用户名: 密码: 验证码:
斜拉索—辅助索系统动力特性和减振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着斜拉桥跨度的增加,斜拉索的长度也不断增大,其振动问题更加突出。仅采用气动和索端阻尼器措施已难以满足斜拉索的减振要求,辅助索减振措施将成为大跨度斜拉桥超长斜拉索减振措施的重要选择。
     本文针对斜拉索辅助索减振措施,研究了单索和索网结构动力特性分析理论和方法,着重讨论了索网的阻尼特性和影响因素;进行了索网结构的模型验证试验;以实际大跨度斜拉桥工程为背景,通过算例讨论了采取辅助索措施的必要性,进行了辅助索设计参数分析。研究成果为大跨度斜拉桥拉索的辅助索减振措施设计提供了理论基础和方法。
     本文的主要研究包括:
     (1)首先采用三单元Maxwell阻尼器模型模拟考虑阻尼器内刚度和支架柔度影响的拉索阻尼器,运用子结构方法建立了单根斜拉索-三单元Maxwell阻尼器系统的运动方程,推导了系统的复频率方程。
     实际的阻尼器都在在一定的内刚度且阻尼器支架都具有一定的柔度,为了定量研究这些因素的影响,在假定阻尼器安装位置接近锚固端(l/L(?)1)的前提下得到了拉索—三单元Maxwell阻尼器系统复特征频率方程的近似解析式,并给出了拉索最大模态阻尼和相应的阻尼器最优阻尼系数。研究表明,拉索的最大模态阻尼比随阻尼器内刚度和支架柔度的增大而减小;阻尼器内刚度和支架柔度对系统的最大模态阻尼比的影响是相互耦合的,而阻尼器内刚度和支架柔度对阻尼器最优阻尼系数的影响是可以线性叠加的。
     本文建议在辅助索位置安装阻尼器以增加索网结构的阻尼减振效果。针对这一问题,以与阻尼器并联的弹簧模拟辅助索的刚度,与阻尼器串联的弹簧模拟相邻斜拉索的支撑柔度,其模型同样可化简为三单元Maxwell阻尼器模型。由于安装在辅助索位置的阻尼器不再满足l/L(?)1的条件,所以推导了复特征频率方程的迭代函数形式。根据复特征频率方程的迭代函数形式,运用数值方法分析了辅助索位置的集中阻尼对索网结构模态阻尼特性的影响。研究表明,索网的模态阻尼与辅助索集中阻尼的位置有很大关系;集中阻尼的位置越接近振型波峰时,索网的模态阻尼越大;集中阻尼的位置接近振型节点时,索网的模态阻尼比迅速减小;索网的支撑柔度和辅助索的刚度都降低了索网的模态阻尼。
     (2)以Kelvin阻尼器模型模拟具有并联刚度的阻尼器,运用传递函数法推导了拉索-任意位置、任意数目Kelvin阻尼器系统的复频率方程。
     运用该理论分析了斜拉索套管口橡胶垫圈对斜拉索阻尼特性的影响,研究表明,梁端橡胶圈降低了索端阻尼器的减振效果;而塔端橡胶圈对斜拉索阻尼特性的影响可以忽略不计。
     该理论的另一应用是分析梁、塔两端同时安装阻尼器时对斜拉索阻尼特性的影响,研究表明,梁、塔两端同时安装阻尼器时,系统的最大模态阻尼比约等于分别安装梁端阻尼器和塔端阻尼器时拉索所能获得的最大模态阻尼比之和。
     最后运用该理论分析了辅助索刚度对索端阻尼器效果的影响,研究表明,对于位于主索等分点位置的辅助索,其刚度对系统的最大模态阻尼和阻尼器最优阻尼系数均有一定的影响,增加辅助索的刚度可以提高系统的最大模态阻尼,阻尼器的最优阻尼系数也相应增大。
     (3)在确定索网结构的几何非线性静力平衡位置的基础上,运用有限单元法分析了索网结构的模态频率和振型,并结合能量法对索网结构的分布阻尼特性进行了分析。其中主要考虑了辅助索的道数、张拉方式、初张力和刚度等的影响,并根据辅助索的刚度对索网结构模态振型和频率的影响定义了刚性辅助索和柔性辅助索。
     研究表明,增加辅助索道数,不仅可以提高索网结构的面内频率,也可以提高主索和辅助索的分布阻尼对索网结构模态阻尼的贡献。辅助索的张拉方式和张拉力对索网结构模态频率和分布阻尼贡献均有一定影响。刚性辅助索对提高索网结构频率的效果较好,而柔性辅助索对提高索网结构分布阻尼贡献的效果较好。
     (4)为了验证索网结构模态频率的理论分析方法并定量研究索网结构的分布阻尼特性,采用三根斜拉索和一根辅助索组成的索网模型进行了试验研究。采用钢丝绳和橡胶绳两种材料分别模拟刚性辅助索和柔性辅助索,研究了辅助索的张拉方式、张拉力、刚度及分布阻尼对索网结构面内面外减振性能的影响,并基于理论分析对试验结果进行了解释。结果表明:索网结构模态频率的试验结果与理论分析基本一致,索网结构模态阻尼的试验结果与理论分析趋势相同。
     (5)最后运用本文提出的理论分析了一个实际大跨度斜拉桥的算例,进行了辅助索设计参数分析。
The span of cable-stayed bridges has been greatly extended since the beginning of the 1990s, accordingly the length of stay cable also becomes longer. To mitigate the vibration of very long stay cables induced by wind/rain, the countermeasures, such as installation of dampers near to anchorage of cables or aerodynamic means, may hardly meet the requirements. Therefore, cable cross ties connecting stay cables together would be a significant choice for mitigating the vibration of very long stay cables.
