用户名: 密码: 验证码:
近断层脉冲型地震作用下LRB基础隔震结构地震响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在常规地震(远场地震或者近断层非脉冲型地震)作用下基础隔震结构具有良好的减震效果,但是近断层地震的明显长周期速度和位移脉冲运动却给基础隔震结构带来了不利影响。目前国内外对基础隔震结构的研究及应用大多是针对常规地震所进行的,对于近断层脉冲型地震对基础隔震结构的影响也有相关的研究,但仍有一些问题缺乏足够的认识。随着基础隔震技术规范化建设的需要,深入研究在近断层脉冲地震作用下基础隔震结构地震响应是十分有必要,这不仅在理论上是对基础隔震理论研究的完善,而且对土木工程结构的地震防护也有着十分重要的现实意义。考虑到铅芯橡胶隔震支座(LRB)是应用最为广泛的基础隔震体系,本文以LRB基础隔震结构为对象,开展了以下几方面的研究工作:
     (1)系统研究了LRB基础隔震结构在近断层脉冲型地震动作用下的动力反应。提出了基于Masing准则的非迭代时程计算方法,与传统Newton-Raphson迭代算法进行了比较,数值结果表明该非迭代算法能够满足土木工程计算的精度要求;给出更为合理的人工合成近断层脉冲型地震的方法;对LRB基础隔震结构在近断层脉冲型地震作用下的动力反应进行了参数研究。
     (2)对LRB基础隔震结构在近断层脉冲型地震作用下可能出现的碰撞响应进行了分析。在对文献中已有不同碰撞分析方法或模型进行综述的基础上,提出了既能够合理反映碰撞物理事实又能够易于确定相关参数的改进Kelvin碰撞分析模型,并对其中相关参数的确定进行了理论推导以及数值验证,同时也对Hertzdamp碰撞分析模型中阻尼常数的表达式进行了修正;通过对使用不同碰撞分析模型所进行的LRB基础隔震结构碰撞响应进行比较,表明改进Kelvin碰撞分析模型的可靠性;运用改进Kelvin碰撞分析模型对LRB基础隔震结构碰撞分析后发现,碰撞响应给基础隔震的有效性带来了极其不利的副作用并显著改变了上部结构的振动特性;对影响LRB基础隔震结构碰撞响应的因素进行了参数研究。
     (3)研究了LRB偏心基础隔震结构在近断层脉冲型地震作用下的动力反应。建立了能够考虑每个LRB隔震支座变形的单层LRB偏心基础隔震结构的计算分析模型和运动方程;提出了人工合成双向近断层脉冲型地震的方法;对比了在近断层脉冲型地震和常规地震作用下隔震层偏心、上部结构偏心、上部结构转侧频率比以及近断层脉冲型地震脉冲周期等重要参数对LRB偏心基础隔震结构侧移扭转耦联反应的影响。
     (4)研究了LRB偏心基础隔震结构在近断层脉冲型地震作用下的碰撞响应。建立了基于改进Kelvin碰撞分析模型的多层LRB偏心基础隔震结构碰撞响应的计算分析模型和运动方程;根据所建立的计算分析模型进行非线性时程碰撞分析,对比分析了偏心/对称LRB偏心基础隔震结构的碰撞响应和考虑碰撞/不考虑碰撞两种情况下LRB偏心基础隔震结构的扭转反应;探讨了隔震层偏心、上部结构偏心以及上部结构各层转侧频率比对LRB偏心基础隔震结构碰撞响应中上部结构扭转反应的影响。
Base-isolated structure shows excellent performance in effectively reducing the damage resulted from the common ground motion (i.e., far-field ground motion or near-fault ground motion without prominent pulse); however, behaves poorly under near-fault ground motion with long period velocity or displacement pulse. At present, most of research related to the base-isolated structures is based upon the common ground motion; on the contrary, the investigation into the effect of near-fault pulse-like ground motion upon the base-isolated structures is limited. In order to realize the application standarization of base-isolated technology in civil engineering, it is necessary to comprehensive study the effect of near-fault pulse-like ground motions on the base-isolated structures, which can be regarded as the beneficial complement of the base isolation theory. Lead Rubber Bearings (LRB) is the most widely used base-isolated system; therefore, LRB base-isolated structure is selected as research object in this dissertation and corresponding study includes the following aspects:
     (1) systematically study the dynamic response of LRB base isolated structure under near-fault pulse-like ground motions. Non-iterative computational method for tine-history analysis of nonlinear structures is proposed based upon the well-known Masing criteria, after comparison with traditional Newton-Raphson iterative algorithm, it is indicated that the non-iterative computational method based on the Masing criteria can meet the accuracy demand in civil engineering; the more reasonable method to artificially generating near-fault pulse-like ground motions is given; paremetric study on the dynamic the dynamic response of LRB base isolated structure under near-fault pulse-like ground motions is carried out.
     (2) analyzing the possible pounding response of LRB base isolated structure under near-fault pulse-like ground motions. Based upon the evaluation of some commonly used impact analytical models, the modified Kelvin impact analytical model, which can reasonably account for physical nature of pounding phenomena and time facilitate the determination of relevant parameters, is for the first time put forward, theoretical derivation of expressions of relevant parameters and corresponding numerical verification are conducted, at the same time, the corrected expression for damping constant in the Hertzdamp impact analytical model is given; Comparison of pounding response of LRB base-isolated structures obtained by using various impact analytical models is made, which validate the modified Kelvin impact analytical model; After analyzing the pounding response of LRB base-isolated structures with adjacent structures using the modified Kelvin model, it can be observed that occurrence of pounding has adverse effect on the LRB base-isolated structure and significantly changes the vibration modes of superstructure; parametric research on some factors influencing the pounding response of LRB base-isolated structures is made.
     (3) conducting the research on the seismic response of asymmetric LRB base-isolated structrures under near-fault pulse-like ground motions. Analytical model and motion of equation of single-storey asymmetric LRB base-isolated structure, which can incorporate deformation of each LRB, is built; procedures to synthetically simulating bi-directional near-fault pulse-like ground motions is developed; comparative study on the seismic response of asymmetric LRB base-isolated structures under either near fault pulse-like ground motions or common ground motions is carried out; effect of isolation eccentricity, superstructure eccentricity, ratio of torsional-to-lateral frequency of superstructure and pulse period of near-fault pulse-like ground motions on the seismic response of asymmetric LRB base-isolated structures is analyzed.
