用户名: 密码: 验证码:
预剪对饱和松砂剪切特性的影响及亚塑性边界面本构模型改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土是最常用的土木工程材料之一,针对其强度与变形特性的研究对实际工程应用具有十分重要的意义。而由于土体所经受的应力历史具有较大的差异并且其后期的受力状态也十分复杂,这些影响因素必然会造成土体微观结构的剧烈变化与各向异性,从而强烈地影响着土材料的强度与变形特性。以波浪荷载为例,波浪荷载具有周期长,荷载作用时间长等特点,而且其作用比较频繁,这使得海工结构及其地基土体在经受较大波浪荷载作用,并导致破坏之前已经受到若干小振幅波浪荷载作用,形成所谓的循环预剪作用。这些前期波浪荷载的循环预剪作用势必将对海床土体产生明显的影响。另外,建筑物地基内各个部位处土单元的应力状态也是各不相同的,沿着某一潜在滑动面,各点的初始主应力方向随其位置而改变。而且,饱和弹性孔隙介质理论分析表明:波浪等循环荷载在土体中所产生的循环应力的主要特点之一是正应力偏差与剪应力所形成的循环偏应力的幅值保持不变,而主应力方向发生了连续旋转,这也将对土的强度与变形特性产生显著的影响。因此,作为建筑物地基稳定性评价中的一个基本而重要问题,探讨砂土的变形与强度特性时必须考虑应力历史的影响以及各向非均等的复杂初始应力状态和复杂的循环应力变化模式。然而,由于土工实验技术的限制,三轴剪切试验及扭转剪切试验等传统的土工试验无法完全实现上述的复杂初始应力条件和复杂加载模式。为此,大连理工大学于2001年起对于自日本诚研舍株式会社引进的“土工静力—动力液压—三轴扭转多功能剪切仪”进行了不断的开发与完善,这套新型土工试验系统可以同时施加和独立地控制轴向压力W、扭矩M_T、外室压力p_o与内室压力p_i及其组合。由此可重现土在不同复杂应力条件下的固结及加载路径。以此为基础,本文针对饱和松砂,进行了大量的考虑静力预剪与循环预剪作用的单调剪切试验与循环剪切试验研究,进而针对不同形式的静力预剪与循环预剪作用对饱和砂土的变形与强度特性进行了比较全面而系统的分析。并在原有亚塑性边界面模型的基础上,根据现有的试验结果建立起相关模型参数与主应力方向角之间的函数关系,在原有亚塑性边界面本构模型的基础上进行改进,使之能够考虑主应力方向角对饱和松砂单调剪切特性影响的。
     为了探讨静力预剪作用对饱和砂土循环剪切特性的影响,分别针对实心圆柱状试样和空心圆柱状试样进行了不同方式静力预剪作用的循环三轴剪切试验。
     对于实心圆柱状试样,分别针对均等固结条件、二向非均等固结条件和K_o固结条件进行了循环三轴剪切试验,并通过试验探讨了固结应力比与固结方式对饱和砂土循环剪切特性的影响。试验研究表明,周围压力对静止侧压力系数K_o的测定有一定的影响,但是随着周围压力的不断增加,其对K_o值的影响也越来越小。固结应力比与固结方式的不同对饱和砂土的循环剪切特性具有较大的影响。均等固结条件下的应变是对称发展的,且振动初期应变发展不明显,将要达到破坏时发展比较明显,而由于固结过程中静力预剪作用的影响,二向非均等固结和K_o固结条件下的应变主要向初始预剪的方向不断累积,加载初期应变发展较快,后期则逐渐趋于稳定。另外,二向非均等固结条件下,在动应力施加的第一周,随着竖向应力的增加,试样产生较大的正孔隙水压力,而K_o固结条件下,在动应力施加的第一周,随着竖向应力的增加,试样的孔隙水压力发展方向却与前者截然相反,产生了较大的负孔隙水压力。分析其原因主要是两种固结方式的不同固结过程造成的。
     对于空心圆柱状试样,分别针对初始固结主应力方向角α_0=0°、30°、45°、60°和90°时进行了循环三轴剪切试验。试验研究表明,不同初始主应力方向角的静力预剪作用对饱和砂土不排水循环三轴剪切条件下的应力—应变发展模式以及各应变分量的发展均具有较为显著的影响。
     为了探讨饱和砂土未发生液化条件下的循环预剪作用对饱和砂土液化强度的影响,分别针对实心圆柱状试样和空心圆柱状试样进行了循环三轴剪切试验和考虑主应力轴连续旋转的轴向—扭转双向耦合剪切试验。试验研究表明,循环预剪作用对孔隙比的影响并不大,在循环三轴试验中,孔隙比的变化幅度不超过0.2%,而在循环耦合试验中,其变化幅度也未超过0.3%。因此,较小的孔隙比变化不足以引起饱和砂土液化强度的较大改变。另外,无论是循环三轴试验还是循环耦合试验,无论是均等固结条件还是非均等固结条件,在未发生液化条件下,循环预剪作用对土体的应变发展特性和孔隙水压力发展模式影响较小,而对饱和砂土二次加载液化强度却有较为显著的提高,尤其当循环预剪应力幅值较大时,砂土液化强度提高的更为显著。分析其原因,主要是由于砂土孔隙的均匀化以及砂土颗粒间咬合作用的增强使饱和砂土形成了更为稳定的结构。
     为了探讨静力预剪作用与循环预剪作用对饱和砂土单调剪切特性的影响,针对实心圆柱状试样进行了循环预剪后固结排水的不排水单调剪切试验与循环预剪后不固结排水的不排水单调剪切试验,针对空心圆柱状试样进行了考虑不同初始固结状态与加载方式的单调剪切试验。试验研究表明,饱和砂土在经受循环预剪作用后,无论是固结排水后再进行单调剪切加载,还是不固结排水,在存在残余孔隙水压力的条件下直接进行单调剪切加载试验,当预剪过程中试样未发生液化破坏时,循环预剪作用对饱和砂土后期的单调剪切特性影响并不显著。发展过程都是在剪切加载的初期饱和砂土发生剪缩,而后发生剪胀,整体上呈现硬化变形的特征,并最终达到稳定状态。而当饱和砂土在循环预剪过程中发生液化破坏时,其对后期的单调剪切加载特性具有十分显著的影响。在剪切过程中,试样均呈现出十分明显的剪胀特性,孔隙水压力以下降为主。
     另外试验结果表明,当饱和砂土试样具有水平沉积面时,初始固结主应力方向与剪切方向的不同组合形成了单调剪切过程中总的主应力方向的不同,从而显著地影响着饱和砂土不排水单调剪切特性。当总的主应力方向不断发生变化时,剪切过程中任意时刻饱和砂土所表现出的单调剪切特性也不相同。
     为了能够考虑初始固结主应力方向与单调剪切方向的各种组合所产生的剪切过程中变化的总主应力方向对饱和砂土单调剪切特性的影响,根据现有的试验结果建立起相关参数与主应力方向角之间的函数关系,并将其重新应用到亚塑性边界面模型之中,进而与部分试验实测所得到的结果进行了对比分析,由此论证了所改进的亚塑性边界面模型的适用性。对比分析表明所改进和推广的本构模型能够合理地反映出不同初始固结主应力方向和单调剪切方向的各种组合条件对饱和砂土应力—应变关系的硬化与软化特征、剪胀与剪缩特征以及有效应力路径等方面的影响,能够较为准确的反映出剪切过程中变化的主应力方向对饱和砂土单调剪切特性的影响。
The soils is one of the commonly used civil engineering materials. It is very important for the engineering application to study on the strength and deformation behaviors of soils. However, the stress history soils suffered is different extremely, and the loading model is also complex, which certainly will make the microstructure of soil change markedly and anisotropic. And the changes and anisotropic of the soil structure will effect the strength and deformation behavior of soil significantly. For example the wave loading, the sea floor has been suffered different degrees wave loading before suffering stronger wave loading, which forms so-called cyclic preloading effect. And the cyclic preloading of the previous wave loading has an important effect on the behaviors of ocean sand. Moreover, the stress states of soil elements located at different parts in the foundation of ocean structures are all different. The orientations of initial stresses of all the points along a potential sliding surface strongly depend on the location of the point. And the cyclic stresses induced by wave loading are characterized by the fact that the amplitude of the cyclic deviatoric stress originated from the deviation of normal stresses and the shear stress keeps unchanged but the orientation of