    To investigate the characteristics of the cable system with cables and cross ties, theoretical analysis methods about a single cable or a cable system were derived with emphasis on the damping performance and its influencing factors. The free vibration test using a scaled model of cable system was conducted to verify the theoretical results. Numerical simulation was carried out for a large span cable-stayed bridge to discuss the necessity of using cross ties for cable vibration mitigation and to optimize the design parameters of cross ties. The research findings will provide a theoretical basis for the design of vibration mitigation using cross ties.
    The main contents of this paper are as follows:
    (1) A three-element Maxwell damper model was adopted to simulate the inherent stiffness of a damper installed at a cable and the flexibility of its support, the equation of motion of a single cable with the Maxwell model was formulated, then the complex eigen-equation of the system was obtained.
    Usually a real damper has inherent stiffness and its support has flexibility. To investigate the influences of these factors, an approximate solution of the complex eigen-equation of cable system was obtained with the assumption that the location of damper is near to the anchorage of cable. Subsequently the maximum damping of cable and the optimal damping coefficient of damper can be calculated. The theoretical analyses show that the inherent stiffness of damper and the flexibility of damper support both reduce the effectiveness of damper; the optimum damping coefficient of damper increases when the inherent stiffness of the damper increases, but decreases when the flexibility of support increases.
    The author suggested that dampers should be installed at the connections of cross ties to stay cables to increase the damping of cable system. To analyze such problem, the stiffness of cross tie could be simulated by a spring parallely connected to the damper element and the flexibility of the adjacent cables could be simulated by a spring serially connected to the damper. Thus the model is also a three-element Maxwell model. Because the locations of dampers are not close to the anchorage of cable, the approximate solution is not applicable anymore. The iteration scheme of the complex eigen-equation was therefore deduced. Based on the iteration scheme, the numerical analyses were conducted to investigate the effect of cross tie damper on the modal damping of cable system. The analyses show that the modal damping of cable system is closely related to the locations of cross tie damper. When the damper is closer to the wave crest of modal shape, the damping ratio of the cable system is larger; and when the damper gets closer to the node of the modal shape, the damping
     ratio of the cable system decreases rapidly. The flexibility of the adjacent cables and the stiffness of the cross ties both reduce the modal damping of the cable system.
     (2) A damper with parallel stiffness was simulated by a Kelvin damper model. A cable with arbitrary numbers of Kelvin model at arbitrary locations was analyzed using a transfer matrix method, and the complex eigen-equation of the system was obtained.
     The effect of rubber rings installed near the anchorages of cable on the damping characteristics of stay cable was investigated. The results show that the rubber ring installed at the girder anchorage of cable decrease the effectiveness of the girder-side damper while the rubber ring at the tower anchorage have little influence.
     Anther application of this theory is to investigate the damping of cable with two dampers installed near to the girder and tower anchorage of cable respectively. The results show that the maximum damping of the cable approximately equals to the summation of the cable damping with a single damper installed at girder or tower anchorage respectively.
     The theory is also used to analyze the effect of the stiffness of cross tie on the effectiveness of damper located near the cable anchorage. It is shown that for cross ties equally spaced along the longest cable, increasing the stiffness the cross ties could increase the effectiveness of damper and accordingly the optimum damping coefficient of damper should be increased.