     (4) investigating the possible pounding response of asymmetric LRB base-isolated structure subject to near-fault pulse-like ground motions. Analytical model and motion of equations of multi-stories asymmetric LRB base-isolated structure in the case of pounding with adjacent structrures is developed. Comparative study of pounding responses between symmetric and asymmetric LRB base-isolated structures is carried out, at the same time, comparison of torsional response of asymmetric LRB base-isolated structures in the case of both pounding and no pounding with adjacent structures, is made; discussion on the effect of isolation eccentricity, superstructure eccentricity, ratio of torsional-to-lateral frequency of indivisual story in the superstructure on the torsional response of superstructure in the case of pounding of asymmetric LRB base-isolated structures with adjacent structures.
引文
[1]Gupta A.,Krawinkler H.Dynamic P-delta effects for flexible inelastic steel structures.Journal of Structural Engineering,2000,126(1):145-154.
    [2]Williamson E.B.Evaluation of damage and P-delta effects for systems under earthquake excitation.Journal of Structural Engineering,2003,129(8):1036-1046.
    [3]江宜城.建筑结构基础隔震扭转反应研究[博士学位论文].Phd.Dessertation.华中科技大学,2000.
    [4]Spencer B.F.,Sain M.K.Controlling buildings:A new frontier in feedback.Shock and Vibration Digest,1998,30(4):267-281.
    [5]Spencer B.F.,Soong T.T.Supplemental energy dissipation:State-of-the-art and state-of-the-practice.Engineering Structures,2002,24(3):243-259.
    [6]Spencer B.F.,Nagarajaiah S.State of the art of structural control.Journal of Structural Engineering,2003,129(7):845-856.
    [7]Fujita T.Seismic isolation of civil buildings in Japan.Progress in Structural Engineering and Materials,1998,1(3):295-300.
    [8]Kelly J.M.Seismic isolation of civil buildings in the USA.Progress in Structural Engineering and Materials,1998,1(3):279-285.
    [9]Robinson W.H.Seismic isolation of civil buildings in New Zealand.Progress in Structural Engineering and Materials,2000,2(3):328-334.
    [10]Zhou F.L.Seismic isolation of civil buildings in People's Republic of China.Progress in Structural Engineering and Materials,2001,3(3):268-276.
    [11]Heaton T.H.,Hall J.F.,Wald D.J.,etc.Response of high-rise and base isolated buildings to a hypothetical M_W> 7.0 blind thrust earthquake.Science,1995,267(5195):206-211.
    [12]Nagarajaiah S.,Sun X.Base-isolated FCC building:Impact response in Northridge earthquake.Journal of Structural Engineering,2001,127(9):1063-1075.
    [13]李爽,谢礼立.近场问题的研究现状与发展方向.地震学报,2007,29(1): 102-111.
    [14]Somerville P.G.,Smith N.F.,Graves R.W.Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity Seismological Research Letters,1997,68(1):199-222.
    [15]Abrahamson N.A.,Somerville P.G.Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake.Bulletin of the Seismological Society of America,1996,86(1B):93.
    [16]Stewart J.P.,Chiou S.J.,Bray J.D.,etc.Ground Motion Evaluation Procedures for Performance-based Design//.Berkeley,California:Pacific Earthquake Engineering Research Center,2001.
    [17]Bray J.D.,Rodriguez-Marek A.Characterization of forward-directivity ground motions in the near-fault region.Soil Dynamics and Earthquake Engineering,2004,24(11):815-828.
    [18]李爽.近场脉冲型地震动对钢筋混凝土框架结构影响.Phd.Dessertation.哈尔滨工业大学,2005.
    [19]李新乐,朱晞.近断层地震动等效速度脉冲研究.地震学报,2004,26(6):634-643.
    [20]邬鑫,朱晞.近场地震动的脉冲效应及简化冲击回归公式的检验.北方交通大学学报,2003,27(1):36-39.
    [21]Somerville P.G.,Graves R.Conditions that give rise to unusually large long period ground motions.Structural Design of Tall Buildings,1993,2(3):211.
    [22]Tong M.,Rzhevsky V.,Dai J.,etc.Near-fault ground motions with prominent acceleration pulses:pulse characteristics and ductility demand.Earthquake Engineering and Engineering Vibration,2007,6(3):215-223.
    [23]Somerville P.G.Characterizing near fault ground motion for the design and evaluation of bridges.3th National Seismic Conference and Workshop on Bridges and Highways,New York:State University of New York at Buffalo.2002.
    [24]Malhotra P.K.Response of buildings to near-field pulse-like ground motions.Earthquake Engineering and Structural Dynamics,1999,28(11):1309-1326.
    [25]Liao W.I.,Loh C.H.,Wan S.Earthquake responses of RC moment frames subjected to near-fault ground motions. Structural Design of Tall Buildings, 2001, 10(3):219-229.
    [26] Anil K. Chopra C. C. Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions. Earthquake Engineering & Structural Dynamics, 2001, 30(12): 1769-1789.
    [27] Wang G. Q., Zhou X. Y., Zhang P. Z., etc. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan Earthquake. Soil Dynamics and Earthquake Engineering, 2002, 22(1): 73-96.
    [28] Wang G. Q., Zhou X. Y., Ma Z. J., etc. A preliminary study on the randomness of response spectra of the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 2001, 91(5): 1358-1369.
    