principal stress axe rotate progressively, which has influence on the shear behavior of saturated sand. For this sake, as a basic and important issue in evaluation of the stability of seabed and ocean engineering structures, the stress history, the complex initial anisotropic stress state as well as the complex variation pattern of cyclic stress must be taken into consideration for studies of deformation and strength properties of sands. However, this has been handicapped by the difficulties in soil experimental technology. The conventional geotechnical tests such as triaxial shear test and torsional shear test are not able to reproduce the above-mentioned complex initial stress condition and cyclic loading pattern. Therefore, unceasing efforts have been made by Dalian University of Technology to develop and improve soil static and dynamic universal triaxial and torsional shear apparatus, which was manufactured by Seiken Corp., Inc., Japan. This well-designed system is capable to simultaneously apply and individually control the four components including axial pressure W, torque M_T, outer chamber pressure p_o and inner chamber pressure p_i. Therefore different consolidation and shear loading can be implemented by various combinations of four independent components under different complex stress conditions of soil. It constitutes a well-performed universal test system that makes possible to conduct a great number of experimental tests of saturated sand under various complex stress conditions. Furthermore comprehensive and systematic analyses on the effect of both static and cyclic preloading on the deformation and strength characteristics of saturated sands are carried out. And in the basic of hypoplasticity bounding surface model, the functional relationships between the related parameters and the orientation of principal stress are established according to the test results and then develop the hypoplasticity bounding surface model to be able to consider the effect of orientation of principal stress.
     In order to investigate the effect of static preloading on the cyclic shearing behavior of saturated sand, using the solid cylindrical specimen and the hollow cylinder specimen, a series of cyclic shearing tests are performed under the conditions of static preloading.
     For the solid cylindrical specimens, the tests are performed under both isotropic and two-directional anisotropic consolidation as well as K_0-consolidation conditions. And the effect of the consolidation stress ratio and consolidation style on the cyclic shearing behavior of saturated sand is investigated. It is shown that the confining pressure influence the determination of K_0 in some degree, and with the increasing of confining pressure the effect is more and more little. Moreover, different consolidation stress ratio and consolidation style have significant influence on the cyclic shearing behavior of saturated sand. Under the isotropic consolidation condition, the accumulated residual deformation develops Symmetrically. In the beginning of shearing the deformation is small, and bigger at failure. However, under the two-directional anisotropic and K_0 consolidation conditions, for the sake of static preloading, the deformation is mainly accumulative in the preloading direction, In the beginning of shearing, the deformation develops rapidly, and tends to be stable later. Moreover, for the condition of two-directional anisotropic consolidation the pore water pressure develops rapidly in positive direction with the increasing of axial stress in the first cycle. Contrarily larger negative pore water pressure is generated for the K_0 consolidation conditions in the first cycle, which seems to be relative to the different consolidation style.
     For the hollow cylindrical specimens, the tests are performed under the conditions ofα_0=0°、30°、45°、60°and 90°. It is shown that the static preloading of different orientation of major principal stress has significant influence on the stress-strain development pattern and every components of strain development in the cyclic triaxial shearing tests.