     (3) On the basis of static equilibrium configuration of cable, Finite Element Method was applied to analyze the modal frequency and shape. The characteristics of distributed damping were then evaluated by using energy method. The factors mainly considered are the number of cross ties, the tensioning method, the initial tension force, and the stiffness of cross ties. Stiff type cross tie and flexible type cross tie were also defined.
     The analyses show that when the number of cross ties increases, the in-plane frequencies of the cable system increases and the damping of cable system is also increased. The tensioning method and the initial tension force both have some effects on the modal frequencies and damping. The stiff type cross ties may be mainly used to increase the frequencies of cable system and the flexible type cross ties to increase the damping of cable system.
     (4) To verify the theoretical results and to investigate quantitatively the characteristics of distributed structural damping, free vibration test was conducted by using a cable system model which consists of three stayed cables and one cross tie. Steel wire ropes and rubber ropes were adopted to model the stiff type and the flexible type cross ties respectively. The effects of tension method, initial tension and stiffness of cross ties on in-plane and out-of-plane vibration mitigation of the cable system were investigated. The test results were explained based on the theoretical studies. The test results of frequencies of cable system are approximately the same as the theoretical ones and the test results on damping characteristics have the same tendency as the theoretical studies.
     (5) Finally, a large span cable-stayed bridge was used as a sample to illustrate the necessity of using cross ties for mitigating the vibrations of stay cables, and the optimum parameters for designing cross ties were analyzed.
引文
[1] Fujino, Y., M. Nagai. Cable-supported bridges and their future. Journal of Steel Construction Engineering, 1994.1(3): p. 17-35.
    
    [2] Irvine, H.M., G.B. Sinclair. Suspended Elastic Cable under Action of Concentrated Vertical Loads. International Journal of Solids and Structures, 1976.12(4): p. 309-317.
    [3] Irvine, H.M., T.K. Caughey. The linear theory of free vibrations of a suspended cable. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1974. 341: p. 299-315.
    
    [4] Irvine, H.M. Cable Structures. 1981, Cambridge: The MIT Press.
    [5] Irvine, H.M. Free Vibrations of Inclined Cables. Journal of the Structural Division-Asce, 1978. 104(2): p. 343-347.
    [6] Virlogeux, M. Cable vibrations in cable-stayed bridges, in Bridge Aerodynamics, A. Larsen and S. Esdahl, Editors. 1998, Balkema: Rotterdam. p. 213-233.
    [7] Yamaguchi, H., Y. Fujino. Stayed cable dynamics and its vibration control, in Bridge Aerodynamics, A. Larsen and S. Esdahl, Editors. 1998, Balkema: Rotterdam. p. 235-253.
    [8] Matsumoto, M., Y. Daito, T. Kanamura, et al. Wind-induced vibration of cables of cable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1998. 74-6: p. 1015-1027.
    [9] Matsumoto, M., H. Shirato, T. Yagi, et al. Field observation of the full-scale wind-induced cable vibration. Journal of Wind Engineering and Industrial Aerodynamics, 2003. 91(1-2): p. 13-26.
    [10] Matsumoto, M., T. Yagi, Y. Shigemura, et al. Vortex-induced cable vibration of cable-stayed bridges at high reduced wind velocity. Journal of Wind Engineering and Industrial Aerodynamics, 2001. 89(7-8): p. 633-647.
    
    [11] Hover, F.S., S.N. Miller, M.S. Triantafyllou. Vortex-induced oscillations in inclined cables. Journal of Wind Engineering and Industrial Aerodynamics, 1997. 71: p. 203-211.
    
    [12] Burton, D., D.Q. Cao, R.W. Tucker, et al. On the stability of stay cables under light wind and rain conditions. Journal of Sound and Vibration, 2005. 279(1-2): p. 89-117.
    [13] Matsumoto, M., T. Yagi, M. Goto, et al. Rain-wind-induced vibration of inclined cables at limited high reduced wind velocity region. Journal of Wind Engineering and Industrial Aerodynamics, 2003. 91(1-2): p. 1-12.
    [14] Cosentino, N., O. Flamand, C. Ceccoli. Rain-wind induced vibration of inclined stay cables. Part I: Experimental investigation and physical explanation. Wind and Structures, 2003. 6(6): p. 471-484.
    [15] Cosentino, N., O. Flamand, C. Ceccoli. Rain-wind induced vibration of inclined stay cables. Part II: Mechanical modeling and parameter characterisation. Wind and Structures, 2003. 6(6): p. 485-498.