    [29] Hall J. F., Heaton T. H., Hailing M. W., etc. Near-source ground motion and its effects on flexible buildings. Earthquake Spectra, 1995,11(4): 569.
    
    [30] Tong M., Rzhevsky V., Dai J., etc. Near-fault ground motions with prominent acceleration pulses: Pulse characteristics and ductility demand. Earthquake Engineering and Engineering Vibration, 2007, 6(3): 215-223.
    [31] Iwan W. D. Drift spectrum: measure of demand for earthquake ground motions.Journal of Structural Engineering, 1997,123(4): 397-404.
    [32] Chopra A. K., Chintanapakdee C. Accuracy of response spectrum estimates of structural response to near-field earthquake ground motions: Preliminary results.Proceedings of the ASCE Structures World Conference, Oxford , England : Elsevier Science Ltd.
    
    [33] Bertero V. V., Mahin S. A., Herrera R. A. Aseismic design implications of near-fault San Fernando earthquake records. Earthquake Engineering & Structural Dynamics,1978, 6(1): 31-42.
    
    [34] Anderson J. c, Bertero V. V. Uncertainties in establishing design earthquakes.Journal of Structural Engineering, 1987, 113(8): 1709-1724.
    
    [35] Huang C.-T. Considerations of multimode structural response for near-field earthquakes. Journal of Engineering Mechanics, 2003, 129(4): 458-467.
    [36] Roberts M. W., Lutes L. D. Potential for structural failure in the seismic near field. Journal of Engineering Mechanics,2003,129(8):927-934.
    [37]MacRae G A.,Morrow D.V.,Roeder C.W.Near-fault ground motion effects on simple structures.Journal of Structural Engineering,2001,127(9):996-1004.
    [38]MacRae G A.,Mattheis J.Three-dimensional steel building response to near-fault motions.Journal of Structural Engineering,2000,126(1):117-126.
    [39]Wang G-Q.,Zhou X.-Y.3D finite-difference simulations of strong ground motions in the Yanhuai area,Beijing,China during the 1720 Shacheng earthquake(Ms 7.0)using a stochastic finite-fault model.Soil Dynamics and Earthquake Engineering,2006,26(10):960-982.
    [40]张晓志,胡志军,谢礼立等.近断层基岩强地面运动影响场的显式有限元数值模拟.地震学报,2006,28(6):638-644.
    [41]Tao X.X.,Anderson J.G.Near field strong ground motion simulation.Proc.of ICANCEER,Harbin.2002.
    [42]Irikura K.Semi-empirical estimation of strong ground motions during large earthquakes.Bulletin of the Disaster Prevention Research Institute,Kyoto University,1983,33(297 pt 2):63-104.
    [43]Atkinson G.M.,Silva W.Stochastic modeling of California ground motions.Bulletin of the Seismological Society of America,2000,90(2):255-274.
    [44]Atkinson G.M.,Boore D.M.Ground motion relations for Eastern North America.Bulletin of the Seismological Society of America,1995,85(1):17.
    [45]Wang G X.,Tao X.X.Strong ground motion of the 1994 M6.7 Northridge earthquake simulated stochastic approach.Proc.of IASPEI Assembly,Honei.2001.
    [46]Kamae K.,Irikura K.,Pitarka A.Technique for simulating strong ground motion using hybrid Green's function.Bulletin of the Seismological Society of America,1998,88(2):357-367.
    [47]Suzuki S.,Asano K.Simulation of near source ground motion and its characteristics.Soil Dynamics and Earthquake Engineering,2000,20(1-4):125-136.
    [48]王海云.近场强地震动预测的有限断层震源模型[博士学位论文].中国地震工程局工程力学研究所,2004.
    [49] Scanlan R. H., Sachs K. Earthquake time histories and response spectra. 1974,100(EM4): 635-655.
    [50] Makris N. Rigidity-plasticity-viscosity: Can electrorheological dampers protect base-isolated structures from near-source ground motions? Earthquake Engineering & Structural Dynamics, 1997, 26(5): 571-591.
    [51] Xu Z., Agrawal A. K., He W. L., etc. Performance of passive energy dissipation systems during near-field ground motion type pulses. Engineering Structures, 2007,29(2): 224-236.
    
