gurley K. R., Tognarelli M. A., Kareem A. Analysis and simulation tools for wind engineering. Probabilistic Engineering Mechanics, 1997, 12(1): 9-31
    [221] Kareem A., Kijewski T. Time-frequency analysis of wind effects on structures. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 1435-1452
    [222] Spanos P. D., Failla G. Wavelets: Theoretical concepts and vibrations related applications. Shock and Vibration Digest, 2005, 37(5): 359-375
    [223] Schueller G. I., editor. A state-of-the-art report on computational stochastic mechanics. Probabilistic Engineering Mechanics, 1997, 12(4): 197-321
    [224] Li Y., Kareem A. Simulation of multivariate nonstationary random processes by FFT. Journal of Engineering Mechanics, ASCE, 1991, 117(9): 1037-1059
    [225] Grigoriu M. Simulation of stationary process via a sampling theorem. Journal of Sound and Vibration, 1993, 166(2): 301-313
    [226] Grigoriu M., Balopoulou S. Simulation method for stationary Gaussian random functions based on the sampling theorem. Probabilistic Engineering Mechanics, 1993, 8(3-4): 239-254
    [227] Grigoriu M. Evaluation of Karhunen--Loeve, spectral, and sampling representations for stochastic processes. Journal of Engineering Mechanics, ASCE, 2006, 132(2): 179-189
    [228] Grigoriu M. Spectral representation based model for Monte Carlo simulation. Probabilistic Engineering Mechanics, 2000, 15(4): 365-370
    [229] Grigoriu M. Algorithm for generating samples of homogeneous Gaussian fields. Journal of Engineering Mechanics, ASCE, 2003, 129(1): 43-49
    [230]曾宪武,韩大建.大跨度桥梁风场模拟方法对比研究.地震工程与工程振动, 2004, 24(1): 135-140
    [231]李英民,董银峰,夏洪流,等.考虑频率非平稳特性的地震波ARMA模型仿真方法.重庆建筑大学学报, 2000, 22(S1): 123-127
    [232] Chen X., Kareem A. Curve veering of eigenvalue loci of bridges with aeroelastic effects. Journal
    [256] Press W. H., Teukolsky S. A., Vetterling W. T., et al. Numerical recipes in Fortran 90 : The art of parallel scientific computing(第2版). New York: Cambridge University Press, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700