    [16] Wang, L.Y., Y.L. Xu. Wind-rain-induced vibration of cable: an analytical model (1). International Journal of Solids and Structures, 2003. 40(5): p. 1265-1280.
    [17] Bosdogianni, A., D. Olivari. Wind- and rain-induced oscillations of cables of stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1996. 64(2-3): p. 171-185.
    [18] Flamand, O. Rain-Wind Induced Vibration of Cables. Journal of Wind Engineering and Industrial Aerodynamics, 1995. 57(2-3): p. 353-362.
    [19] Tokoro, S., H. Komatsu, M. Nakasu, et al. A study on wake-galloping employing full aeroelastic twin cable model. Journal of Wind Engineering and Industrial Aerodynamics, 2000. 88(2-3): p. 247-261.
    [20] Maeda, H., Y. Kubo, K. Kato, et al. Aerodynamic characteristics of closely and rigidly connected cables for cable-stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1997. 71: p. 263-278.
    [21] Yoshimura, T., M.G. Savage, H. Tanaka, et al. Wind-Induced Oscillations of Groups of Bridge Stay-Cables. Journal of Wind Engineering and Industrial Aerodynamics, 1995. 54: p. 251-262.
    [22] Yoshimura, T., M.G. Savage, H. Tanaka, et al. A Device for Suppressing Wake Galloping of Stay-Cables for Cable-Stayed Bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1993. 49(1-3): p. 497-505.
    [23] Lilien, J.L., A.P. Dacosta. Vibration Amplitudes Caused by Parametric-Excitation of Cable-Stayed Structures. Journal of Sound and Vibration, 1994. 174(1): p. 69-90.
    [24] daCosta, A.P., J.A.C. Martins, F. Branco, et al. Oscillations of bridge stay cables induced by periodic motions of deck and/or towers. Journal of Engineering Mechanics-Asce, 1996. 122(7): p. 613-622.
    [25] Tagata, G Harmonically Forced, Finite Amplitude Vibration of a String. Journal of Sound and Vibration, 1977. 51(4): p. 483-492.
    [26] Alnoury, S.I., S.A. Ali. Large-Amplitude Vibrations of Parabolic Cables. Journal of Sound and Vibration, 1985.101(4): p. 451-462.
    [27] Perkins, N.C. Modal Interactions in the Nonlinear Response of Elastic Cables under Parametric External Excitation. International Journal of Non-Linear Mechanics, 1992. 27(2): p. 233-250.
    [28] Benedettini, F., G Rega. Nonlinear Dynamics of an Elastic Cable under Planar Excitatioa International Journal of Non-Linear Mechanics, 1987. 22(6): p. 497-509.
    [29] Qingxiong, W., K. Takahashi, C. Baochun. Using cable finite elements to analyze parametric vibrations of stay cables in cable-stayed bridges. Structural Engineering and Mechanics, 2006. 23(6): p. 691-711.
    [30] Cai, Y., S.S. Chen. Dynamics of Elastic Cable under Parametric and External Resonances. Journal of Engineering Mechanics-Asce, 1994.120(8): p. 1786-1802.
    [31] 亢战,钟万勰.斜拉桥参数共振问题的数值研究.土木工程学报,1998.31(4):p.14-22.
    [32] Yang, S.-Z., A.-R. Chen. Parametric oscillation of super long stay cables. Tongji Daxue Xuebao/Journal of Tongji University, 2005.33(10): p. 1303-1308.
    [33] Sun, B.-N., Z.-G. Wang, J.M. Ko, et al. Parametrically excited oscillation of stay cable and its control in cable-stayed bridges. Journal of Zhejiang University: Science, 2003.4(1): p. 13-20.
    [34] Bing-nan, S., W. Zhi-gang, J.M. Ko, et al. Parametrically excited oscillation of stay cable and its control in cable-stayed bridges. Journal of Zhejiang University(Science), 2003.4(1): p. 13-20.
    [35] Xia, Y., Y. Fujino. Auto-parametric vibration of a cable-stayed-beam structure under random excitation. Journal of Engineering Mechanics, 2006. 132(3): p. 279-286.
    [36] Rao, G.V., R.N. Iyengar. Internal Resonance and Nonlinear Response of a Cable under Periodic Excitation. Journal of Sound and Vibration, 1991. 149(1): p. 25-41.
    [37] Simiu, E., R.H. Scanlan. Wind Effects on Structures-Fundamentals and Applications to Design. 1996, New Jork: John Wiley & Sons, Inc.