    [52] Dicleli M, Buddaram S. Equivalent linear analysis of seismic-isolated bridges subjected to near-fault ground motions with forward rupture directivity effect.Engineering Structures, 2007,29(1): 21-32.
    
    [53] Jalali R. S., Trifunac M. D. A note on strength-reduction factors for design of structures near earthquake faults. Soil Dynamics and Earthquake Engineering, 2008,28(3): 212-222.
    
    [54] G P. Mavroeidis G. D. A. S. P. Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems. Earthquake Engineering & Structural Dynamics, 2004, 33(9): 1023-1049.
    [55] Alavi B., Krawinkler H. Behavior of moment-resisting frame structures subjected to near-fault ground motions. Earthquake Engineering and Structural Dynamics, 2004,33(6): 687-706.
    
    [56] Mavroeidis G. P., Papageorgiou A. S. A mathematical representation of near-fault ground motions. Bulletin of the Seismological Society of America, 2003, 93(3):1099-1131.
    
    [57] Tian Y. J., Yang Q. S., Lu M. Q. Simulation method of near-fault pulse-type ground motion. Acta Seismologica Sinica(English Edition), 2007, 20(1): 80-87.
    
    [58] Shen J., Tsai M. H., Chang K. C, etc. Performance of a seismically isolated bridge under near-fault earthquake ground motions. Journal of Structural Engineering-Asce,2004, 130(6): 861-868.
    