     In order to investigate the effect of cyclic preloading on the liquefaction resistance of saturated sands, using the solid cylindrical specimens and the hollow cylinder specimen, a series of cyclic triaxial shearing tests and vertical-torsional coupling shearing tests considering the continuous rotation in principal stress direction are performed. It is shown that the effect of cyclic preloading on the void ratio is extremely little under the condition that the saturated sand has not liquefied in the process of cyclic preloading. The rate of variation is less than 0.2% in triaxial tests and is less than 0.3% in vertical-torsional coupling tests. Therefore, the decrease of the void ratio induced by the cyclic preloading is so little that it can not have remarkable effect on the liquefaction resistance of saturated sand. Moreover, under the condition that the saturated sand has not liquefied, cyclic preloading has no significant influence on the strain development and pore water pressure development pattern, no matter cyclic triaxial test or cyclic vertical-torsional coupling test and no matter isotropic consolidation or anisotropic consolidation. But the previous cyclic preloading can improve the liquefaction resistance of saturated sand significantly, especially for the higher degree of cyclic preloading. The main reason is the uniformization of sand pores and the enhanced interlocking of the particles in the process of cyclic preloading and the structure of saturated sand is more stable.
     In order to investigate the effect of static and cyclic preloading on the monotonic shearing behavior of saturated sand, using the solid cylindrical specimens and the hollow cylinder specimen, a series of monotonic shearing tests are performed. It is shown that the influence of cyclic preloading on monotonic shearing behavior is not significant under the condition that the saturated sand has not liquefied in the process of cyclic preloading. And the samples are all shearing contraction in the beginning of loading and shearing dilatation later. The characteristic of strain hardening is remarkable in the process of loading. However, when the saturated sand has liquefied in the process of cyclic preloading, the influence of cyclic preloading on the monotonic shearing behavior is significant. In the process of loading, the samples are all shear dilatation, and the pore water pressure mainly deceases.
     Moreover, the test results show that when the saturated sand sample has horizontal sedimentary plane, the different combinations of initial orientation of major principal stress and direction of monotonic shearing make the actual orientation of major principal stress different during the shearing, which affecting the undrained monotonic shearing behavior of sand remarkably. And the monotonic shearing behavior of saturated sand is different when the orientation of major principal stress is different at any time.
     In order to consider the effect of the orientation of major principal stress on the monotonic shearing behavior of saturated sand, the functional relationships between the model parameters and the orientation of principal stress are established according to the test results and then develop the hypoplasticity bounding surface model to be able to consider the effect of orientation of principal stress. Through comparing with the test results, it is shown that the improved hypoplasticity bounding surface model can reflect the influence of the orientation of major principal stress monotonic shearing behavior of saturated sand.
引文
[1]Christian J T,Taylor P K,Yen J KC,et al.Large diameter underwater pipeline for nuclear power plant designed against soil liquefaction[A].Proceedings sixth annual off-shore technology conference[C].Houston,Texas,1974:597-606.
    [2]Dunlap W,Bryant W R,Williams G N,et al.Storm wave effects on deltaic sediments-results of SEAWAB Ⅰ and Ⅱ[A].Port and Ocean Engineering Under Arctic Conditons.[C].Trondheim:Nerwegian Institute of Technology,1979,2:899-920.
    [3]郑维民.中国海洋工程地质研究[J].工程地质学报,1994,2(1):90-96.
    [4]顾小芸.海洋工程地质的回顾与展望[J].工程地质学报,2000,8(1):40-45.
    [5]#12
    [6]李万明,周景星.初始主应力偏转对粉土动力特性的影响[A].第四届全国土动力学学术会议论文集[C].杭州:浙江大学出版社,1994:47-50.
    [7]王洪瑾,马奇国,周景星等.土在复杂应力状态下的动力特性研究[J].水利学报,1996,(4):57-72.
    [8]付磊,王洪瑾,周景星.主应力偏转角对砂砾料动力特性影响的试验研究[J].岩土工程学报,2000,22(4):435-440.
    [9]付磊,王洪瑾,周景星.初始主应力偏转角对土石坝动力计算结果的影响[J].水利学报,1999,(2):76-80.
    [10]Madsen O S.Wave-induced pore pressures and effective stresses in a porous bed[J].Geotechnique,1978,28(4):377-393.
    [11]Ishihara K,Towhata I.Sand response to cyclic rotation of principal stress directions as induced by wave loads[J].Soils and Foundations,1983,23(4):11-26.
    [12]王栋,栾茂田,郭莹.波浪作用下弹性海床的动力反应及其影响因素分析[J].岩石力学与工程学报,2001,20(增刊1):1132-1136.
    [13]Dakoulas P,Sun Y H.Behavior of fine sand under cyclic rotation of principal using the hollow cylinder apparatus[A].Proceeding of 2th Int.Conference on Recent Advance in Geotechnical Earthquake Engineering and Soil Dynamics[C].St.Louis,Missouri,1991:535-542.
    [14]沈瑞福,王洪瑾,周景星.动主应力轴连续旋转下砂土的动强度[J].水利学报,1996,(1):27-33.
    [15]沈瑞福,王洪瑾,周克骥,等.动主应力连续旋转下砂土孔隙水压力发展及海床稳定性判断[J].岩土工程学报,1994,16(3):70-78.
    [16]Ishihara K,Yamazaki A.Analysis of wave-induced liquefaction in seabed deposits of sand[J].Soils and Foundations,1984,24(3):85-100.
    [17]钱寿易,楼志刚,杜金生.海洋波浪作用下土动力特性的研究现状和发展[J].岩土工程学报,1982,4(1):16-23.
    [18]Tatsuoka,.F.Som recant developments in triaxial systems for cohessionless soils.Advanced Triaxial Testing of Soil and Rock,ASTM STP 977(Edited by Robert T D,Ronald C C,Marshall L S),AETM,Philadelphia,1988:7-67.
    [19]薛守义,王思敬.小浪底工程中原状泥化夹层的动三轴试验[J].岩土工程学报,1997,19(2):89-94.
    [20]朱腾明,张万昌,王幼青,等.塔中油田沙漠砂动力特性试验研究[J].岩土工程学报,1998,20(3):97-101.
    [21]Chen Y C,Liao T S.Dynamic properties and state parameter of sand[A].Proceeding of the 9th International Offshore and Polar Engineering Conference[C].Brest,1999,I:529-538.