    [38] Hikami, Y., N. Shiraishi. Rain-wind induced vibrations of cables in cable stayed bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1988.29 pt 2(1-3): p. 409-418.
    [39] 王修勇,陈政清.洞庭湖大桥风雨振减振试验研究.桥梁建设,2002(2):p.11-14.
    [40] 杜晓庆.斜拉桥拉索风雨激振研究.博士学位论文,上海,同济大学,2003.
    [41] 黄麟.斜拉桥拉索风雨激振的稳定性研究.硕士学位论文,上海,同济大学,2002.
    [42] 李文勃.斜拉桥拉索风雨激振及气动减振措施研究.硕士学位论文,上海,同济大学,2002.
    [43] 刘慈军.斜拉桥拉索风致振动研究.博士学位论文,上海,同济大学,1999.
    [44] 吕强.斜拉桥拉索风雨激振的理论研究.硕士学位论文,上海,同济大学,2001.
    [45] 彭天波.斜拉桥拉索风雨激振的机理研究.硕士学位论文,上海,同济大学,2000.
    [46] Cigada, A., G. Diana, M. Falco, et al. Vortex shedding and wake-induced vibrations in single and bundle cables. Journal of Wind Engineering and Industrial Aerodynamics, 1997. 72(1-3): p. 253-263.
    [47] Kovacs, I. Zur frage der seilschwingungen und der seildampfung. Die Bautechnik, 1982. 59(10): p. 325-332.
    [48] 陈水生,孙炳楠.斜拉桥拉索模态耦合非线性共振响应特性.工程力学,2003.20(1):p.137-143.
    [49] Watson, S.C., D. Stafford. Cables in Trouble. Civil Engineering, 1988.58(4): p. 38-41.
    [50] Poston, R.W. Cable-stay conundrum. Civil Engineering(New York), 1998.68(8): p. 58-61.
    [51] Pacheco, B.M., Y. Fujino. Keeping cables calm. Civil Engineering(New York), 1993. 63(10): 19.56-58.
    [52] 王文涛.斜拉桥换索工程.1995,北京:人民交通出版社.
    [53] Housner, G.W., L.A. Bergman, T.K. Caughey, et al. Structural control: Past, present, and future. Journal of Engineering Mechanics-Asce, 1997. 123(9): p. 897-971.
    [54] Perry, C.L., E.A. Fierro, H. Sedarat, et al. Seismic upgrade in San Francisco using energy dissipation devices. Earthquake Spectra, 1993. 9(3): p. 559.
    [55] Martinez-Romero, E. Experiences on the use of supplementary energy dissipators on building structures. Earthquake Spectra, 1993. 9(3): p. 581.
    [56] Dargush, G.F., T.T. Soong. Behavior of metallic plate dampers in seismic passive energy dissipation systems. Earthquake Spectra, 1995.11(4): p. 545.
    [57] Liao, W.I., I. Mualla, C.H. Loh. Shaking-table test of a friction-damped frame structure. Structural Design of Tall and Special Buildings, 2004. 13(1): p. 45-54.
    [58] Ribakov, Y. Semi-active predictive control of non-linear structures with controlled stiffness devices and friction dampers. Structural Design of Tall and Special Buildings, 2004. 13(2): p. 165-178.
    [59] Pall, A., S. Vezina, P. Proulx, et al. Friction-dampers for seismic control of Canadian space agency headquarters. Earthquake Spectra, 1993. 9(3): p. 547.
    [60] Rossikhin, Y.A., M.V. Shitikova. Free damped nonlinear vibrations of a viscoelastic plate under two-to-one internal resonance, in Modern Practice in Stress and Vibration Analysis. 2003. p. 29-36.
    [61] Xu, Z.D., H.T. Zhao, A.Q. Li. Optimal analysis and experimental study on structures with viscoelastic dampers. Journal of Sound and Vibration, 2004. 273(3): p. 607-618.
    [62] Hryniewicz, Z. Dynamic analysis of system with deterministic and stochastic viscoelastic dampers. Journal of Sound and Vibration, 2004. 278(4-5): p. 1013-1023.
    [63] Lin, W.H., A.K. Chopra. Understanding and predicting effects of supplemental viscous damping on seismic response of asymmetric one-storey systems. Earthquake Engineering & Structural Dynamics, 2001. 30(10): p. 1475-1494.