    [59] Park S. W., Ghasemi H., Shen J., etc. Simulation of the seismic performance of the Bolu Viaduct subjected to near-fault ground motions. Earthquake Engineering and Structural Dynamics,2004,33(13):1249-1270.
    [60]江辉,朱晞.脉冲型地震动模拟与隔震桥墩性能的能量分析.北方交通大学学报,2004,28(4):6-11.
    [61]Abrahamson N.Near-fault ground motions from the 1999 Chi-Chi earthquake//U.S.Japan Workshop on the Effects of Near-Field Earthquake Shaking.California:Pacific Earthquake Engineering Research Center,2000.
    [62]Somerville P.G.Magnitude scaling of the near fault rupture directivity pulse.Physics of the Earth and Planetary Interiors,2003,137(1-4):201-212.
    [63]Alavi B.,Krawinkler H.Design considerations for near-fault ground motions//U.S.Japan Workshop on the Effects of Near-Field Earthquake Shaking.California:Pacific Earthquake Engineering Research Center,2000.
    [64]Somerville P.Development of an improved representation of near fault ground motions.Proc.of the SMIP98 seminar on utilization of strong ground motion data,Sacramento.1998.
    [65]Kelly J.M.Aseismic Base Isolation.Shock and Vibration Digest,1985,17(7):3-14.
    [66]唐家祥,刘再华.建筑基础隔震.武汉:华中理工大学出版社,1993.
    [67]Jangid R.S.,Datta T.K.Seismic behaviour of base-isolated buildings:a state-of-the-art review.Proceedings of the Institution of Civil Engineers,Structures and Buildings,1995,110(2):186-203.
    [68]唐家祥.我国第一个隔震建筑的设计规范.建筑结构,2002,32(1).
    [69]唐家祥.建筑隔震与消能减震设计.建筑科学,2002,18(1):21-28.
    [70]李黎,唐家祥.工程结构的基础隔震与隔震系统.钢结构,1993,8(1):11-15.
    [71]李黎,熊世树.叠层橡胶隔震支座动力特性试验研究.华中理工大学学报,1998,26(2):74-76.
    [72]李黎,李健,唐家祥.用隔震技术提高已有建筑的抗震能力.华中科技大学学报(城市科学版),2002,19(3):68-72.
    [73]周锡元,韩淼,曾德民等.橡胶支座与R/C柱串联隔震系统水平刚度系数.振动工程学报,1999,12(2):157-165.
    [74]周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制.建筑结构学报, 2002,23(2):2-12.
    [75]苏经宇,韩淼,周锡元等.橡胶支座基础隔震建筑地震作用实用计算方法.振动工程学报,1999,12(2):229-236.
    [76]周福霖,Stiemer S.F.,Cherry S.隔震消能体系结构地震反应的定量控制.地震工程与工程振动,1993,13(1):30-39.
    [77]周福霖,谭平,冼巧玲等.房屋隔震体系的研究与应用.建筑科学与工程学报,2006,23(2):1-8.
    [78]Simo J.C.,Kelly J.M.Analysis of Multi-layer Elastomeric Beatings.Journal of Applied Mechanics,Transactions ASME,1984,51(2):256-262.
    [79]Tyler R.G.,Robinson W.H.High-strain Tests on Lead-Rubber Bearings for Earthquake Loadings.Bulletin of the New Zealand National Society for Earthquake Engineering,1984,17(2):90-105.
    [80]B.Westermo F.U.Periodic response of a sliding oscillator system to harmonic excitation.Earthquake Engineering & Structural Dynamics,1983,11(1):135-146.
    [81]N.Mostaghel M.K.Dynamics of resilient-friction base isolator(R-FBI).Earthquake Engineering & Structural Dynamics,1987,15(3):379-390.
    [82]Zayas V.A.,Low S.S.,Mahin S.A.A Simple Pendulum Technique for Achieving Seismic Isolation.Earthquake Spectra,1990,6(2):317-333.
    [83]Gueraud R.,Noel-Leroux J.P.,Livolant M.,etc.Seismic isolation using sliding-elastomer bearing pads.Nuclear Engineering and Design,1983,84(3):363-377.
    [84]Kelly J.M.Earthquake-resistant Design with Rubber(2nd edn).London:Springer,1997.
    [85]朱宏平,唐家祥.叠层橡胶隔震支座的振动传递特性.工程力学,1995,12(4):109-114.
    [86]樊剑,唐家祥.滑移隔震结构的动力特性及地震反应.土木工程学报,2000,33(4):11-16.
    [87]李宏男,吴香香.橡胶垫隔震支座结构高宽比限值研究.建筑结构学报,2003,24(2):14-19.
    [88]李宏男,王苏岩,贾俊辉.采用基础摩擦隔震房屋高宽比限值的研究.地震工程与工程振动,1997,17(3):73-76.
    [89]Lee D.M.Base isolation for torsion reduction in asymmetric structures under earthquake loading.Earthquake Engineering and Structural Dynamics,1980,8(4):349-359.
    [90]Nagarajaiah S.,Reinhorn A.M.,Constantinou M.C.Torsion in base-isolated structures with elastomeric isolation systems.Journal of Structural Engineering,1993,119(10):2932-2951.
    [91]Nagarajaiah S.,Reinhorn A.M.,Constantinou M.C.Torsional coupling in sliding base-isolated structures.Journal of Structural Engineering,1993,119(1):130-149.
    [92]Jangid R.S.,Datta T.K.Nonlinear response to torsionally coupled base isolated structure.Journal of Structural Engineering,1994,120(1):1-22.
    [93]Jangid R.S.,Datta T.K.Seismic response of torsionally coupled structure with elasto-plastic base isolation.Engineering Structures,1994,16(4):256-262.
    [94]Ryan K.L.,Chopra A.K.Approximate analysis methods for asymmetric plan base-isolated buildings.Earthquake Engineering and Structural Dynamics,2002,31(1):33-54.
    [95]Ryan K.L.,Chopra A.K.Estimation of seismic demands on isolators based on nonlinear analysis.Journal of Structural Engineering,2004,130(3):392-402.
    [96]Ryan K.L.,Chopra A.K.Estimation of seismic demands on isolators in asymmetric buildings using non-linear analysis.Earthquake Engineering and Structural Dynamics,2004,33(3):395-418.
    [97]Ryan K.L.,Kelly J.M.,Chopra A.K.Nonlinear model for lead-rubber bearings including axial-load effects.Journal of Engineering Mechanics,2005,131(12):1270-1278.
    [98]Ryan K.L.,Kelly J.M.,Chopra A.K.Formulation and implementation of a lead-rubber bearing model including material and geometric nonlinearities St.Louis,M0,United States,American Society of Civil Engineers,Reston,VA 20191-4400,United States.
    [99]Ryan K.L.,Chopra A.K.Estimating seismic demands for isolation bearings with building overturning effects.Journal of Structural Engineering,2006,132(7):1118-1128.