    [22]Chien L K,Oh Y N.Effects of pre-cyclic loading on strength resistance and liquefaction induce settlement of reclaimed soil[A].Proceeding of the 9th International Offshore and Polar Engineering Conference[C].Brest,1999,I:575-582.
    [23]衡朝阳,何满潮,裘以惠.含粘粒砂土抗液化性能的试验研究[J].工程地质学报,2001,9(4):339-344.
    [24]Uchida K,Stedman J D.Liquefaction behavior of Toyoura sand under cyclic strain controlled triaxial testing[A].Proceeding of the 11th International Offshore and Polar Engineering Conference,Stavanger[C].2001,Ⅱ:530-536.
    [25]Cooling L F,Smith D B.The shearing resistance of soils.[A].Proceeding Institution of Civil Engineering,London[C].1936,3:333-343.
    [26]Ishihara A S,Sherif M A.Soil liquefaction by torsional simple shear device[J].Journal of Geotechnical Engineering Division,ASCE,1974,100(GT8):871-887.
    [27]Ishihara A S,Yasuda S.Sand liquefaction in hollow cylinder torsion under irregular excitation[J].Soils and Foundations,1975,15(1):45-59.
    [28]Lade P V.Torsion shear tests on cohessiless soil[A].Proceeding 5th Pan.Amarican Conference on Soil Mechanic[C].Buenos Aires,1975,1:117-127.
    [29]Hight D W,Gens A and Symes M J.The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J].Geotechnique,1983,33(4):355-384.
    [30]李万明,周克骥,周景星.用扭剪仪研究主应力轴偏转的影响[A].第三届全国土动力学学术会议[C].上海:同济大学出版社,1990:239-242.
    [31]李万明,周景星.扭剪与三轴试验中孔压不均匀性的研究[J].岩土力学,1991,12(4):33-39.
    [32]张国平,王洪谨,周克骥.内外室压力不等的空心圆柱扭剪仪的研制[A].第七届土力学及基础工程学术会议论文集[C].北京:中国建筑工业出版社,1994:65-70.
    [33]王伟胜.拉压与扭剪双向振动三轴仪微机控制系统研究[硕士学位论文][D].陕西机械学院,1993.
    [34]胥洪远.拉压扭剪三轴仪微机控制系统研制[硕士学位论文][D].西安:西安理工大学,1994.
    [35]栾茂田,郭莹,李木国,等.土工静力-动力液压三轴-扭转多功能剪切仪研制中的若干问题探讨[A].土动力学与岩土地震工程[C].北京:中国建筑工业出版社,2002:546-522.
    [36]栾茂田,郭莹,李木国,等.土工静力—动力液压三轴—扭转多功能剪切仪研发及应用[J].大连理工大学学报,2003,43(5):670-675.
    [37]郭莹.复杂应力条件下饱和松砂的不排水动力特性试验研究[博士学位论文][D].大连:大连理工大学,2003.
    [38]刘汉龙,周云龙,余湘娟,等.静动多功能振动、扭剪三轴仪研制[A].刘汉龙,土动力学与岩土地震工程(第六届全国土动力学学术会议论文集)[C].北京:中国建筑工业出版社,2002:540-545.
    [39]陈育民,刘汉龙,周云东.液化及液化后砂土的流动特性分析[J].岩土工程学报,2006,28(9):1139-1143.
    [40]曾长女,刘汉龙,周云东.饱和粉土粉粒含量影响的动孔压发展规律试验研究[J].防灾减灾工程学报,2006,26(2):180-184.
    [41]李作勤.扭转三轴试验综述[J].岩土力学,1994,15(1):80-93.
    [42]齐吉琳,谢定义,石玉成.土结构性的研究方法及现状[J].西北地震学报,2001,23(1):99-103.
    [43]沈珠江.土体结构性的数学模型—21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
    [44]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [45]Barden L,Sides G.Sample disturbance in the investigation of clay structure[J].Geotechnique,1971,21(3):211-222.
    [46]Sridharan A,Altschaeffl A G,Diamond S.Pore size distribution studies[J].Journal of the Soil Mechanics and Foundations Division,1971,97(5):771-787.
    [47]Mcconnachie I.Fabric changes in consolidated kaolin[J].Geotechnique,1974,24(2):207-222.
    [48]Osipov V I,Nikolaeva S K,Sokolov V N.Microstructural changes associated with thixotropic phenomena in clay soils[J].Geotechnique,1984,34(3):293-303.
    [49]张宗祜.我国黄土类土显微结构研究[J],地质学报,1964,44(3):357-364.
    [50]高国瑞.黄土显微结构分类与湿陷性[J].中国科学,1980,10(12):1203-1208.
    [51]高国瑞.中国海相沉积土微结构研究和工程性质[J].中国科学(B),1984,14(9):849-860.
    [52]Tovey N K.A digital computer technique for orientation analysis of micrographs of soil fabric[J].Journal of Microscopy,1990,120:303-315.
    [53]Perfect E,Kay B D.Fractal theory applied to soil aggregation[J].Soil Science Society of America Journal,1991,55(6):1552-1558.
    [54]Moore C A,Krepfl M.Using fractals to model soil fabric[J].Geotechnique,1991,41(1):123-134.
    [55]Moore C A,Donaldson C F.Quantifying soil microsturcture using fractals[J].Geotechnique,1995:105-116.
    [56]吴义祥.工程粘性土微观结构的定量评价[J].中国地质科学院院报,1991,23:143-150.
    [57]刘松玉,方磊.试论粘土粒度分布的分形结构[J].工程勘察,1992,2:1-4.
    [58]胡瑞林,李向全,官国琳,等.粘性土微结构定量模型及其工程性质特征研究[M].地质出版社,1995.
    [59]陈正汉,卢再华,蒲毅彬.非饱和土三轴仪的CT机配套及其应用[J].岩土工程学报,2001,23(4):387-392.
    [60]谢定义,齐吉琳.土结构性及其定量化研究的新途径[J].岩土工程学报,1999,21(6):651-656.