    [64] Lin, W.H., A.K. Chopra. Earthquake response of elastic SDF systems with non-linear fluid viscous dampers. Earthquake Engineering & Structural Dynamics, 2002. 31(9): p. 1623-1642.
    [65] Symans, M.D., W.R. Cofer, Y. Du, et al. Seismic behavior of wood-framed structures with viscous fluid dampers. Earthquake Spectra, 2004. 20(2): p. 451-482.
    [66] Fujino, Y., L.M. Sun. Vibration control by multiple tuned liquid dampers (MTLDs). Journal of Structural Engineering, 1993.119(12): p. 3482-3502.
    [67] Sun, L.M., Y. Fujino, K. Koga. Model of tuned liquid damper for suppressing pitching motions of structures. Earthquake Engineering & Structural Dynamics, 1995. 24(5): p. 625-636.
    [68] Sun, L.M., Y. Fujino, P. Chaiseri, et al. Properties of tuned liquid dampers using a TMD analogy. Earthquake Engineering & Structural Dynamics, 1995. 24(7): p. 967-976.
    [69] Fujino, Y., B.M. Pacheco, P. Chaiseri, et al. Fundamental study on tuned liquid damper (TLD). A new damper for building vibrations. National Research Council, Building Research Advisory Board, Technical Report, 1988.1: p. 214.
    [70] Sun, L.M., Y. Fujino, B.M. Pacheco, et al. Modelling of tuned liquid damper (TLD). Journal of Wind Engineering and Industrial Aerodynamics, 1992. 43(pt 3): p. 1883-1894.
    [71] 藤原亨,森山彰.多多罗大桥拉索减振措施.本四技报, 1996. 22(79): p.31-41.
    [72] Krenk, S., S.R.K. Nielsen. Vibrations of a shallow cable with a viscous damper. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 2002. 458(2018): p. 339-357.
    [73] Krenk, S. Vibrations of a taut cable with an external damper. Journal of Applied Mechanics-Transactions of the Asme, 2000. 67(4): p. 772-776.
    [74] Main, J.A., N.P. Jones. Evaluation of viscous dampers for stay-cable vibration mitigation. Journal of Bridge Engineering, 2001. 6(6): p. 385-397.
    [75] Pacheco, B.M., Y. Fujino. Perturbation Technique to Approximate the Effect of Damping Nonproportionality in Modal Dynamic Analysis. Structural Eng./Earthquake Eng.JSCE, 1989. 6(1): p. 169s-178s.
    [76] Tabatabai, H., A.B. Mehrabi. Design of Mechanical viscous dampers for stay cables. Journal of Bridge Engineering-Asce, 2000. 5(2): p. 114-123.
    [77] Xu, Y.L., Z. Yu. Vibration of inclined sag cables with oil dmapers in cable-stayed bridges. Journal of Bridge Engineering-Asce, 1998. 3(4): p. 194-203.
    [78] Chen, S.-S., B.-N. Sun, Y.-Q. Feng. Nonlinear transient response of stay cable with viscoelasticity damper in cable-stayed bridge. Applied Mathematics and Mechanics (English Edition), 2004. 25(6): p. 664-671.
    [79] Lou, W.J., C. Shuisheng, S. Bingnan. In-plane and out-of-plane vibration suppression of stay-cable by viscous dampers. 2003. San Diego, CA, USA: SPIE-Int. Soc. Opt. Eng.
    [80] Nakamura, A., A. Kasuga, H. Arai. Effects of mechanical dampers on stay cables with high-damping rubber. Construction and Building Materials, 1998.12(2-3): p. 115-123.
    [81] Chen, Z.Q., X.Y. Wang, J.M. Ko, et al. MR damping system for mitigating wind-rain induced vibration on Dongting Lake cable-stayed bridge. Wind and Structures, An International Journal, 2004. 7(5): p. 293-304.
    [82] Yoneda, M., I. Shimoda. Effects of elasticity on the damping characteristics of viscous shearing damper and estimation curve for modal damping in stay cables with this type of dampers. Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, 1993(480 pt 6-21): p. 77-86.
    [83] Lou, W.J., S.S. Chen, B.N. Sun. In-plane and out-of-plane vibration suppression of stay-cable by viscous dampers. 2003. San Diego, CA, United States: The International Society for Optical Engineering.
    [84] Nielsen, S.R.K., C.N. Jensen, J.D. Sorensen. Optimal damping of stays in cable-stayed bridges for in-plane vibrations. Journal of Sound and Vibration, 2002. 256(3): p. 499-513.