    [100]Ryan K.L.,Chopra A.K.Estimating bearing response in symmetric and asymmetric-plan isolated buildings with rocking and torsion.Earthquake Engineering and Structural Dynamics,2006,35(8):1009-1036.
    [101]Tena-Colunga A.,Gomez-Soberon L.Torsional response of base-isolated structures due to asymmetries in the superstructure.Engineering Structures,2002,24(12):1587-1599.
    [102]Tena-Colunga A.,Zambrana-Rojas C.Dynamic torsional amplifications of base-isolated structures with an eccentric isolation system.Engineering Structures,2006,28(1):72-83.
    [103]Tena-Colunga A.,Escamilla-Cruz J.L.Torsional amplifications in asymmetric base-isolated structures.Engineering Structures,2007,29(2):237-247.
    [104]吴香香,李宏男.结构偏心对基础隔震结构地震反应的影响.地震工程与工程振动,2003,23(1):145-151.
    [105]Li H.-N.,Li Y.,Wu X.-X.Simplified calculation approach of torsionally coupled seismic response for base-isolated eccentric structures.Advances in Structural Engineering,2007,10(3):245-257.
    [106]李大望,李桂青.FPS隔震结构的水平和竖向振动响应分析.建筑结构,2000,30(7):61-64.
    [107]熊世树,陈金凤,梁波等.三维基础隔震结构多维地震反应的非线性分析.华中科技大学学报(自然科学版),2003,32(12):81-84.
    [108]施卫星,李正升,汪大馁.基础隔震位移反应谱及其应用.同济大学学报,2000,28(1):29-32.
    [109]李中锡,周锡元.规则型隔震房屋的自振特性和地震反应分析方法.地震工程与工程振动,2002,22(2):33-41.
    [110]付伟庆,刘文光,王建等.高层隔震结构的等效简化模型研究.地震工程与工程振动,2005,25(6):141-145.
    [111]付伟庆,王焕定,丁琳等.规则型高层隔震结构实用设计方法研究.哈尔滨工业大学学报,2007,39(10):1541-1545.
    [112]祁皑,林于东.改进的基础隔震结构地震作用简化计算方法.地震工程与工程振动,2006,26(1):152-157.
    [113]Sinha S.C.,Li G.Optimal Design of Base-Isolated Structures with Dynamic Absorbers.Journal of Engineering Mechanics,1994,120(2):221-231.
    [114]Jangid R.S.Optimum damping in a non-linear base isolation system.Journal of Sound and Vibration,1996,189(4):477-487.
    [115]Jangid R.S.Optimum frictional elements in sliding isolation systems.Computers and Structures,2000,76(5):651-661.
    [116]Park J.-G.,Otsuka H.Optimal yield level of bilinear seismic isolation devices.Earthquake Engineering and Structural Dynamics,1999,28(9):941-955.
    [117]Saito Y.,Tamori S.i.,Musya H.,etc.Optimal design of the base-isolated device by using genetic algorithm - a proposal of a method and some examples of its application.International Conference on Computer Aided Optimum Design of Structures,OPTI,Proceedings,1999,5:225-234.
    [118]Saito Y.,Funahashi M.,Tamori S.An optimal arrangement method for base-isolated devices using a genetic algorithm.Madrid,Spain.WIT Press,Southampton,SO407AA,United Kingdom,2000.
    [119]Zou X.K.,Chan C.M.Optimal drift performance design of base isolated buildings subject to earthquake loads.2001,7:369-378.
    [120]Kaplan H.,Seireg A.Optimal design of a base isolated system for a high-rise steel structure.Earthquake Engineering and Structural Dynamics,2001,30(2):287-302.
    [121]李大望,霍达,金焰等.基于动力可靠性分析的滑移隔震体系的优化设计.地震工程与工程振动,1998,18(4):118-130.
    [122]李刚,杨迪雄,程耿东.基于功能的基础隔震结构一体化优化设计.应用力学学报,2004,21(1):13-16.
    [123]Palazzo B.,Petti L.Stochastic response comparison between base isolated and fixed-base structures.Earthquake Spectra,1997,13(1):77-96.
    [124]Basu B.,Gupta V.K.Wavelet-based non-stationary response analysis of a friction base-isolated structure.Earthquake Engineering and Structural Dynamics,2000,29(11):1659-1676.
    [125]Dipaola V.,Marano G.C.,Greco R.Stochastic analysis of sensitivity and efficiency of base isolation system in seismic structural protection Vancouver,BC,Canada,American Society of Mechanical Engineers.
    [126]Jangid R.S.Stochastic response of building frames isolated by lead-rubber bearings.Structural Control and Health Monitoring,DOI:10.1002/stc.266
    [127]Jangid R.S.,Datta T.K.Seismic reliability of base- isolated building frames.Porceedings of 11th World Coneference on Earthqukae Engineering,Acapulco,.Mexico.1996.
    [128]Harry W.Shenton Iii E.S.H.Effect of stiffness variability on the response of isolated structures.Earthquake Engineering & Structural Dynamics,2000,29(1):19-36.
    [129]Chen J.,Liu W.,Peng Y.,etc.Stochastic seismic response and reliability analysis of base-isolated structures.Journal of Earthquake Engineering,2007,11(6):903-924.
    [130]Constantinou M.C.,Kneifati M.C.Effect of Soil-Structure Interaction on damping and frequencies of base-isolated structures.Charleston,SC,USA.Earthquake Engineering Research Inst,El Cerrito,CA,USA,1986.
    [131]Novak M.,Henderson P.Base-isolated buildings with soil-structure interaction.Earthquake Engineering & Structural Dynamics,1989,18(6):751-765.
    [132]李海岭,葛修润.土-结构相互作用对基础隔震体系的影响.土木工程学报,2001,34(4):83-87.
    [133]Chaudhary M.T.A.,Abe M.,Fujino Y.Identification of soil-structure interaction effect in base-isolated bridges from earthquake records.Soil Dynamics and Earthquake Engineering,2001,21(8):713-725.
    [134]邹立华,赵人达.土-基础相互作用隔震体系地震随机响应分析.计算力学学报2005,22(2):252-256.
    [135]Inaudi J.A.,Kelly J.M.Minimum variance control of based-isolated floors.Journal of Structural Engineering,1993,119(2):438-453.
    [136]Pu J.-P.,Kelly J.M.Active control and seismic isolation.Journal of Engineering Mechanics,1991,117(10):2221-2236.