    [61]谢定义,齐吉琳,朱元林.土的结构性参数及其与变形强度的关系[J].水利学报,1999,(10):1-6.
    [62]谢定义,齐吉琳,张振中.考虑土结构性的本构关系[J].土木工程学报,2000,33(4):35-40.
    [63]王国欣,黄宏伟,肖树芳.软土微结构特征的试验研究[J].水利学报,2005,36(2):190-196.
    [64]李俊连,姚仰平.结构性黄土临界状态力学性状[J].岩土力学,2008,29(1):63-68.
    [65]Oda M.The mechanics and their relations to mechanical properties of granular materials[J].Soils and Foundations,1972,12(2):1-18.
    [66]Oda M.Deformation mechanism of sand in triaxial compression tests[J].Soils and Foundations,1972,12(4):45-63.
    [67]Arthur J R F,Menzies B K.Inherent anisotropy in a sand[J].Geotechnique,1972,22(1):115-128.
    [68]龙岡文夫,朴春植.砂の变形.强度特性の異方性[J].土と基础,1993,41(7):79-87.
    [69]Yamada K,Ishihara K.Anistropic deformation characteristics of sand under three-dimensional stress conditions[J].Soils and Foundations,1979,19(2):119-123.
    [70]Miura S,Toki D.A simple preparation method and its effect on static and cyclic deformation-strength properties of sand[J].Soils and Foundations,1982,22(1):51-77.
    [71]Miura S,Toki D.Anisotropy in mechanical properties and its simulation of sand samples from natural deposits[J].Soils and Foundations,1984,24(3):69-84.
    [72]Haruyama M,Kitamura R.Anisotropic deformation-strength properties of soft sedimentary rock 'Shirasu' originated from pyroclastic flows[J].Soils and Foundations,JSSMFE,1984,24(7):84-94.
    [73]王洪谨,张国平,周克骥.固有和诱发各向异性对击实粘性土强度和变形特性的影响[J].岩土工程学报,1996,18(3):1-10.
    [74]张坤勇,殷宗泽,朱俊高.各向异性对土质心墙坝水力劈裂的影响[J].岩土力学,2005,26(2):243-246.
    [75]张坤勇,殷宗泽,梅国雄.土体各向异性研究进展[J].岩土力学,2004,25(9):1503-1509.
    [76]张坤勇,殷宗泽,徐志伟.土体各向异性的再认识[J].岩土工程技术,2004,18(1):1-4.
    [77]魏星,黄茂松.黏土的各向异性边界面模型[J].水利学报,2006,37(7):831-837.
    [78]明海燕,李相崧,Dafalias Y F.砂土内在各向异性的本构模型[J].深圳大学学报理工版,2007,24(4):331-338.
    [79]Yamamoto T,Koning H L,Spellmeigher H.On the response of a poro-elastic bed to water waves[J].Journal of Fluid Mechanics,1978,78:193-206.
    [80]Towhata I,Ishihara K.Undrained strength of sand undergoing cyclic rotation of principal stress axes[J].Soils and Foundations,JSSMFE,1985,25(2):137-147.
    [81]Towhata I,Ishihara K.Shear work and pore water pressure in undrained shear[J].Soils and Foundations,JSSMFE,1985,25(3):73-84.
    [82]王平安,于澍.主应力轴旋转下饱和砂土振动孔隙水压力发展和变化的研究[J].西安建筑科技大学学报,1996,28(4):433-437.
    [83]姚仰平.真三轴应力条件下砂土的非线性动力本构关系的新研究[博士学位论文][D].西安:西安理工大学,1995.
    [84]沈扬.考虑主应力方向变化的原状软粘土试验研究[博士学位论文][D].浙江:浙江大学,2007.
    [85]Yoshimine M,Ishihara K,Vargas W.Effects of principal stress direction and intermediate principal stress on unrained shear behavior of sand[J].Soils and Foundations,1998,38(3):179-188.
    [86]马梅英.初始固结剪应力对饱和砂土动强度的影响[A].全国土工建筑物及地基抗震学术讨论会论文汇编[C].西安,1986.
    [87]王星华,周海林.固结比对饱和砂土液化的影响研究[J].中国铁道科学,2001,22(6):122-127.
    [88]郭莹,栾茂田,许成顺,等.主应力方向变化对松砂不排水动强度特性的影响[J].岩土工程学报,2003,25(6):666-670.
    [89]郭莹,栾茂田,何杨,等.复杂应力条件下饱和松砂孔隙水压力增长特性的试验研究[J].地震工程与工程振动,2004,24(3):139-144.
    [90]郭莹,何杨,栾茂田,等.初始主应力方向对饱和松砂孔压特性影响的试验研究[A].第九届土力学及岩土工程学术会议[C].北京:清华大学出版社,2003:1065-1068.
    [91]姚仰平,谢定义.砂土的形变能破坏准则[J].西安理工大学学报,1994,10(1):42-46.
    [92]许成顺.复杂应力条件下饱和砂土剪切特性及本构模型的试验研究[博士学位论文][D].大连:大连:大连理工大学,2006.
    [93]栾茂田,许成顺,郭莹,等.静力与动力组合应力条件下饱和松砂变形特性的试验研究[J].土木工程学报,2005,38(3):83-89.
    [94]Maotian Luan,Chengshun Xu,Yang He,et al.Experimental study on behavior of saturated loose sands under complex shear loading[A].The Fifteenth(2005) International Offshore and Polar Engineering Conference[C].Seoul,Korea,2005:491-497.
    [95]栾茂田,许成顺,何杨,等.复杂应力条件下饱和松砂单调与循环剪切特性的比较研究[J].地震工程与工程振动,2006,26(1):181-187.
    [96]栾茂田,许成顺,何杨,等.主应力方向对饱和松砂不排水单调剪切特性影响的试验研究[J].岩土工程学报,2006,28(9):1085-1089.
    [97]何杨.复杂应力条件下饱和砂土孔隙水压力及体变特性试验研究[博士学位论文][D].大连:大连理工大学,2007.