    [85] Chen, Z.Q., X.Y. Wang, J.M. Ko, et al. MR damping system on Dongting Lake cable-stayed bridge. 2003. San Diego, CA, USA: SPIE-Int. Soc. Opt. Eng.
    [86] Li, H., M. Liu, J.-P. Ou. Dynamic properties and modal response analysis of stay cable attached with SMA damper. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2005.18(1): p. 64-69.
    [87] Li, H., M. Liu, J. Ou. Vibration mitigation of a stay cable with one shape memory alloy damper. Structural Control and Health Monitoring, 2004.11(1): p. 21-36.
    [88] Johnson, E.A., R.E. Christenson, B.F. Spencer. Semiactive damping of cables with sag. Computer-Aided Civil and Infrastructure Engineering, 2003.18(2): p. 132-146.
    [89] Johnson, E.A., G.A. Baker, B.F. Spencer Jr, et al. Semiactive damping of stay cables. Journal of Engineering Mechanics, 2007. 133(1): p. 1-11.
    [90] Christenson, R.E., Spencer B.F, Jr., E.A. Johnson. Experimental verification of semiactive damping of stay cables. 2001. Arlington, VA: Institute of Electrical and Electronics Engineers Inc.
    [91] Yoneda, M., K.-i. Maeda. Study on practical estimation method for structural damping of stay cables with dampers. Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, 1989(410 pt 1-12): p. 455-458.
    [92] Xu, Y.L., Z. Yu. Vibration of inclined sag cables with oil dampers in cable-stayed bridges. Journal of Bridge Engineering, 1998.3(4): p. 194-203.
    [93] Xu, Y.L., Z. Yu, J.M. Ko. Forced vibration studies of sagged cables with oil damper using a hybrid method. Engineering Structures, 1998.20(8): p. 692-705.
    [94] Xu, Y.L., Z. Yu. Mitigation of three-dimensional vibration of inclined sag cable using discrete oil dampers-Ⅱ. Application. Journal of Sound and Vibration, 1998. 214(4): p. 675-693.
    [95] Yu, Z., Y.L. Xu. Mitigation of three-dimensional vibration of inclined sag cable using discrete oil dampers-Ⅰ. Formulation. Journal of Sound and Vibration, 1998. 214(4): p. 659-673.
    [96] Mehrabi, A.B., H. Tabatabai. Unified finite difference formulation for free vibration of cables. Journal of Structural Engineering-Asce, 1998. 124(11): p. 1313-1322.
    [97] Krenk, S., J. R. Hogsberg. Damping of Cables by a Transverse Force. Journal of Engineering Mechanics, 2005.131(4): p. 340-348.
    [98] Shi, C., L.M. Sun. Experiment on Stay Cable Vibration Mitigation and Analysis of Damper Support Stiffness. in Proc. of 3rd China-Japan-US Symposium on Vibration, Control and Health Monitoring Structures. 2004. Dalian.
    [99] 刘万峰,刘健新,胡兆同.斜拉桥拉索粘性剪切型阻尼器的试验研究.西安公路交通大学学报,2000.20(3):p.41-44.
    [100] 王修勇,陈政清,倪一清.斜拉桥拉索风雨振观测及其控制.土木工程学报,2003.36(6):p.53-59.
    [101] Ko, J.M., G. Zheng, Z.Q. Chen, et al. Field vibration tests of bridge stay cables incorporated with magneto-rheological(MR) dampers. 2002. San Diego, CA, United States: The International Society for Optical Engineering.
    [102] Wang, X.Y., Y.Q. Ni, J.M. Ko, et al. Optimal design of viscous dampers for multi-mode vibration control of bridge cables. Engineering Structures, 2005.27(5): p. 792-800.
    [103] Ni, Y.Q., Y.F. Duan, Z.Q. Chen, et al. Damping identification of MR-damped bridge cables from in-situ monitoring under wind-rain-excited conditions. 2002. San Diego, CA, USA: SPIE-Int. Soc. Opt. Eng.
    [104] Chen, Z.Q., X.Y. Wang, J.M. Ko, et al. MR Damping System on Dongting Lake Cable-Stayed Bridge. 2003. San Diego, CA, United States: The International Society for Optical Engineering.
    [105] Sun, B.N., S.S. Chen, W.J. Lou. Maximum modal damping of cable space vibration control with viscous damper in cable-stayed bridge. 2003. San Diego, CA, United States: The International Society for Optical Engineering.
    [106] 周海俊.斜拉索振动控制理论与试验研究.博士学位论文,上海,同济大学,2005.