    [137]Reinhorn A.M.,Nagarajaiah S.,Riley M.A.,etc.Hybrid control of sliding isolated structures Irvine,CA,USA,Publ by ASCE,New York,NY,USA.
    [138]Roberti V.,Jezequel L.Adaptive semiactive isolation of seismic buildings.Smart Materials and Structures,1995,4(1A):32-40.
    [139]Subramaniam R.S.,Reinhorn A.M.,Riley M.A.,etc.Hybrid control of structures using fuzzy logic.Microcomputers in Civil Engineering,1996,11(1):1-17.
    [140]Luo N.,Rodellar J.,Vehi J.,etc.Composite semiactive control of a class of seismically excited structures.Journal of the Franklin Institute,2001,338(2-3):225-240.
    [141]赵斌,吴敏哲,吕西林.基础隔震建筑混合控制的变结构趋近律方法.地震工程与工程振动,1999,19(3):96-101.
    [142]黄斌,唐家祥.基础隔震结构的滑模控制.振动工程学报,1999,12(4):45-49.
    [143]张提波,唐家祥.主动基础隔震结构的随机最优控制.噪声与振动控制,1999,2:2-5.
    [144]李黎,唐家祥.智能型隔震系统和电流变体阻尼器设计.工程抗震,1999,1:30-32.
    [145]瞿伟廉,周强,苏经宇等.多层建筑结构水平剪扭-竖向地震反应的智能复合隔震控制.地震工程与工程振动,2003,23(5):187-195.
    [146]Jangid R.S.,Kelly J.M.Base isolation for near-fault motions.Earthquake Engineering and Structural Dynamics,2001,30(5):691-707.
    [147]Bhasker Rao P.,Jangid R.S.Performance of sliding systems under near-fault motions.Nuclear Engineering and Design,2001,203(2-3):259-272.
    [148]Jangid R.S.Optimum lead-rubber isolation beatings for near-fault motions.Engineering Structures,2007,29(10):2503-2513.
    [149]Providakis C.P.Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations.Engineering Structures,2008,30(5):1187-1198.
    [150]Kelly J.M.Role of damping in seismic isolation.Earthquake Engineering &Structural Dynamics,1999,28(1):3-20.
    [151]Makris N.,Chang S.-P.Effect of viscous,viscoplastic and friction damping on the response of seismic isolated structures.Earthquake Engineering and Structural Dynamics,2000,29(1):85-107.
    [152]Sahasrabudhe S.,Nagarajaiah S.Experimental study of sliding base-isolated buildings with magnetorheological dampers in near-fault earthquakes.Journal of Structural Engineering,2005,131(7):1025-1034.
    [153]Yang J.N.,Agrawal A.K.Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes.Engineering Structures,2002,24(3):271-280.
    [154]Satish Nagarajaiah S.N.E.J.Structural control benchmark problem:Phase ⅡNonlinear smart base-isolated building subjected to near-fault earthquakes.Earthquake Engineering & Structural Dynamics,2008,15(5):653-656.
    [155]Satish N.Structural control benchmark problem:smart base isolated building subjected to near fault earthquakes.Earthquake Engineering & Structural Dynamics,2006,13(2-3):571-572.
    [156]Vulcano A.Comparative study of the earthquake and wind dynamic responses of base-isolated buildings.Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76:751-764.
    [157]Kareem A.Modelling of base-isolated buildings with passive dampers under winds.Journal of Wind Engineering and Industrial Aerodynamics,1997,72(1-3):323-333.
    [158]梁波,俞永敏,唐家祥.风对隔震建筑物居住舒适度的影响.振动工程学报,2001,14(4):455-458.
    [159]李黎,樊爱武,胡亮等.滑移隔震结构的抗风稳定性分析.世界地震工程,2007,23(4):148-152.
    [160]Gottlieb S.,Shu C.W.,Tadmor E.Strong stability-preserving high-order time discretization methods.SIAM Review,2001,43(1):89-112.
    [161]王建平,邹银生.结构非线性恢复力分析中的恢复力拐点的非迭代处理方法.全国第三届地震工程会议论文集(Ⅲ)大连,中国地震学会地震工程专业委员会.
    [162]肖明葵 刘.,白绍良.滞回恢复力模型中求折点的一种方法.重庆大学学报(自然科学版),2001,25(1):13-16.
    [163]黄海生,王柏生.基础隔震建筑非线性动力响应的时程计算方法.振动与冲击, 2005,24(3):50-52.
    [164]韩爱红 张.,邓子辰等.基础隔震结构地震响应时程分析新方法.振动与冲击,2007,26(7):145-148.
    [165]Masing G.Eigenspannungen und Verfestigung beim Messing.Proceedings of the 2nd International Congress on Applied Mechanics Z(u|¨)rich.
    [166]裴星洙,张立,任正权.高层建筑结构地震响应的时程分析方法.北京:中国水利电力出版社,2006.
    [167]Erdik M.,Durukal E.A hybrid procedure for the assessment of design basis earthquake ground motions for near-fault conditions.Soil Dynamics and Earthquake Engineering,2001,21(5):431-443.
    [168]Mavroeidis G.P.,Dong G.,Papageorgiou A.S.Near-fault ground motions,and the response of elastic and inelastic single-degree-of-freedom(SDOF) systems.Earthquake Engineering and Structural Dynamics,2004,33(9):1023-1049.
    [169]Menun C.,Q.F.An analytical model for near-fault ground motions and the response of SDOF systems.Seventh US national conference on earthquake engineering Oakland,California.
    [170]Somerville P.G.Development of an improved representation of near-fault ground motions.Proceeding of the SMIP98 seminar on utilization of strong ground motion data Oakland,California.
    [171]樊剑,唐家祥.带限位装置的摩擦隔展结构动力特性及地震反应分析.建筑结构学报,2001,21(1):20-25.
    [172]Anagnostopoulos S.A.,Spiliopoulos K.V.Investigation of earthquake induced pounding between adjacent buildings.Earthquake Engineering & Structural Dynamics,1992,21(4):289-302.
    [173]Davis R.O.Pounding of buildings modelled by an impact oscillator.Earthquake Engineering & Structural Dynamics,1992,21(3):253-274.
    [174]Papadrakakis M.,Mouzakis H.P.,Alevridis A.S.Three dimensional non-linear analysis of building pounding during earthquakes.Proceedings of the 1996 1st International Conference on Earthquake Resistant Engineering Structures,ERES 96,Oct 30-Nov 1 1996 Thessaloniki,Greece,Computational Mechanics Publ, Southampton, Engl.
    