    [98]冷艺.复杂应力条件下饱和砂土单调剪切特性与循环体变规律的试验研究[博士学位论文][D].大连:大连理工大学,2008.
    [99]李建国.波浪荷载作用下饱和钙质砂动力特性的试验研究[博士学位论文][D].武汉:中国科学院武汉岩土力学研究所,2005.
    [100]李建国,汪稔,虞海珍,何杨,许成顺.初始主应力方向对钙质砂动力特性影响的试验研究[J].岩土力学,2005,26(5):723-727.
    [101]杨春林,周健.初始剪应力下砂土的动力特性预测模型[J].大坝观测与土工测试,1997,21(6):25-26.
    [102]曾国熙,龚晓南,盛进源.正常固结粘土K_0固结剪切试验研究[J].浙江大学学报,1987,2(21):1-9.
    [103]Bishop,A.W.and Henkel,D.J.The measurement of soil properties in triaxial tes[M].London:Edward Arnold,1962.
    [104]Beere,T.and Bjerrum,L.Shear strength of normally consolidated clays[A].Proceeding 8th International Conference on Soil Mechanics and Foundation Engineering[C].Moscow,1973,1:39-49.
    [105]Okochi,Y,Tatsuoka,F.some factors affecting K_0-values of sand measured in triaxial cell[J].Soils and foundations,1983,24(3):52-68.
    [106]姜朴,方涤华,宋永祥,等.K_0固结三轴仪的研制与试验研究[J].岩土工程学报,1991,13(3):43-52.
    [107]袁聚云,王新波,董建国,等.K_0固结条件对上海粘性土强度和变形的影响[J].大坝观测与土工测试,1999,23(4):29-32.
    [108]Finn D W L,Bransby P L,Pichering D J.Effect of strain history on liquefaction of sand[J].Journal of the soil mechanics and foundations division,1970,96(6):1917-1933.
    [109]Ishihara K,Okada S.Effect of stress history on cyclic behavior of sand[J].Soil and Foundations,1978,18(4):31-45.
    [110]Suzaki T,Toki S.Effects of preshearing on liquefaction characteristics of saturated sand subjected to cyclic loading[J].Soils and Foundations,1984,24(2):16-28.
    [111]Emery J J,Finn D W L,Lee K W.Uniformity of saturated sand specimen[M].Evaluation of relative density and its role in geotechnical projects involving cohesionless soils,1973.
    [112]Oda M,Kawamoto K,Suzuki K,et al.Microstructural interpretation on reliquefaction of saturated granular soils under cyclic loading[J].Journal of geotechnical and geoenvironmental engineering,2001,127(5):416-423.
    [113]Wichtmann T,Niemunis A,Triantafyllidis Th,et al.Correlation of cyclic preloading with the liquefaction resistance[J].Soil dynamics and earthquake engineering,2005,25(12):923-932.
    [114]刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究[J].岩土工程学报,2002,24(2):142-146.
    [115]周云东.地震液化引起的地面大变形试验研究[博士学位论文][D].南京:河海大学,2003.
    [116]王刚,张建民.砂土液化大变形的弹塑性循环本构模型[J].岩土工程学报,2007,29(1):51-59.
    [117]王刚,张建民.砂土液化后大变形的物理机制与本构模型研究[博士学位论文][D].北京:清华大学.2005.
    [118]孟上九,曹文海,袁晓铭.地震荷载下土体残余应变及孔隙水压力研究综述[J].世界地震工程,2001,17(3):49-53.
    [119]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [120]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [121]Seed H B,Pyke R M,Martin G R.Effect of multidirectional shaking on pore pressure development in sand[J].Journal of the Geotechnical Engineering Division,1978,104(GT2):27-44.
    [122]Finn W D L,Lee K W.An effective stress model for liquefaction[J].Journal of the Geotechnical Engineering Division,1977,103(GT6):517-533.
    [123]徐志英.地震期间孔隙水压力变化的估算方法[J].水利学报,1981,(4):68-73.
    [124]Martin G R,Finn W D L,Seed H B.Fundamentals of liquefaction under cyclic loading[J].Journal of the Geotechnical Engineering Division,1975,101(GT5):423-438.
    [125]汪闻韶.饱和砂土振动孔隙水压力试验研究[J].水利学报,1962,(2):36-47.
    [126]曹亚林,何广纳,林皋.土中振动孔隙水压力升长程度的能量分析法[A].全国第二届土动力学汇编[C].西安:陕西机械学院出版社,1986.
    [127]章根德.地质材料本构模型的最新进展[J].力学进展,1994,24(3):374-385.
    [128]郑颖人.岩土塑性力学的新进展—广义塑性力学[J].岩土工程学报,2003,25(1):1-10.
    [129]沈珠江,刘恩龙,张铁林.岩土二元介质模型的一般应力应变关系[J].岩土工程学报,2005,27(5):489-494.
    [130]杨光华.21世纪应建立岩土材料的本构模型[J].岩土工程学报,1996,18(4):116-117.
    [131]殷建华.土的三模量非线性模型及其推广[J].岩土力学,2000,21(1):16-19.
    [132]屈智炯.土的塑性力学[M].成都:成都科技大学出版社,1987.
    [133]沈珠江.土的弹塑性应力应变关系的合理形式[J].岩土工程学报,1980,2(2):11-19.
    [134]沈珠江.土的三重屈服面应力应变模式[J].固体力学学报,1984,(2):163-174.
    [135]栾茂田,罗锦添,李焯芬.不排水条件下全风化花岗岩残积土工程特性与本构模型[J].大连理工大学学报,2000,40(增刊):83-89.
    [136]路德春,罗汀,姚仰平.砂土应力路径本构模型的试验验证[J].岩土力学,2005,26(5):717-722.
    [137]刘萌成,高玉峰,黄晓明.考虑强度非线性的堆石料弹塑性本构模型研究[J].岩土工程学报,2005,27(3):294-298.