    [107] 苏通长江公路大桥实索减振试验研究(研究专题之十七).同济大学土木工程防灾国家重点实验室,2004.
    [108] Sun, L.M., C. Shi, H.J. Zhou. A full-scale experiment on vibration mitigation of stay cable. in IABSE Symposium Shanghai 2004. 2004. Shanghai: China Communications Press.
    [109] Virlogeux, M. Recent evolution of cable-stayed bridges. Engineering Structures, 1999. 21(8): p. 737-755.
    [110] 斜拉索抗风振、雨振措施研究报告.南京长江第二大桥建设指挥部,同济大学,2000.
    [111] Ehsan, F., R.H. Scanlan. Damping stay cables with ties. in 5th US-Japan Bridge Workshop. 1990.
    [112] Yamaguchi, H., L. Jayawardena. Analytical Estimation of Structural Damping in Cable Structures. Journal of Wind Engineering and Industrial Aerodynamics, 1992. 43(1-3): p. 1961-1972.
    [113] Yamaguchi, H., H.D. Nagahawatta. Damping Effects of Cable Cross Ties in Cable-Stayed Bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1995.54: p. 35-43.
    [114] Yamaguchi, H., R. Adhikari. Energy-Based Evaluation of Modal Damping in Structural Cables with and without Damping Treatment. Journal of Sound and Vibration, 1995.181(1): p. 71-83.
    [115] Yamaguchi, H., R. Adhikari. Loss Factors of Damping Treated Structural Cables. Journal of Sound and Vibration, 1994. 176(4): p. 487-495.
    [116] Caracoglia, L., N.P. Jones. In-plane dynamic behavior of cable networks. Part 1: formulation and basic solutions. Journal of Sound and Vibration, 2005. 279(3-5): p. 969-991.
    [117] Caracoglia, L., N.P. Jones. In-plane dynamic behavior of cable networks. Part 2: prototype prediction and validation. Journal of Sound and Vibration, 2005.279(3-5): p. 993-1014.
    [118] Bosch, H.R., S.W. Park. Effectiveness of External Dampers and Crossties in Mitigation of Stay Cable Vibrations. Sixth International Symposium on Cable Dynamics, 2005.
    [119] 魏建东,杨佑发.辅助索制振效果的有限元分析.中国公路学报,2000(4):p.66-69.
    [120] 黄继民.大跨度斜拉桥辅助索减振研究硕士学位论文,上海,同济大学,2001.
    [121] Lin, H.P., S.C. Chang, J.D. Wu. Beam vibrations with an arbitrary number of cracks. Journal of Sound and Vibration, 2002.258(5): p. 987-999.
    [122] Kijewski, T., A. Kareem. Wavelet transforms for system identification in civil engineering. Computer-Aided Civil and Infrastructure Engineering, 2003.18(5): p. 339-355.
    [123] Kareem, A., T. Kijewski. Time-frequency analysis of wind effects on structures. Journal of Wind Engineering and Industrial Aerodynamics, 2002.90(12-15): p. 1435-1452.
    [124] Kijewski, T., A. Kareem. On the presence of end effects and their melioration in wavelet-based analysis. Journal of Sound and Vibration, 2002. 256(5): p. 980-988.
    [125] 苏通长江公路大桥主桥超长斜拉索振动和减振研究(研究专题之十九).同济大学土木工程防灾国家重点实验室,2004.
    [126] Takahashi, K. Approach to investigate the instability of the multiple-degree-of-freedom parametric dynamic systems. 1981.78(4): p. 519-529.
    [127] Pilipchuk, V.N., R.A. Ibrahim. Non-linear modal interactions in shallow suspended cables. Journal of Sound and Vibration, 1999. 227(1): p. 1-28.
    [128] Nielsen, S.R.K., P.H. Kirkgaard. Super and combinatorial harmonic response of flexible elastic cables with small sag. Journal of Sound and Vibration, 2002. 251(1): p. 79-102.
    [129] Arafat, H.N., A.H. Nayfeh. Non-linear responses of suspended cables to primary resonance excitations. Journal of Sound and Vibration, 2003. 266(2): p. 325-354.
    [130] Zhang, Q.L., U. Peil. Dynamic behaviours of cables in parametrically unstable zones. Computers & Structures, 1999.73(1-5): p. 437-443.
    [131] 陈水生.大跨度斜拉桥拉索的振动及被动、半主动控制.博士学位论文,浙江,浙江大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700