    [175] Kasai K., Maison B. F. Building pounding damage during the 1989 Loma Prieta earthquake. Engineering Structures, 1997,19(3): 195-207.
    [176] Penzien J. Evaluation of building separation distance required to prevent pounding during strong earthquakes. Earthquake Engineering & Structural Dynamics, 1997,26(8): 849-858.
    [177] Pantelides C. P., Ma X. Linear and nonlinear pounding of structural systems.Computers and Structures, 1998, 66(1): 79-92.
    [178] Lopez Garcia D. Separation between adjacent nonlinear structures for prevention of seismic pounding. Proceeding of the 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada, 2004.
    
    [179] Bhaskararao A. V., Jangid R. S. Harmonic response of adjacent structures connected with a friction damper. Journal of Sound and Vibration, 2006, 292(3-5): 710-725.
    
    [180] Xu Y. L., He Q., Ko J. M. Dynamic response of damper-connected adjacent buildings under earthquake excitation. Engineering Structures, 1999, 21(2): 135-148.
    
    [181] Malhotra P. K. Dynamics of seismic impacts in base-isolated buildings. Earthquake Engineering & Structural Dynamics, 1997,26(8): 797-813.
    
    [182] Tsai H.-C. Dynamic analysis of base-isolated shear beams bumping against stops.Earthquake Engineering & Structural Dynamics, 1997, 26(5): 515-528.
    
    [183] Matsagar V. A., Jangid R. S. Seismic response of base-isolated structures during impact with adjacent structures. Engineering Structures, 2003,25(10): 1311-1323.
    
    [184] Komodromos P., Polycarpou P. C, Papaloizou L., etc. Response of seismically isolated buildings considering poundings. Earthquake Engineering and Structural Dynamics, 2007, 36(12): 1605-1622.
    
    [185] Goldsmith W. Impactthe Theory and Physical Behaviour of Colliding Solids[M].London, England: Edward Arnold, 1960.
    [186] Anagnostopoulos S. A. Pounding of building in series during earthquakes. Earthquake Engineering & Structural Dynamics, 1988, 16(3): 443-456.
    [187] Jankowski R. Non-linear viscoelastic modelling of earthquake-induced structural pounding.Earthquake Engineering and Structural Dynamics,2005,34(6):595-611.
    [188]Muthukumar S.,DesRoches R.A Hertz contact model with non-linear damping for pounding simulation.Earthquake Engineering and Structural Dynamics,2006,35(7):811-828.
    [189]Anagnostopoulos S.A.Equivalent viscous damping for modeling inelastic impacts in earthquake pounding problems.Earthquake Engineering and Structural Dynamics,2004,33(8):897-902.
    [190]Jankowski R.Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear viscoelastic model of structural pounding.Earthquake Engineering and Structural Dynamics,2006,35(4):517-524.
    [191]Lankarani H.M.,Nikravesh P.E.Contact force model with hysteresis damping for impact analysis of multibody systems.Journal of Mechanisms,Transmissions,and Automation in Design,1990,112(3):369-376.
    [192]Malhotra P.K.Dynamics of seismic pounding at expansion joints of concrete bridges.Journal of Engineering Mechanics,1998,124(7):794-802.
    [193]Shrimali M.K.,Jangid R.S.Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation.Nuclear Engineering and Design,2002,217(1-2):1-20.
    [194]Gong L.,Hao H.Analysis of coupled lateral-torsional-pounding responses of one-storey asymmetric adjacent structures subjected to bi-directional ground motions part Ⅰ:Uniform ground motion input.Advances in Structural Engineering,2005,8(5):463-478.
    [195]Hao H.,Gong L.Analysis of coupled lateral-torsional-pounding responses of one-storey asymmetric adjacent structures subjected to bi-directional ground motions Part Ⅱ:Spatially varying ground motion input.Advances in Structural Engineering,2005,8(5):481-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700