    [138]高正中,胡德金,张青云.复杂应力路径下土的本构模型研究[J].四川联合大学学报,1997,1(5):50-56.
    [139]陈生水,沈珠江,郦能惠.复杂应力路径下无粘性土的弹塑性数值模拟[J].岩土工程学报,1995,17(2):20-28.
    [140]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [141]史宏彦.无粘性土的应力矢量本构模型[博士学位论文][D].西安:西安理工大学,2000.
    [142]孔亮.复杂应力条件下土体弹塑性本构模型研究[博士学位论文][D].重庆:后勤工程学院,2002
    [143]Matsuoka H,Sun De'an.Extension of mobilized plane(SMP) to frictional and cohesive materials and its application to cemented sands[J].Soils and Foundations,1995,35(4):63-72.
    [144]罗汀.路德春,姚仰平.考虑应力路径影响下砂土的三维本构模型[J].岩土力学,2004,25(5):688-693.
    [145]李亮,杜修力,赵成刚,李立云.饱和砂土弹塑性动力本构模型研究[J].岩石力学与工程学报,2005,24(18):3380-3385.
    [146]李亮,赵成刚.基于SMP破坏准则的土体弹塑性动力本构模型[J].工程力学,2005,22(3):139-143.
    [147]Hardin B O,Drnevich V P.Shear modulus and damping in soils:measurement and parameter effects[J].Journal of the Soil Mechanics and Foundations Division,ASCE,1972,98(SM6):603-624.
    [148]Hardin B O,Drnevich V P.Shear modulus and damping in soils design equations and curves[J].Journal of Soil Mechanics and Foundation,ASCE,1972,98(SM7):603-642.
    [149]Prevost J H,Keane C M.Shear stress-strain curve generation from simple material parameters[J].Journal of Geotechnical Engineering,ASCE,1990,116(8):1255-1263.
    [150]Pyke R M.Nonlinear soil models for irregular cyclic loadings[J].Journal of the Geotechnical Engineering Division,ASCE,1979,105(GT6):715-726.
    [151]王志良,王余庆,韩清宇.不规则循环剪切荷载作用下土的粘弹塑性模型[J].岩土工程学报,1980,2(3):10-20.
    [152]Carter J P,Booker J R,Wroth C P.A critical state soil model for cyclic loading[A].Soil Mechanics-Transient and Cyclic Loads,Constitutive relationsand numerical treatment[M].Edited by G.N.Pande and O.C.Zienkiewicz,John Wiley &Sons Ltd.,Chapter 9,1982.
    [153]Baladi G Y,Rohani B.An elastic-plastic constitutive model for saturated sand subjected to monotonic and/or cyclic loadings[A].Proceedings of The Third International Conference on Numerical Methods in Geomechanics[C].Aachen,1979:389-404.
    [154]Desai C S,Faruque M O.A generalized basis for modelling plastic behaviour of materials[A].Mechanics of Engineering Materials[M],edited by C.S.Desal and R.H.Gallagher,John Wiley &Sons Ltd.,Chapter 11,1984,211-230.
    [155]Dafalias Y F,Popov E P.A model of non-linearly hardening materials for complex loadings[J].Acta Mechanics,1975,21(3):173-192.
    [156]Krieg R D.A practical two-surface plasticity theory[J].Journal of Applied Mechanics,1975,97(42E):641-646.
    [157]Mroz Z,Norris V A,Zienkiewicz O C.An anisotropic hardening model for soils and its application to cyclic loading[J].International Journal for Numerical and Analytical Methods in Geomechanics,1978,2(3):203-221.
    [158]Mroz Z,Norris V A,Zienkiewicz O C.Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils[J].Geotechnique,1979,29(1):1-34.
    [159]Dafalias Y F,Herrmann L R.A bounding surface soil plasticity model.Internal Symposium on Soils under Cyclic and Transient Loading,Swansea,January,1980,335-345.
    [160]Pande GN,Pietruszczak S."Reflecting surface" model for soils[A].Proceedings of The International Symposium on Numerical Models in Geomechanics[C].Zurich,1982:50-64.
    [161]Bardet J P.Bounding surface plasticity model for sands[J].Journal of Engineering Mechanics,ASCE,1986,112(11):1198-1217.
    [162]Zienkiewicz O C,Leung KH,Pastor M.Simple model for transient soil loading in earthquake analysis[J].International Journal for Numerical and Analytical Methods in Geomechanics,1985,9(5):453-498.
    [163]Poorooshasb H B,Pietruszczak S.On yielding and flow of sand;a generalized two-surface model[J].Computers and Geotechnics,1985,1(1):33-58.
    [164]Desai C S,Somasundaram S,Faruque M O.Constitutive modelling of geological materials:a general procedure[A].Developments in Soil Mechanics and Foundation Engineering-2,Stress-Strain Modelling of Soils[C].New York:Elsevier Applied Science Publishers Ltd.,1985:43-67.
    [165]Hiral H.Elastoplastic constitutive model for cyclic behavior of sands[J].International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(5):503-520.
    [166]HiraI H.An anisotropic hardening model for sand subjected to cyclic loading[A].Soil Dynamics and Liquefaction[C].New York:Elsevier Science Publishers B.V.,1987:53-67.
    [167]Liang R Y,Ma F G.Anisotropic plasticity model for undrained cyclic behavior of clays[J].Journal of Geotechnical Engineering,ASCE,1992,118(2):229-265.
    [168]Crouch R S,Wolf J P.Unified 3D critical state bounding-surface plasticity model for soils incorporating continuous plastic loading under cyclic paths[J].International Journal for Numerical and Analytical Methods in Geomechanics,1994,18(11):735-784.
    [169]Anandarajah A.Procedures for elastoplastic liquefaction modeling of sands[J].Journal of Engineering Mechanics,ASCE,1994,120(7):1563-1587.
    [170]Zhang L N.Elastoplastic modelling of soil behaviour under cyclic loading[A].Proceedings of The First International Conference on Earthquake Geotechnical Engineering[C].Tokyo,1995:423-428.
    [171]Been K,Jefferies M G.A state parameter for sands[J].Geotechnique,1985,35(2):99-112.
    [172]Jefferies M G."Nor-sand:a simple critical state model of sand"[J].Geotechnique,1993,43(1):91-103.
    [173]Manzari M T,Dafalias Y F.A critical state two-surface plasticity model for sands[J].Geotechnique,1997,47(2):255-272.
    [174]Chambon R,Darve F.Incremental constitutive equations for soils and application to cyclic loadings[A].Proceedings of The International Symposium on Soils under Cyclic and Transient Loading[C].Swansea,1980:399-409.
    [175]Darve F,Labanieh S.Incremental constitutive law for sands and clays:simulations of monotonic and cyclic tests[J].International Journal for Numerical and Analytical Methods in Geomechanics,1982,6(2):243-275.
    [176]Dafalias YF.Bounding surface plasticity.I:Mathematical foundation and hypoplasticity[J].Journal of Engineering Mechanics,ASCE,1986,112(9):966-987.
    [177]Wang Z L,Dafalias Y F,Shen C K.Bounding surface hypoplasticity model for sand[J].Journal of Engineering Mechanics,ASCE,1990,116(5):983-1001.
    [178]Kolymbas D,Here I,Von Wolffersdorff P A.Hypoplastic constitutive equation with internal variables[J].International Journal for Numerical and Analytical Methods in Geomechanics,1995,19(6):415-436.
    [179]Li X S,Dafalias Y F,Wang Z L.State-dependent dilatancy in critical-state constitutive modelling of sand[J].Canadian Geotechnical Journal,1999,36(4):599-611.
    [180]孙吉主,周健.往复荷载作用下土体的广义塑性分析[J].岩土力学,2001,22(2):126-129.
    [181]丰土根.饱和砂土不排水动力特性及多机构边界面塑性模型研究[博士学位论文][D].南京:河海大学,2002.
    [182]吴兴征.堆石料的静动力本构模型及其在混凝土面板堆石坝中的应用[博士学位论文][D].大连:大连理工大学,2001.
    [183]Wang Z L.Bounding surface hypoplasticity model for granular soils and its applications][D].University of California,Davis,1990.
    [184]Seed H B,Lee K L.Liquefaction of saturated sands during cyclic loading[A].Proc.ASCE.J.AMFD[C].1966,92(SM6):105-134.
    [185]Castro G,Poulos J.Factors affecting liquefaction and cyclic mobility[J].Journal of Geotechnical Engineering,ASCE,1977,103(6):501-506.
    [186]Robertson P K,Woeller D J,Finn W D L.Seismic cone penetration test for evaluating liquefaction potential under cyclic loading[J].Canada Getechnical Journal,1992,(29):686-695.
    [187]邵生俊.砂土的物态本构模型及应用[M].西安:陕西科学技术出版社,2001.
    [188]张克绪,谢君斐.土动力学[M].地震出版社,1989.
    [189]谢定义.饱和砂土体液化的若干问题[J].岩土工程学报,1992,14(3):90-98.
    [190]陈国兴,张克绪,谢君斐.液化判别的可靠性研究[J].地震工程与工程振动,1991,11(2):85-96.
    [191]冯秀丽,沈渭铨,杨荣民.现代黄河水下三角洲砂土液化模式[J].青岛海洋大学学报,1995,25(2):221-228.
    [192]赵成刚,尤昌龙.饱和砂土液化与稳态强度[J].土木工程学报,2001,34(3):90-96.
    [193]陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见[J].地震工程与工程振动,2002,22(1):141-151.
    [194]周健,白冰,徐建平.土动力学理论与计算[M].北京:中国建筑工业出版社,2001.
    [195]Braja M Das,吴世明,顾尧章译.土动力学原理[M].杭州:浙江大学出版社,1984.
    [196]苏栋,李相崧.地震历史对砂土抗液化性能影响的试验研究[J].岩土力学,2006,27(10):1815-1818.
    [197]Sato K,Yoshida N.Effect of principal stress direction on undrained cyclic shear behavior of dense sand[A].Proceedings of the 9th International Offshore and Polar Engineering Conference[C].1999,1:542-547.
    [198]Youd,T L.Compaction of sands by repeated shear straining[J].Journal of Geotechnical Engineering Division,ASCE,1972,103(GT8):918-922.
    [199]Oda M.Co-ordination number and its relation to shear strength of granular material[J].Soil and Foundations,1977,17(2):29-42.
    [200]Bhatia S K,Soliman A F.Frequency distribution of void ratio of granular materials determined by an image analyzer[J].Soils and foundations,1990,30(1):1-16.
    [201]沈珠江.复杂荷载下砂土液化变形的结构性模型[A].第五届全国土动力学学术会议论文集[C].大连:大连理工大学出版社,1998:1-10.
    [202]Yoshimine M,Ishihara K.Flow potential of sand during liquefaction[J].Soils and Foundations,JGS,1998,38(3):189-195.
    [203]张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004.
    [204]孙吉主,周健.土的边界面本构模型研究进展[J].岩土力学,1997,18(2):91-96.
    [205]Dafalias Y F,Popov E P.Cyclic loading for materials with a vanishing elastic region[J].Nuclear Engineering and Design,1977,41(2):293-302.
    [206]Klisinski M.Plasticity theory based on fuzzy sets[J].Journal of Engineering Mechanics,ASCE,1988,114(4):563-582.
    [207]殷宗泽,卢海华,朱俊高.土体的椭圆—抛物线双屈服面模型及其柔度矩阵[J].水利学报,1996,(12):23-28.
    [208]Yamada Y,Ishihara K.Yielding of loose sand in three-dimensional stress conditions[J].Soil and Foundations,1982,22(3):15-31.
    [209]Wood D M.Truly triaxial stress strain behaviour of kaolin[A].Proceedings of Symposium on the Role of Plasticity in Soil Mechanics[C].Cambirdge University,1973:67-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700